

Heavy Duty Industrial Air Cylinders

Atlas Series A

aerospace
climate control
electromechanical
filtration
fluid \& gas handling
hydraulics
pneumatics
process control
sealing \& shielding

L Series Cylinders

400-2300 PSI

Our popularly priced line of medium pressure hydraulic cylinders with bore sizes from $1 \frac{1}{2 \prime \prime}$ to $8^{\prime \prime}$.

Series CHD \& CHE Compact Hydraulic Cylinders

Series CHE aluminum compact hydraulic cylinders are available with magnetic piston option for position sensing and for up to 140 BAR operating pressure. Series CHD steel compact hydraulic cylinders are available for up to 207 BAR operating pressure.

H Series Cylinders
Operating Pressure to 3000 PSI

Atlas' heavy duty cylinder line for demanding hydraulic applications. Bore sizes from $1^{1 / 2 "}$ to $8^{\prime \prime}$.

Custom Cylinders

Bores to 42" and Strokes to 900". Full range of offering from micro cylinders to cylinders over 40,000 lbs.

In line with our policy of continuing product improvement, specifications and information contained in this catalog are subject to change.
Copyright ©2008-2011 by Parker Hannifin Corporation.
All rights reserved.
PRINTED IN THE U.S.A.

\triangle WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.
This document and other information from the Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by provisions stated on a separate page of the document entitled 'Offer of Sale'.
Table of Contents Page
Specifications, Mounting Styles 3
Cylinder Features 4, 5
Bore Sizes 1112" to 6" 7" - 14"
Style SL, Side Lug Mount (NFPA MS2) 6, 7 26, 27
Style FS, Side Tap Mount (NFPA MS4) 8, 9 26, 27
Style REF2, Head Rectangular Flange Mount (NFPA MF1) .10, 11 N/A
Style BEF2, Cap Rectangular Flange Mount (NFPA MF2) 12, 13 N/A
Style REF1, Head Square Flange Mount (NFPA MF5) 14, 15 N/A
Style BEF1, Cap Square Flange Mount (NFPA MF6) 14, 15 N/A
Style REF, Head Square Mount (NFPA MF5) N/A 28, 29
Style BEF, Cap Square Mount (NFPA MF6). N/A 28, 29
Styles NM1, NM2, NM3 Tie Rods Extended Mounts
(Both Ends NFPA MX1, Cap End NFPA MX2, Head End NFPA MX3) 16, 17 32, 33
Style TM1, Head Trunnion Mount (NFPA MT1) 18, 19 30, 31
Style TM2, Cap Trunnion Mount (NFPA MT2) 20, 21 30, 31
Style TM3, Intermediate Trunnion Mount (NFPA MT4) 22, 23 30, 31
Style PB2, Cap Fixed Clevis Mount (NFPA MP1) 24, 25 32, 33
Style SA, Spherical Bearing Mount (NFPA MPU3) 35 36
Double Rod End Cylinders 34
Spherical Bearing Mount 35, 36
Spherical Bearing Mount Accessories. 37
End-of-Stroke Magnetic Principle Type Proximity Switch 38
AL Series Non-Lube Heavy Duty Air Cylinders 39-41
Cylinder Accessories 42-45
"Style 5" Piston Rod End, Split Couplers \& Weld Plates 46, 47
Linear Alignment Couplers 48
Push and Pull Forces 49
Operating Fluids and Temperature Range 50
Ports 51
Cylinder Pressure Ratings, Cylinder Weights 52
Stop Tube, Mounting Classes 53
Piston Rod Selection Chart and Data. 54
Deceleration Force and Air Requirements 55
Cushion Ratings and Air Requirements 56-58
Parts List, Seal Kits, and Maintenance Instructions 59-63
How to Order an Atlas Cylinder 64, 65
Cylinders for Wood Products Applications 65
Cylinder Safety Guide 66-67
Offer of Sale IBC

Atlas Series A Heavy Duty Industrial Air Cylinders

When the job calls for reliable, heavy-duty performance, specify Series A. A 100,000 psi yield strength chrome-plated, casehardened piston rod. A 125,000 psi yield strength rod-end stud with rolled threads. 100,000 psi yield strength tie rods. With construction like this, the Atlas Series A is rated for air service to 250 psi. This is one heavy-duty air cylinder that's really heavy duty.

They're truly premium quality cylinders, factory prelubricated standard with a nonlube option for millions of maintenance-free cycles. And to make sure every cylinder is premium quality, we subject each and every one - not just batch samples - to tough inspection and performance tests. See the following pages for the inside story on all the features that make Series A the high performance, long lasting choice for all your heavy-duty air applications.

Note: Rod diameters over $2^{11 / 2 " 1}$ will use a threaded nose gland.

Standard Specifications

- Heavy Duty Service - ANSI/(NFPA) T3.6.7R2-1996 Specifications and Mounting Dimension Standards
- Standard Construction - Square Head - Tie Rod Design
- Nominal Pressure - Up to 250 PSI Air Service
- Standard Fluid - Filtered Air
- Standard Temperature $--10^{\circ} \mathrm{F}$. to $+165^{\circ} \mathrm{F}$.
- Bore Sizes - $11 / 2$ " through 14 "
- Piston Rod Diameters - $5 / 8^{\prime \prime}$ through 4"
- Mounting Styles - 14 standard styles at various application ratings
- Strokes - Available in any practical stroke length
- Cushions - Optional at either end or both ends of stroke. "Float Check" at cap end.
- Rod Ends - Four Standard Choices - Specials to Order

In line with our policy of continuing product improvement, specifications in this catalog are subject to change.

*REF1, REF2, BEF1, BEF2 not available in these bore sizes.

Available in all bore and rod combinations in the following mounting styles: XSL, XFS, XNM1, XNM3, XTM1, XTM3, and XREF2 ($1^{11 / 2 "-6 ") . ~ X R E F 1 ~(1 ½ "-6 ") ~ a n d ~ X R E F ~(8 "-14 ") . ~}$

> The inside story on why Series A is your best choice in heavy duty air cylinders.

Piston Rod - Medium carbon steel, induction case-hardened to 54 Re, hard chrome-plated and polished to 10 RMS finish. $_{\text {she }}$. Piston rods are made from 90,000 to 100,000 psi minimum yield material in $5 / 8^{\prime \prime}$ through 4 " diameters. The piston thread equals the catalog style \#1 rod end thread for each rod diameter to assure proper piston-to-rod thread strength. Two wrench flats are provided for rod end attachment.

Rod Seal - The piston rod seal offers maximum sealing performance and efficiency with minimum friction. The highly resilient lips are pressure actuated and wear compensating, giving complete reliability through millions of cycles.
and grooved to provide concentricity for mating parts.

Ports - NPTF ports are standard.

End Seals -Pressure-actuated cylinder body-tohead and cap "O" rings.

Secondary Seal -
A Double-Service Wiperseal ${ }^{\text {™ }}$ acts as a secondary pressure seal on the extend stroke and cleans the rod on the return stroke.

Bolt-On Rod Cartridge - assures true concentricity and allows removal without tie rod disassembly.

Piston Rod Stud Furnished on 2" diameter rods and smaller when standard style \#1 rod end threads are required. Piston rod studs are also available in 2 times the catalog "A" dimension length. Studs have rolled threads and are made from high strength steel. Anaerobic adhesive is used to permanently lock the stud to the piston rod.

High Strength Tie Rods Made from 100,000 psi minimum yield steel with rolled threads for added strength.

Steel Cap - Bored and grooved to provide concentricity for mating parts.

Ports - NPTF ports are standard.

One-Piece Nodular Iron
Piston - The wide piston surface contacting cylinder bore reduces bearing loads. Anaerobic adhesive is used to permanently lock and seal the piston to the rod.

Prelubricated Wearing Surfaces

Atlas Series A Air Cylinders are factory prelubricated. Lube-A-Cyl applied to seals, piston, cylinder bore, piston rod and gland surfaces provides lubrication for normal operation.
Lube-A-Cyl has been field and laboratory tested, and is recommended by Atlas for air cylinders where lubricant should remain in the cylinder and not be expelled into the atmosphere.

Note: Threaded rod glands are supplied on cylinders with rod diameters over $2^{1 / 2 "}$.

Piston with Wear Band Standard 8"-14" Bore

Nut Retained Piston Optional at extra charge

Cushion Length

Cylinder Bore (Inches)	Rod Diameter* (Inches)	Cushion Length (Inches)	
		Head*	Cap
$1^{1 / 2}$	5/8	7/8	13/16
	1	7/8	13/16
2	5/8	7/8	13/16
	13/8	7/8	13/16
21/2	5/8	7/8	13/16
	$1^{3 / 4}$	7/8	${ }^{13 / 16}$
$3^{1 / 4}$	1	11/8	1
	2	13/16	1
4	1	$11 / 8$	1
	2	13/16	1
5	1	$1^{1 / 8}$	1
	2	13/16	1

Cylinder Bore (Inches)	RodDiameter*(Inches)	Cushion Length (Inches)	
		Head*	Cap
6	$13 / 8$	$1^{3 / 8}$	11/4
	$2^{1 / 2}$	13/16	$11 / 4$
7	13/8	11/16	$11 / 4$
	2	11/16	$11 / 4$
8	$1^{3 / 8}$	11/16	11/4
	$2^{1 / 2}$	13/16	$11 / 4$
10	$1^{3 / 4}$	15/16	$13 / 4$
	3	$1^{1 / 16}$	$13 / 4$
12	2	15/16	$13 / 4$
	$3^{1 / 2}$	15/16	$13 / 4$
14	$2^{1 / 2}$	$1^{3 / 4}$	2
	4	$1^{13 / 16}$	2

[^0]
Side Lug Mount

Style SL

1 1/2" - 2" and 2 1/2" Bore
With Maximum Oversize Rods

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

"Special"
Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	SB•	ST	SU	SW	TS	US	Add Stroke			
													LB	LG	P	SS
$11 / 2$	2	$3 / 8{ }^{\dagger}$	3/8	11/2	1	1/4	7/16	1/2	15/16	3/8	$2^{3 / 4}$	$3^{1 / 2}$	4	3/8	$2^{1 / 4}$	$2^{7 / 8}$
2	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	3/8	11/2	1	5/16	7/16	$1 / 2$	15/16	3/8	$3^{1 / 4}$	4	4	3/8	$2^{1 / 4}$	$2^{7 / 8}$
$2^{11 / 2}$	3	$3 / 8{ }^{\dagger}$	3/8	11/2	1	5/16	7/16	$1 / 2$	15/16	$3 / 8$	$33 / 4$	$4^{1 / 2}$	41/8	$3{ }^{3 / 4}$	$2^{3 / 8}$	3
31/4	$33 / 4$	1/2	5/8	$1^{3 / 4}$	11/4	3/8	9/16	$3 / 4$	$11 / 4$	1/2	$43 / 4$	53/4	$47 / 8$	$41 / 4$	25/8	$31 / 4$
4	$4^{1 / 2}$	1/2	5/8	$13 / 4$	11/4	3/8	9/16	$3 / 4$	11/4	1/2	51/2	61/2	47/8	41/4	25/8	$3^{1 / 4}$
5	$5^{1 / 2}$	1/2	5/8	13/4	11/4	7/16	13/16	1	19/16	11/16	67/8	81/4	51/8	41/2	$2^{7 / 8}$	$3^{1 / 8}$
6	$6^{1 / 2}$	$3 / 4$	$3 / 4$	2	11/2	7/16	13/16	1	19/16	11/16	71/8	91/4	$5^{3} / 4$	5	$31 / 8$	3/8

† On $1^{11 / 2 ",} 2^{\prime \prime}$ and $2^{11 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

- Upper surface spot-faced for socket head screws.

Table 3-Envelope and Mounting Dimensions

XS	Y	Add Stroke
		ZB
13/8	15/16	47/8
$1^{3 / 4}$	25/16	$5^{1 / 4}$
$1^{3 / 8}$	15/16	$4^{15 / 16}$
$1^{3 / 4}$	25/16	55/16
2	29/16	59/16
$1^{3 / 8}$	15/16	51/16
$1^{3 / 4}$	25/16	57/16
2	29/16	$5^{11 / 16}$
$2^{1 / 4}$	$2^{13 / 16}$	$5^{15 / 16}$
17/8	27/16	6
$2^{1 / 8}$	$2^{11 / 16}$	$6^{1 / 4}$
$2^{3 / 8}$	$2^{15 / 16}$	61/2
$2^{1 / 2}$	$3^{1 / 16}$	65/8
17/8	27/16	6
$2^{1 / 8}$	211/16	$6^{1 / 4}$
$2^{3 / 8}$	$2^{15 / 16}$	$6^{1 / 2}$
$2^{1 / 2}$	31/16	65/8
21/16	$2^{7 / 16}$	65/16
$2^{5 / 16}$	$2^{11 / 16}$	69/16
29/16	25/16	$6^{13 / 16}$
$2^{11 / 16}$	31/16	$6^{15 / 16}$
25/16	$2{ }^{13 / 16}$	71/16
29/16	31/16	75/16
$2^{11 / 16}$	3/16	7/16
$2^{15 / 16}$	37/16	$7^{11 / 16}$

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3

Short Female

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Style 6
Stub End

Side Tap Mount

Style FS

1 1/2" - 2" and 2 1/2" Bore
With Maximum Oversize Rods

Retainer Held Gland

Side Tap Mount

Style FS
1 1/2" - 6" Bore

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

"Special"
Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1-Envelope and Mounting Dimensions

Bore	E	$\underset{\text { NPTF }}{\text { EE }}$	F	G	J	K	NT	TN	Add Stroke			
									LB	LG	P	SN
11/2	2	3/8¢	3/8	11/2	1	1/4	1/4-20	5/8	4	35/8	$2^{1 / 4}$	21/4
2	$2^{1 / 2}$	$3 / 8$ ¢	3/8	$1^{1 / 2}$	1	5/16	5/16-18	7/8	4	$3^{5 / 8}$	$2^{1 / 4}$	$2^{1 / 4}$
$2^{1 / 2}$	3	$3 / 8 \uparrow$	3/8	$1^{1 / 2}$	1	5/16	3/8-16	$11 / 4$	41/8	$3^{3 / 4}$	$2^{3 / 8}$	$2^{3 / 8}$
$31 / 4$	$3{ }^{3 / 4}$	1/2	5/8	$1^{13 / 4}$	$11 / 4$	3/8	$1 / 2-13$	11/2	$4^{7 / 8}$	$41 / 4$	25/8	25/8
4	41/2	1/2	5/8	$1^{1 / 4}$	$11 / 4$	3/8	1/2-13	$2^{1 / 16}$	$4^{7 / 8}$	$4^{1 / 4}$	25/8	$2^{5 / 8}$
5	$51 / 2$	1/2	5/8	$1^{3 / 4}$	$1^{1 / 4}$	${ }^{7 / 16}$	$5 / 8-11$	$2^{11 / 16}$	51/8	$4^{1 / 2}$	$2^{7 / 8}$	$2^{7 / 8}$
6	$61 / 2$	3/4	3/4	2	$11 / 2$	7/16	$3 / 4-10$	$3^{1 / 4}$	$5^{3 / 4}$	5	$3^{1 / 8}$	$3^{1 / 8}$

\dagger On $1^{1 / 2 "}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2-Rod Dimensions
Table 3-Envelope and Mounting Dimensions

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions										XT	Y	ND	Add StrokeZB
		$\begin{gathered} \hline \text { Style } \\ 2 \\ \text { CC } \\ \hline \end{gathered}$	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \\ \hline \end{gathered}$	C	D	NA	V	VA	VB	W	WF				
$11 / 2$	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	$1^{15 / 16}$	$1^{15 / 16}$	3/8	47/8
	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	1/2	-	-	1	-	25/16	25/16	$3 / 8$	51/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	$9 / 16$	-	$1 / 4$	3/16	-	1	$1^{15 / 16}$	$1^{13 / 16}$	${ }^{11 / 32}$	$4^{15 / 16}$
	1	7/8-14	$3 / 4.16$	$1^{1 / 8}$	1.499	1/2	7/8	15/16	-	1/4	$3 / 8$	-	13/8	25/16	25/16	${ }^{11 / 32}$	55/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	5/8	-	-	11/4	-	29/16	29/16	${ }^{11 / 32}$	5\%/16
$2^{1 / 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{15 / 16}$	$1^{15 / 16}$	7/16	$5^{1 / 16}$
	1	7/8-14	$3 / 4.16$	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	25/16	25/16	7/16	$5^{7 / 16}$
	$1^{3 / 8}$	11/4-12	1-14	$1^{5 / 8}$	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	29/16	29/16	7/16	$5^{11 / 16}$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	-	-	$1^{1 / 2}$	-	$2^{13 / 16}$	$2^{13 / 16}$	7/16	$5^{15 / 16}$
$3^{1 / 4}$	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	$2^{7 / 16}$	$2^{7 / 16}$	1/2	6
	13/8	11/4-12	1-14	15/8	1.999	5/8	111/8	15/16	-	$1 / 4$	9/16	-	15/8	$2^{11 / 16}$	$2^{11 / 16}$	1/2	$6^{1 / 4}$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	1/4	1/2	-	17/8	$2^{15 / 16}$	25/16	1/2	61/2
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	31/16	1/2	65/8
4	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	$1^{3 / 8}$	$2^{7 / 16}$	$2^{7 / 16}$	5/8	6
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	$2^{11 / 16}$	5/8	$61 / 4$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	1/4	9/16	-	$1^{7 / 8}$	$2^{15 / 16}$	25/16	5/8	$6^{1 / 2}$
	2	13/4-12	11/2-12	$2^{11 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	31/16	5/8	65/8
5	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	$1^{3 / 8}$	$2^{7 / 16}$	$2^{7 / 16}$	$3 / 4$	65/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	$2^{11 / 16}$	$3 / 4$	69/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	$1^{7 / 8}$	$2^{15 / 16}$	$2^{15 / 16}$	$3 / 4$	$6^{13 / 16}$
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	111/16	15/16	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	$3^{1 / 16}$	$3 / 4$	$6^{15 / 16}$
6	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	$2^{13 / 16}$	$2^{13 / 16}$	7/8	71/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	1/4	9/16	-	$1^{7 / 8}$	$3^{1 / 16}$	$31 / 16$	7/8	75/16
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	3 $3 / 16$	33/16	7/8	7/16
	$2^{1 / 2}$	$2^{1 / 4} 412$	$1^{7 / 8-12}$	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	-	$1 / 4$	11/16	-	$2^{1 / 4}$	$3^{7 / 16}$	3/16	7/8	$7^{11 / 16}$

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3

Short Female

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Style 6
Stub End

Head Rectangular Flange Mount

Style REF2

1 1/2" - 6" Bore

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	FB	G	J	K	R	TF	UF	Add Stroke	
											LB	P
11/2	2	$3 / 8{ }^{\dagger}$	3/8	5/16	$1^{1 / 2}$	1	1/4	1.43	$2^{3 / 4}$	3 ${ }^{3 / 8}$	4	21/4
2	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	3/8	3/8	$1^{1 / 2}$	1	5/16	1.84	$33 / 8$	41/8	4	21/4
$2^{1 / 2}$	3	$3 / 8{ }^{\dagger}$	3/8	3/8	$1^{1 / 2}$	1	5/16	2.19	37/8	45/8	41/8	$2^{3 / 8}$
$3^{1 / 4}$	$3^{3 / 4}$	1/2	5/8	7/16	$1^{3 / 4}$	$1^{1 / 4}$	3/8	2.76	$4^{11 / 16}$	$5^{1 / 2}$	47/8	2/8
4	$4^{1 / 2}$	1/2	5/8	${ }^{7} / 16$	$1^{3 / 4}$	$1^{1 / 4}$	3/8	3.32	$5^{7 / 16}$	$6^{1 / 4}$	47/8	25/8
5	51/2	1/2	5/8	9/16	$1^{3 / 4}$	$1^{1 / 4}$	7/16	4.10	65/8	75/8	51/8	27/8
6	61/2	$3 / 4$	$3 / 4$	9/16	2	$11 / 2$	7/16	4.88	75/8	85/8	$5^{3 / 4}$	31/8

\dagger On $1^{11 / 2 ", ~} 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2—Rod Dimensions

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions								Y	Add StrokeZB
		$\begin{gathered} \hline \text { Style } \\ 2 \\ \text { CC } \\ \hline \end{gathered}$	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	C	D	NA	V	W	WF		
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	1/4	5/8	1	15/16	47/8
	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	1/2	1	13/8	25/16	$5^{1 / 4}$
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	$1 / 4$	5/8	1	15/16	$4^{15 / 16}$
	1	7/8-14	$3 / 4.16$	$1^{1 / 8}$	1.499	1/2	7/8	15/16	1/2	1	13/8	25/16	55/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	11/4	15/8	29/16	59/16
$2^{11 / 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	$1 / 4$	5/8	1	$1^{15 / 16}$	51/16
	1	7/8-14	$3 / 4.16$	11/8	1.499	1/2	7/8	15/16	1/2	1	13/8	25/16	$5^{7 / 16}$
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	$1^{1 / 4}$	15/8	29/16	$5^{11 / 16}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	11/2	17/8	$2^{13 / 16}$	515/16
$3^{11 / 4}$	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	$1 / 4$	$3 / 4$	13/8	$2^{7 / 16}$	6
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$3 / 8$	1	15/8	$2^{11 / 16}$	$6^{1 / 4}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	$1^{11 / 16}$	1/2	$1^{1 / 4}$	17/8	$2^{15 / 16}$	$6^{1 / 2}$
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	1/2	$1^{1 / 8}$	2	$3^{1 / 16}$	65/8
4	1	7/8-14	$3 / 4.16$	11/8	1.499	1/2	7/8	15/16	$1 / 4$	$3 / 4$	13/8	$2^{7 / 16}$	6
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	3/8	1	15/8	$2^{11 / 16}$	61/4
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	$1^{11 / 16}$	1/2	$1^{1 / 4}$	17/8	$2^{15 / 16}$	61/2
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	1/2	$1^{3 / 8}$	2	31/16	65/8
5	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	$1 / 4$	$3 / 4$	$1^{3 / 8}$	$2^{7 / 16}$	65/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$3 / 8$	1	15/8	$2^{11 / 16}$	$69 / 16$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	$1^{11 / 16}$	1/2	$1^{1 / 4}$	17/8	$2^{15 / 16}$	$6^{13 / 16}$
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	1/2	$1^{1 / 8}$	2	31/16	$6^{15 / 16}$
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$1 / 4$	7/8	15/8	$2^{13 / 16}$	71/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	$1^{11 / 16}$	$3 / 8$	$1^{1 / 8}$	17/8	31/16	75/16
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	$3 / 8$	$1^{1 / 4}$	2	$3^{3 / 16}$	77/16
	$2^{1 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	1/2	$1^{1 / 2}$	$2^{1 / 4}$	$3^{7 / 16}$	$7^{11 / 16}$

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads.
Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3
Short Female

Style 6
Stub End

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 3-Envelope and Mounting Dimensions

Cap Rectangular Flange Mount

Style BEF2
1 1/2" - 2" and 2 1/2" Bore
With Maximum Oversize Rods

Retainer Held Gland

Cap Rectangular Flange Mount Style BEF2
 1 1/2" - 6" Bore

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

"Special"
Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	FB	G	J	K	R	TF	UF	Add Stroke		
											LB	LG	P
11/2	2	$3 / 8{ }^{\dagger}$	3/8	5/16	11/2	1	1/4	1.43	$2^{3 / 4}$	3 $3 / 8$	4	35/8	$2^{1 / 4}$
2	$2^{1 / 2}$	$3 / 8{ }^{\text {¢ }}$	3/8	3/8	$11 / 2$	1	5/16	1.84	33/8	41/8	4	35/8	$2^{1 / 4}$
$2^{1 / 2}$	3	$3 / 8{ }^{\dagger}$	3/8	3/8	$11 / 2$	1	5/16	2.19	37/8	45/8	41/8	$3^{3 / 4}$	$2^{3 / 8}$
$3^{1 / 4}$	$3^{3 / 4}$	1/2	5/8	7/16	$1^{3 / 4}$	$1^{1 / 4}$	3/8	2.76	$4^{11 / 16}$	51/2	-	41/4	25/8
4	$4^{1 / 2}$	1/2	5/8	7/16	$1^{3 / 4}$	$11 / 4$	3/8	3.32	57/16	61/4	-	41/4	25/8
5	$5^{1 / 2}$	1/2	5/8	9/16	$1^{3 / 4}$	$1^{1 / 4}$	7/16	4.10	65/8	75/8	51/8	$4^{1 / 2}$	27/8
6	$6^{1 / 2}$	$3 / 4$	3/4	9/16	2	11/2	7/16	4.88	75/8	85/8	$5^{3 / 4}$	5	31/8

†On $1^{11 / 2 ",} 2^{\prime \prime}$ and $2^{1 / 2 "}$ " bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2—Rod Dimensions
Table 3-Envelope and Mounting Dimensions

	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions										Y	Add Stroke	
Bore		Style 2 C	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \\ \hline \end{gathered}$	C	D	NA	V	VA	VB	W	WF		XF	ZF
$11 / 2$	5/8	1/2-20	7/16-20	3/4	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	-	1	15/16	45/8	5
	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	1/2	-	-	1	-	$2^{5 / 16}$	5	53/8
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	-	1	$1^{15 / 16}$	45/8	5
	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	25/16	5	53/8
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$1^{1 / 8}$	15/16	5/8	-	-	$1^{1 / 4}$	-	29/16	$5^{1 / 4}$	5/8
$2^{1 / 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	-	1	$1^{15 / 16}$	$4^{3 / 4}$	51/8
	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	25/16	$5^{1 / 8}$	$5^{1 / 2}$
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	5/8	-	-	$1^{1 / 4}$	-	29/16	53/8	53/4
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	-	-	$1^{1 / 2}$	-	$2^{13 / 16}$	5/8	6
$3^{1 / 4}$	1	7/8-14	3/4.16	$1^{1 / 8}$	1.499	1/2	7/8	15/16	-	1/4	3/8	-	13/8	$2^{7 / 16}$	5 $/ 8$	61/4
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	57/8	$6^{1 / 2}$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{15 / 16}$	61/8	$6^{3 / 4}$
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	$6^{1 / 4}$	67/8
4	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	$2^{7 / 16}$	5/8	$61 / 4$
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	$1 / 2$	-	15/8	$2^{11 / 16}$	57/8	$6^{1 / 2}$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{15 / 16}$	61/8	63/4
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	$6^{1 / 4}$	67/8
5	1	7/8-14	$3 / 4$-16	$1^{1 / 8}$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	$2^{7 / 16}$	57/8	61/2
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	$6^{1 / 8}$	$6^{3 / 4}$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	-	$1 / 4$	9/16	-	$1^{7 / 8}$	$2^{15 / 16}$	63/8	7
	2	$1^{3 / 4}$-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	$6^{1 / 2}$	71/8
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	$2^{13 / 16}$	6\%/8	73/8
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	31/16	67/8	75/8
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	-	$1 / 4$	9/16	-	2	3/16	7	$73 / 4$
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	211/16	$2^{3 / 8}$	-	$1 / 4$	11/16	-	$2^{1 / 4}$	$3^{7 / 16}$	71/4	8

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads.
Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3
Short Female

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Style 6
Stub End

Bolted Gland

Before determining dimensions: See chart on page 3 for cylinder rod combinations that have a bolted gland.

Cap Square Flange Mount

Style BEF1

1 1/2" - 2" and 2 1/2" Bore
With Maximum Oversize Rods

Retainer Held Gland

Cap Square Flange Mount
Style BEF1
1 1/2" - 6" Bore

Bolted Gland

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 2 Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1—Envelope and Mounting Dimensions

Bore	E	EE	F	FB	G	J	K	R	TF	UF	Add Stroke		
											LB	LG	P
11/2	2	$3 / 8{ }^{\dagger}$	$3 / 8$	5/16	11/2	1	1/4	1.43	$2^{3 / 4}$	$3^{3 / 8}$	4	35/8	$2^{1 / 4}$
2	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	$3 / 8$	$3 / 8$	11/2	1	5/16	1.84	$33 / 8$	41/8	4	35/8	$2^{1 / 4}$
$2^{1 / 2}$	3	$3 / 8{ }^{\dagger}$	3/8	$3 / 8$	11/2	1	5/16	2.19	37/8	4/8	41/8	$3^{3 / 4}$	$2^{3 / 8}$
$3^{1 / 4}$	$3^{3 / 4}$	1/2	5/8	7/16	$1^{3 / 4}$	$1^{1 / 4}$	3/8	2.76	$4^{11 / 16}$	51/2	47/8	41/4	25/8
4	$4^{1 / 2}$	1/2	5/8	7/16	$1^{3 / 4}$	$1^{1 / 4}$	3/8	3.32	57/16	61/4	47/8	$4^{1 / 4}$	25/8
5	51/2	1/2	5/8	9/16	$1^{3 / 4}$	$1^{1 / 4}$	7/16	4.10	65/8	75/8	51/8	$4^{1 / 2}$	$2^{7 / 8}$
6	61/2	$3 / 4$	$3 / 4$	9/16	2	$11 / 2$	7/16	4.88	75/8	85/8	$5^{3 / 4}$	5	$3^{1 / 8}$

\dagger On $1^{1 / 2 "}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2—Rod Dimensions

Table 3-Envelope and Mounting Dimensions

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions										Y	Add Stroke	
		Style 4 CC	Style 2 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	C	D	NA	V	VA	VB	W	WF		ZB	ZF
$11 / 2$	5/8	1/2-20	7/16-20	${ }^{3 / 4}$	1.124	3/8	1/2	9/16	1/4**	1/4	3/16	$1 / 4$	1	15/16	47/8	5
	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	25/16	51/4	53/8
2	5/8	$1 / 2-20$	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	$1 / 4^{* *}$	$1 / 4$	3/16	5/8	1	15/16	$4^{15 / 16}$	5
	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	$1 / 2^{* *}$	1/4	$3 / 8$	1	13/8	25/16	55/16	53/8
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	$1^{1 / 4}$	-	29/16	59/16	5/8
$2^{1 / 2}$	5/8	1/2-20	7/16-20	${ }^{3 / 4}$	1.124	3/8	1/2	9/16	$1 / 4^{* *}$	1/4	3/16	5/8	1	$1^{15 / 16}$	51/16	51/8
	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	$1 / 2^{* *}$	$1 / 4$	3/8	1	13/8	25/16	57/16	51/2
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	$1^{1 / 4}$	-	29/16	$5^{11 / 16}$	53/4
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	$3 / 4$	-	-	$1^{1 / 2}$	-	$2^{13 / 16}$	5 ${ }^{15 / 16}$	6
$3^{1 / 4}$	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	$1 / 4^{* *}$	$1 / 4$	3/8	$3 / 4$	13/8	$2^{7 / 16}$	6	$61 / 4$
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	$3 / 8^{* *}$	$1 / 4$	1/2	1	15/8	$2^{11 / 16}$	$61 / 4$	$61 / 2$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	$1 / 2^{* *}$	$1 / 4$	9/16	11/4	17/8	$2^{15 / 16}$	$61 / 2$	$6^{3 / 4}$
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	$1 / 2^{* *}$	$1 / 4$	9/16	$1^{3 / 8}$	2	$3^{1 / 16}$	65/8	$67 / 8$
4	1	7/8-14	$3 / 4$-16	11/8	1.499	1/2	7/8	15/16	$1 / 4^{* *}$	$1 / 4$	$3 / 8$	$3 / 4$	13/8	$2^{7 / 16}$	6	$61 / 4$
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	$3 / 8^{* *}$	$1 / 4$	1/2	1	15/8	$2^{11 / 16}$	$61 / 4$	$61 / 2$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$1 / 2^{* *}$	$1 / 4$	9/16	$11 / 4$	17/8	$2^{15 / 16}$	$61 / 2$	$63 / 4$
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	$1 / 2^{* *}$	$1 / 4$	9/16	$1^{3 / 8}$	2	$3^{1 / 16}$	65/8	$67 / 8$
5	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	$1 / 4^{* *}$	$1 / 4$	3/8	$3 / 4$	13/8	$2^{7 / 16}$	65/16	$61 / 2$
	13/8	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	3/8**	$1 / 4$	1/2	1	15/8	$2^{11 / 16}$	69/16	$6^{3 / 4}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	$1^{11 / 16}$	$1 / 2^{* *}$	1/4	9/16	$11 / 4$	17/8	$2^{15 / 16}$	$6^{13 / 16}$	7
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	$1 / 2^{* *}$	$1 / 4$	9/16	$13 / 8$	2	31/16	$6^{15 / 16}$	71/8
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	1/4	$1 / 4$	7/16	7/8	15/8	$2^{13 / 16}$	71/16	73/8
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 8^{* *}$	$1 / 4$	9/16	$1^{1 / 8}$	17/8	$3^{1 / 16}$	75/16	75/8
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	$1 / 2^{* *}$	$1 / 4$	9/16	$11 / 4$	2	$3^{3 / 16}$	77/16	$73 / 4$
	$2^{1 / 2}$	$2^{1 / 4} 4-12$	17/8-12	3	3.124	1	21/16	$2^{3 / 8}$	$1 / 2^{* *}$	$1 / 4$	11/16	$1^{1 / 2}$	$2^{1 / 4}$	37/16	$7^{11 / 16}$	8

** For all REF1 mounts and BEF1 mounts with maximum oversized rods.

Rod End Dimensions (for Bolted Gland) - See Table 2

See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2

Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3

Short Female

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Style 6
Stub End

Tie Rods Extended Mount

Style NM1

1 1/2" - 2" and 2 1/2" Bore - All Rod Sizes
3 1/4" Bore with 1 3/4" \& 2" Rods

Retainer Held Gland

Before determining dimensions: See chart on page 3 for cylinder rod combinations that have a bolted gland.

Tie Rods Extended Mount Style NM1
1 1/2" - 6" Bore

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 2
Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1—Envelope and Mounting Dimensions

Bore	AA	BB	DD	E	EE	F	G	J	K	R	Add Stroke	
											LG	P
11/2	2.02	1	1/4-28	2	$3 / 8^{\dagger}$	$3 / 8$	11/2	1	1/4	1.43	3/8	21/4
2	2.6	11/8	5/16-24	21/2	$3 / 8^{\dagger}$	$3 / 8$	11/2	1	5/16	1.84	3/8	$2^{1 / 4}$
21/2	3.1	$11 / 8$	5/16-24	3	$3 / 8{ }^{\dagger}$	$3 / 8$	11/2	1	5/16	2.19	3/4	$2^{3 / 8}$
$3^{1 / 4}$	3.9	13/8	3/8-24	$33 / 4$	1/2	5/8	$1^{3 / 4}$	$11 / 4$	3/8	2.76	$4^{1 / 4}$	25/8
4	4.7	13/8	3/8-24	41/2	1/2	5/8	$13 / 4$	11/4	$3 / 8$	3.32	41/4	25/8
5	5.8	$1^{13 / 16}$	1/2-20	51/2	1/2	5/8	$13 / 4$	$1^{1 / 4}$	7/16	4.10	41/2	27/8
6	6.9	$1^{13 / 16}$	$1 / 2-20$	61/2	$3 / 4$	$3 / 4$	2	11/2	7/16	4.88	5	31/8

†On $1^{11 / 2 ",} 2^{\prime \prime}$ and $2^{1 / 2 "}$ " bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2—Rod Dimensions

Table 3-Envelope and Mounting Dimensions

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions									Y	Add StrokeZB
		$\begin{gathered} \text { Style } \\ 2 \\ \text { CC } \end{gathered}$	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \\ \hline \end{gathered}$	C	D	NA	V	VA	VB	W		
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	5/8	$1^{15 / 16}$	47/8
	1	$7 / 8-14$	3/4-16	$11 / 8$	1.499	$1 / 2$	7/8	15/16	1/2	-	-	1	25/16	51/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	$3 / 16$	5/8	$1^{15} / 16$	$4^{15 / 16}$
	1	$7 / 8-14$	3/4-16	$1^{1 / 8}$	1.499	$1 / 2$	7/8	15/16	-	1/4	$3 / 8$	1	25/16	5/16
	$13 / 8$	11/4-12	1-14	$15 / 8$	1.999	5/8	11/8	15/16	5/8	-	-	$11 / 4$	29/16	$5 \% / 16$
2112	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	5/8	$1^{15 / 16}$	51/16
	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	1	25/16	57/16
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	$1^{1 / 4}$	29/16	$5^{11 / 16}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	-	-	$1^{1 / 2}$	$2^{13 / 16}$	$5^{15 / 16}$
$3^{1 / 4}$	1	7/8-14	3/4-16	$11 / 8$	1.499	$1 / 2$	7/8	15/16	-	1/4	$3 / 8$	$3 / 4$	$2^{7 / 16}$	6
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	1	$2^{11 / 16}$	61/4
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	$11 / 4$	$2^{15 / 16}$	$61 / 2$
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	$7 / 8$	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	$13 / 8$	31/16	$65 / 8$
4	1	7/8-14	3/4-16	$11 / 8$	1.499	$1 / 2$	7/8	15/16	-	$1 / 4$	$3 / 8$	$3 / 4$	27/16	6
	$13 / 8$	11/4-12	1-14	15/8	1.999	5/8	11/8	$15 / 16$	-	$1 / 4$	1/2	1	$2^{11 / 16}$	$6^{1 / 4}$
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	-	$1 / 4$	9/16	$11 / 4$	$2^{15 / 16}$	61/2
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	$7 / 8$	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	$13 / 8$	31/16	65/8
5	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	$3 / 4$	27/16	$65 / 16$
	$13 / 8$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	1	$2^{11 / 16}$	6\%/16
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	$11 / 4$	$2^{15 / 16}$	$6{ }^{13 / 16}$
	2	13/4-12	1112-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15} / 16$	-	$1 / 4$	9/16	$13 / 8$	31/16	$6^{15 / 16}$
6	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	$7 / 16$	7/8	$2^{13 / 16}$	71/16
	$13 / 4$	111/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	$11 / 8$	$3^{1 / 16}$	$75 / 16$
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	$11 / 4$	3/16	77/16
	$2^{1 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	-	$1 / 4$	11/16	$11 / 2$	$3^{7 / 16}$	$7^{11 / 16}$

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2

Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3

Short Female

Style 6
Stub End

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Head Trunnion Mount

Style TM1

1 1/2" - 2" and 2 1/2" Bore
With Maximum Oversize Rods

Style TM1
1 1/2" - 6" Bore

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

"Special"
Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1-Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	$\begin{aligned} & \hline+.000 \\ & \text { TD } \\ & -.001 \end{aligned}$	TL	UT	Add Stroke	
										LG	P
11/2	2	$3 / 8^{\dagger}$	3/8	$1^{1 / 2}$	1	1/4	1.000	1	4	35/8	21/4
2	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	3/8	$1^{1 / 2}$	1	5/16	1.000	1	$4^{1 / 2}$	35/8	21/4
$2^{1 / 2}$	3	$3 / 8{ }^{\dagger}$	3/8	$1^{1 / 2}$	1	5/16	1.000	1	5	$3{ }^{3} / 4$	$2^{3 / 8}$
$3^{1 / 4}$	$33 / 4$	1/2	5/8	$1^{3 / 4}$	$11 / 4$	3/8	1.000	1	53/4	$41 / 4$	25/8
4	41/2	1/2	5/8	$13 / 4$	$1^{1 / 4}$	3/8	1.000	1	$6^{1 / 2}$	41/4	25/8
5	$5^{1 / 2}$	1/2	5/8	$13 / 4$	11/4	7/16	1.000	1	71/2	41/2	27/8
6	$6^{1 / 2}$	$3 / 4$	$3 / 4$	2	11/2	7/16	1.375	$1^{3 / 8}$	91/4	5	3118

†On $1^{1 ⁄ 2} 2^{\prime \prime}, 2^{\prime \prime}$ and $2^{1 ⁄ 21}$ " bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2—Rod Dimensions
Table 3—Envelope and Mounting Dimensions

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions										XG	Y	Add StrokeZB
		$\begin{gathered} \text { Style } \\ 2 \\ \text { CC } \end{gathered}$	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF			
1112	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	$1^{3 / 4}$	15/16	47/8
	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	1/2	-	-	1	-	$2^{1 / 8}$	$2^{5 / 16}$	$5^{1 / 4}$
2	5/8	$1 / 2-20$	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{3 / 4}$	$1^{15 / 16}$	$4{ }^{15 / 16}$
	1	7/8-14	3/4.16	$1^{1 / 8}$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	$2^{1 / 8}$	25/16	55/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	-	$2^{3 / 8}$	$2{ }^{9} 16$	5\%16
$2^{1 / 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{3 / 4}$	$1^{15 / 16}$	51/16
	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	$2^{1 / 8}$	2/16	57/16
	13/8	1/4/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	5/8	-	-	11/4	-	$2^{3 / 8}$	29/16	$5^{11 / 16}$
	$1^{3 / 4}$	$1^{1 / 2}$-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	-	-	$1^{1 / 2}$	-	$2^{5 / 8}$	$2^{13 / 16}$	$5^{15 / 16}$
$3^{1 / 4}$	1	7/8-14	$3 / 4.16$	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	$2^{1 / 4}$	$2^{7 / 16}$	6
	13/8	1/4/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	9/16	-	15/8	$2^{1 / 2}$	$2^{11 / 16}$	$61 / 4$
	13/4	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	1/2	-	17/8	$2^{3 / 4}$	$2^{15 / 16}$	$61 / 2$
	2	$1^{3 / 4} 412$	$1^{1 / 2}$-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$2^{7 / 8}$	$3^{1 / 16}$	65/8
4	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	$2^{1 / 4}$	27/16	6
	13/8	1/4/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	-	15/8	$2^{1 / 2}$	$2^{11 / 16}$	$61 / 4$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{3 / 4}$	25/16	$61 / 2$
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	-	$1 / 4$	9/16	-	2	$2^{7 / 8}$	31/16	65/8
5	1	7/8-14	$3 / 4.16$	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	$2^{1 / 4}$	$2^{7 / 16}$	65/16
	13/8	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	$2^{1 / 2}$	$2^{11 / 16}$	69/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{3 / 4}$	$2^{15 / 16}$	$6^{13 / 16}$
	2	$1^{3 / 4-12}$	$1^{11 / 2-12}$	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$2^{7 / 8}$	$3^{1 / 16}$	$6^{15 / 16}$
6	$1^{3 / 8}$	$1^{1 / 4-12}$	1-14	15/8	1.999	5/8	$1^{1 / 8}$	15/16	-	$1 / 4$	7/16	-	15/8	$2^{5 / 8}$	$2^{13 / 16}$	71/16
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{7 / 8}$	$3^{1 / 16}$	75/16
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	3	$3^{3 / 16}$	7/16
	$2^{11 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	21/16	$2^{3 / 8}$	-	$1 / 4$	11/16	-	$2^{1 / 4}$	$3^{1 / 4}$	$3^{7 / 16}$	$7^{11 / 16}$

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads.
Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3
Short Female

Style 6
Stub End

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Cap Trunnion Mount

Style TM2

1 1/2" - 2 and 2 1/2" Bore
With Maximum Oversize Rods

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 2
Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

"Special"
Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	$\begin{aligned} & \hline+.000 \\ & \text { TD } \\ & -.001 \end{aligned}$	TL	UT	Add Stroke	
										LG	P
11/2	2	$3 / 8{ }^{\dagger}$	3/8	$1^{1 / 2}$	1	1/4	1.000	1	4	35/8	$2^{1 / 4}$
2	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	3/8	$1^{1 / 2}$	1	5/16	1.000	1	$4^{1 / 2}$	35/8	$2^{1 / 4}$
$2^{1 / 2}$	3	$3 / 8{ }^{\dagger}$	3/8	$1^{1 / 2}$	1	5/16	1.000	1	5	$3^{3 / 4}$	23/8
$3^{1 / 4}$	$33 / 4$	1/2	5/8	$1^{3 / 4}$	$1^{1 / 4}$	3/8	1.000	1	$5^{3 / 4}$	41/4	25/8
4	41/2	1/2	5/8	$1^{3 / 4}$	$1^{1 / 4}$	3/8	1.000	1	61/2	$4^{1 / 4}$	25/8
5	$5^{1 / 2}$	1/2	5/8	$1^{3 / 4}$	$1^{1 / 4}$	7/16	1.000	1	71/2	41/2	27/8
6	61/2	$3 / 4$	$3 / 4$	2	$1^{1 / 2}$	7/16	1.375	$1^{3 / 8}$	91/4	5	$3^{1 / 8}$

†On $1^{11 / 2 ", ~} 2^{\prime \prime}$ and $2^{1 / 2 "}$ " bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2—Rod Dimensions
Table 3—Envelope and Mounting Dimensions

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions										Y	Add Stroke	
		$\begin{gathered} \text { Style } \\ 2 \\ \text { CC } \end{gathered}$	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	C	D	NA	V	VA	VB	W	WF		XJ	ZB
1112	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	1/4	3/16	-	1	15/16	41/8	$4^{7 / 8}$
	1	7/8-14	3/4.16	$11 / 8$	1.499	1/2	7/8	15/16	1/2	-	-	1	-	25/16	41/2	51/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{15 / 16}$	41/8	4 ${ }^{15 / 16}$
	1	7/8-14	3/4.16	$1^{1 / 8}$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	$1^{3 / 8}$	25/16	$41 / 2$	55/16
	$1^{3 / 8}$	11/4-12	1-14	$1^{5 / 8}$	1.999	5/8	$11 / 8$	15/16	5/8	-	-	11/4	-	2\%/16	$4^{3 / 4}$	59/16
$2^{1 ⁄ 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{15 / 16}$	41/4	51/16
	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	$1^{3 / 8}$	25/16	45/8	57/16
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	5/8	-	-	$11 / 4$	15/8	29/16	$4^{7 / 8}$	$5^{11 / 16}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	-	-	11/2	-	$2^{13 / 16}$	51/8	$5^{15 / 16}$
$3^{1 / 4}$	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	$2^{7 / 16}$	5	6
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	$1 / 2$	-	15/8	$2^{11 / 16}$	51/4	$61 / 4$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	111/16	-	$1 / 4$	9/16	-	17/8	$2^{15 / 16}$	$5^{1 / 2}$	$61 / 2$
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	-	1/4	9/16	-	2	$3^{1 / 16}$	55/8	65/8
4	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	$1^{3 / 8}$	$2^{7 / 16}$	5	6
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	51/4	$61 / 4$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{15 / 16}$	$5^{1 / 2}$	$61 / 2$
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	5 5 /8	65/8
5	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	$1^{3 / 8}$	$2^{7 / 16}$	51/4	65/16
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	51/2	6\%16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{15 / 16}$	$53 / 4$	$6^{13 / 16}$
	2	$1^{3 / 4}$-12	$1^{1 / 2}$-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	1/4	9/16	-	2	$3^{1 / 16}$	$5^{7 / 8}$	$6{ }^{15 / 16}$
6	$1^{3 / 8}$	11/4-12	1-14	$1^{5 / 8}$	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	$2^{13 / 16}$	57/8	71/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$3^{1 / 16}$	$6^{1 / 8}$	75/16
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	-	$1 / 4$	9/16	-	2	$3^{3 / 16}$	$61 / 4$	77/16
	$2^{1 / 2}$	$2^{1 / 4} 4$-12	$1^{7 / 8-12}$	3	3.124	1	21/16	$2^{3 / 8}$	-	$1 / 4$	11/16	-	$2^{1 / 4}$	$3^{7 / 16}$	$6^{1 / 2}$	$7^{11 / 16}$

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads.
Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3
Short Female

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Style 6
Stub End

Intermediate Fixed Trunnion Mount

Style TM3
1 1/2" - 2" and 2 1/2" Bore
With Maximum Oversize Rods

Style TM3
1 1/2" - 6" Bore

DDimension XI to be specified by customer.

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 2 Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1-Envelope and Mounting Dimensions

Bore	BD	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	$\begin{aligned} & \hline+.000 \\ & \text { TD } \\ & -.001 \end{aligned}$	TL	TM	UM	UV	Minimum Stroke	Add Stroke	
														LG	P
11122	$11 / 4$	2	$3 / 8{ }^{\dagger}$	3/8	$11 / 2$	1	1/4	1.000	1	$2^{1 / 2}$	41/2	$2^{1 / 2}$	1/4	35/8	21/4
2	$11 / 2$	$2^{1 / 2}$	$3 / 8{ }^{\dagger}$	3/8	$1^{1 / 2}$	1	5/16	1.000	1	3	5	3	1/2	35/8	$2^{1 / 4}$
$2^{1 / 2}$	$1^{1 / 2}$	3	$3 / 8{ }^{\dagger}$	3/8	$1^{1 / 2}$	1	5/16	1.000	1	$3^{1 / 2}$	51/2	$3^{1 / 2}$	$3 / 8$	$3^{3 / 4}$	$2^{3 / 8}$
31/4	2	$3^{3 / 4}$	1/2	5/8	$1^{3 / 4}$	$11 / 4$	$3 / 8$	1.000	1	$41 / 2$	61/2	41/4	7/8	41/4	25/8
4	2	41/2	1/2	5/8	$13 / 4$	$11 / 4$	3/8	1.000	1	51/4	$71 / 4$	5	7/8	41/4	25/8
5	2	51/2	1/2	5/8	$13 / 4$	11/4	7/16	1.000	1	$6^{1 / 4}$	81/4	6	5/8	41/2	27/8
6	$2^{1 / 2}$	61/2	$3 / 4$	$3 / 4$	2	$11 / 2$	7/16	1.375	$13 / 8$	75/8	103/8	7	$11 / 8$	5	31/8

†On $1^{1 / 2 "}$ ", $2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

Table 2-Rod Dimensions
Table 3-Envelope and Mounting Dimensions

Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions										$\underset{\text { XI }}{\text { Min }}$	Y	Add StrokeZB
		$\begin{gathered} \hline \text { Style } \\ 2 \\ \text { CC } \\ \hline \end{gathered}$	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF			
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	-	1	33/16	15/16	47/8
	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	1/2	-	-	1	-	39/16	25/16	$5^{1 / 4}$
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	-	1	35/16	15/16	$4^{15 / 16}$
	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	$3^{11 / 16}$	25/16	5/16
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	$1^{1 / 4}$	-	$3^{15 / 16}$	29/16	5\%/16
$2^{11 / 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	$3 / 8$	1/2	9/16	-	1/4	3/16	-	1	$3^{5 / 16}$	$1^{15 / 16}$	$5^{1 / 16}$
	1	7/8-14	3/4-16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	$3^{11 / 16}$	25/16	57/16
	$1^{3 / 8}$	11/4-12	1-14	$1^{5 / 8}$	1.999	5/8	$11 / 8$	15/16	5/8	-	-	11/4	-	$3^{15 / 16}$	29/16	$5^{11 / 16}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	-	-	$1^{11 / 2}$	-	$4^{3 / 16}$	$2^{13 / 16}$	$5^{15 / 16}$
$3^{1 / 4}$	1	7/8-14	3/4-16	11/8	1.499	$1 / 2$	7/8	15/16	-	$1 / 4$	$3 / 8$	-	13/8	43/16	$2^{7 / 16}$	6
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	1/4	1/2	-	15/8	$4^{7 / 16}$	$2^{11 / 16}$	$6^{1 / 4}$
	$1^{3 / 4}$	11/2-12	$1^{1 / 4-12}$	2	2.374	$3 / 4$	$1^{11 / 2}$	$1^{11 / 16}$	-	1/4	9/16	-	17/8	$4^{11 / 16}$	$2^{15 / 16}$	$61 / 2$
	2	$1^{3 / 4}$-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$4^{13 / 16}$	$3^{1 / 16}$	65/8
4	1	7/8-14	$3 / 4.16$	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	43/16	$2^{7 / 16}$	6
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	$1 / 2$	-	15/8	$4^{7 / 16}$	$2^{11 / 16}$	$6^{1 / 4}$
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$4^{11 / 16}$	$2^{15 / 16}$	$6^{1 / 2}$
	2	$1^{3 / 4}$-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$4^{13} / 16$	31/16	65/8
5	1	7/8-14	3/4-16	$11 / 8$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	13/8	$4^{5 / 16}$	$2^{7 / 16}$	65/16
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	$1 / 4$	$1 / 2$	-	15/8	$4^{7 / 16}$	$2^{11 / 16}$	69/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	1/4	9/16	-	17/8	$4^{11 / 16}$	$2^{15 / 16}$	$6^{13 / 16}$
	2	$1^{3 / 4}$-12	$1^{11 / 2-12}$	$2^{1 / 4}$	2.624	7/8	$1^{11 / 1 / 16}$	$1^{15 / 16}$	-	1/4	9/16	-	2	$4^{13 / 16}$	$3^{1 / 16}$	$6^{15 / 16}$
6	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	-	1/4	7/16	-	15/8	$4^{15 / 16}$	$2^{13 / 16}$	71/16
	$1^{3 / 4}$	11/2-12	$1^{1 / 4-12}$	2	2.374	$3 / 4$	$1^{1 / 2}$	$1^{11 / 16}$	-	1/4	9/16	-	17/8	53/16	$3^{1 / 16}$	75/16
	2	$1^{3 / 4} 412$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	1/4	9/16	-	2	5/16	$3^{3 / 16}$	7/16
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	-	1/4	11/16	-	$2^{1 / 4}$	59/16	$3^{7 / 16}$	$7^{11 / 16}$

* Dimension XI to be specified by customer.

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3
Short Female

Style 6
Stub End

"Special" Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Cap Fixed Clevis Mount

 Style PB21 1/2" - 2" and 2 1/2" Bore
With Maximum Oversize Rods

The 4 ", $5^{\prime \prime}$ and 6" bore sizes have the tie rod nuts at both ends as shown.
Tie rods thread into cap on all other bore sizes.

The 4 ", 5 " and 6" bore sizes have the tie rod nuts at both ends as shown.
Tie rods thread into cap on all other bore sizes.

Rod End Dimensions (for Retainer Held Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2
Intermediate Male

Thread Style 3
Short Female

Style 6
Stub End

"Special"
Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,
style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Table 1—Envelope and Mounting Dimensions

Bore	CB	$\begin{aligned} & \hline+.000 \\ & \text { CD } \\ & -.002 \end{aligned}$	CW	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	L	LR	M	MR	Add Stroke	
														LG	P
11/2	$3 / 4$. 501	1/2	2	3/8† \dagger	3/8	$1^{1 / 2}$	1	1/4	$3 / 4$	3/4	1/2	5/8	35/8	21/4
2	$3 / 4$. 501	1/2	$2^{1 / 2}$	3/8 ${ }^{\text {¢ }}$	3/8	$1^{1 / 2}$	1	5/16	$3 / 4$	$3 / 4$	1/2	5/8	3/8	$2^{1 / 4}$
$2^{1 / 2}$	$3 / 4$. 501	1/2	3	3/8 \dagger	3/8	$1^{1 / 2}$	1	5/16	$3 / 4$	$3 / 4$	1/2	5/8	$3^{3 / 4}$	$2^{3 / 8}$
$3^{1 / 4}$	$11 / 4$. 751	5/8	$3^{3 / 4}$	1/2	5/8	$1^{3 / 4}$	$11 / 4$	3/8	$1^{1 / 4}$	1	$3 / 4$	15/16	$41 / 4$	25/8
4	$11 / 4$. 751	5/8	$4^{1 / 2}$	1/2	5/8	$1^{3 / 4}$	$1^{1 / 4}$	3/8	$1^{1 / 4}$	1	$3 / 4$	15/16	$4^{1 / 4}$	25/8
5	$1^{1 / 4}$. 751	5/8	51/2	1/2	5/8	$1^{3 / 4}$	$1^{1 / 4}$	7/16	$1^{1 / 4}$	1	$3 / 4$	15/16	41/2	27/8
6	11/2	1.001	$3 / 4$	61/2	$3 / 4$	$3 / 4$	2	11/2	7/16	$1^{1 / 2}$	11/4	1	$1^{3 / 16}$	5	31/8

† On $1^{1 / 12^{\prime \prime}}, 2^{\prime \prime}$ and $2^{1 / 2 "}$ bore sizes, the head-end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of three full threads available.

- Dimension CD is pin diameter.

Table 2—Rod Dimensions
Table 3-Envelope and Mounting Dimensions

	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions										Y	Add Stroke	
Bore		Style 2 CC	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ B \end{gathered}$	C	D	NA	V	VA	VB	W	WF		XC	ZC
$11 / 2$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{15 / 16}$	53/8	57/8
	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	1/2	-	-	1	-	$2^{5 / 16}$	53/4	61/4
2	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{15 / 16}$	53/8	57/8
	1	7/8-14	$3 / 4.16$	$1^{1 / 8}$	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	25/16	53/4	61/4
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	$11 / 8$	15/16	5/8	-	-	11/4	-	29/16	6	$6^{1 / 2}$
$2^{1 / 2}$	5/8	1/2-20	7/16-20	$3 / 4$	1.124	3/8	1/2	9/16	-	$1 / 4$	3/16	-	1	$1^{15 / 16}$	51/2	6
	1	7/8-14	3/4.16	$11 / 8$	1.499	$1 / 2$	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	$2^{5 / 16}$	57/8	$6^{3 / 8}$
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	5/8	-	-	11/4	15/8	29/16	61/8	65/8
	$1^{3 / 4}$	11/2-12	$1^{1 / 4-12}$	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	$3 / 4$	-	-	11/2	-	$2^{13 / 16}$	$63 / 8$	67/8
$3^{1 / 4}$	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	$2^{7 / 16}$	67/8	75/8
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	71/8	77/8
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{11 / 2}$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	17/8	$2^{15 / 16}$	73/8	$8^{1 / 8}$
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$3^{1 / 16}$	$71 / 2$	$81 / 4$
4	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	$2^{7 / 16}$	67/8	75/8
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	$1 / 4$	1/2	-	15/8	$2^{11 / 16}$	71/8	71/8
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	$1^{7 / 8}$	$2^{15 / 16}$	73/8	81/8
	2	13/4-12	$1^{1 / 2}$-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	31/16	71/2	81/4
5	1	7/8-14	3/4.16	11/8	1.499	1/2	7/8	15/16	-	$1 / 4$	3/8	-	$1^{3 / 8}$	$2^{7 / 16}$	71/8	77/8
	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	-	1/4	1/2	-	15/8	$2^{11 / 16}$	$7^{3 / 8}$	81/8
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	-	$1 / 4$	9/16	-	$1^{7 / 8}$	$2^{15 / 16}$	75/8	83/8
	2	13/4-12	$1^{11 / 2-12}$	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	31/16	73/4	$8^{1 / 2}$
6	13/8	11/4-12	1-14	$1^{5 / 8}$	1.999	5/8	11/8	15/16	-	$1 / 4$	7/16	-	15/8	$2^{13 / 16}$	$8^{1 / 8}$	911/8
	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$11 / 2$	$1^{11 / 16}$	-	$1 / 4$	9/16	-	$1^{7 / 8}$	$3^{1 / 16}$	83/8	93/8
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	-	$1 / 4$	9/16	-	2	$3^{3 / 16}$	$8^{1 / 2}$	$9^{1 / 2}$
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	-	$1 / 4$	11/16	-	$2^{1 / 4}$	$3^{7 / 16}$	$8^{3 / 4}$	$9^{3 / 4}$

Rod End Dimensions (for Bolted Gland) - See Table 2
See chart on page 3 to determine which bore, rod, and mount combinations have this feature.

Thread Style 1
 Small Male

Thread Style 2

Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3

Short Female

Style 6
Stub End

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.
"Special" Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify "Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Side Lug Mount
Style SL
7" - 14" Bore

Side Tap Mount
Style FS
7"-14" Bore

Rod End Dimensions - See Table 2

Thread Style 1
Small Male

Thread Style 2 Intermediate Male
 diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3 Short Female

Style 6
Stub End

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

"Special"

Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify
"Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	ND	NT	SB*	ST	SU	SW	TN	TS	US	Add Stroke			
																LB	P	SN	SS
7	71122	$3 / 4$	$3 / 4$	2	11/2	9/16	11/8	$3 / 4-10$	13/16	1	19/16	11/16	$3^{1 / 2}$	87/8	101/4	57/8	31/4	$3^{1 / 4}$	$33 / 4$
8	81/2	$3 / 4$	$3 / 4$	2	11/2	9/16	11/8	3/4-10	13/16	1	19/16	11/16	41/2	97/8	111/4	57/8	31/4	$3^{1 / 4}$	$33 / 4$
10	105/8	1	$3 / 4$	21/4	2	11/16	$1^{1 / 2}$	1-8	$1^{1 / 16}$	$11 / 4$	2	7/8	51/2	$12^{3} / 8$	141/8	71/8	41/8	41/8	$45 / 8$
12	$12^{3 / 4}$	1	$3 / 4$	$2^{1 / 4}$	2	11/16	11/2	1-8	11/16	$1^{1 / 4}$	2	7/8	71/4	141/2	161/4	75/8	45/8	45/8	51/8
14	$14^{3 / 4}$	11/4	$3 / 4$	$2^{3 / 4}$	$2^{1 / 4}$	$3 / 4$	17/8	11/4-7	15/16	$1^{1 / 2}$	$2^{1 / 2}$	11/8	83/8	17	191/4	87/8	51/2	$5^{1 / 2}$	57/8

*Upper surface spotfaced for socket head cap screw.

Table 2-Rod Dimensions												Table 3-Envelope and Mounting Dimensions			
Bore	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions								XS	XT	Y	Add StrokeZB
		$\begin{aligned} & \text { Style } \\ & 2 \\ & \text { CC } \end{aligned}$	Style 1 \& 3 KK	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	C	D	NA	TT	V	W				
7	13/8	$1^{1 / 4} 412$	1-14	15/8	1.999	5/8	$1^{1 / 8}$	15/16	4	$1 / 4$	7/8	25/16	$2^{13 / 16}$	$2^{13 / 16}$	75/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	3/4	$1^{1 / 2}$	$1^{11 / 16}$	4	3/8	11/8	2916	$3^{1 / 16}$	$3^{1 / 16}$	79/16
	2	$1^{1 / 4} 4$-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	4	3/8	$11 / 4$	$2^{11 / 16}$	$3^{3 / 16}$	$3^{3 / 16}$	$711 / 16$
8	13/8	$1^{1 / 4-12}$	1-14	15/8	1.999	5/8	11/8	15/16	4	$1 / 4$	7/8	25/16	$2^{13 / 16}$	$2^{13 / 16}$	75/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	3/4	11/2	$1^{11 / 16}$	4	3/8	11/8	2916	$3^{1 / 16}$	$3^{1 / 16}$	79/16
	2	$1^{13 / 4-12}$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	4	3/8	$11 / 4$	$2^{11 / 16}$	33/16	$3^{3 / 16}$	$7^{11 / 16}$
	$2^{1 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	4	1/2	$11 / 2$	$2^{15 / 16}$	$3^{7 / 16}$	$3^{7 / 16}$	715/16
10	$1^{3 / 4}$	$1^{1 / 2}$-12	11/4-12	2	2.374	3/4	11/2	$1^{11 / 16}$	4	3/8	11/8	$2^{3 / 4}$	$3^{1 / 8}$	$3^{1 / 8}$	$8^{15 / 16}$
	2	$1^{1 / 4} 412$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	4	3/8	$11 / 4$	$2^{7 / 8}$	$3^{1 / 4}$	$3^{1 / 4}$	$9^{1 / 16}$
	$2^{1 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	4	1/2	$11 / 2$	$3^{1 / 8}$	$3^{1 / 2}$	$3^{1 / 2}$	95/16
	3	$2^{3 / 4} 412$	$2^{1 / 4}-12$	$3^{1 / 2}$	3.749	1	25/8	$2^{7 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	$3^{1 / 8}$	$3^{1 / 2}$	$3^{1 / 2}$	95/16
12	2	$1^{1 / 4} 412$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	4	3/8	$11 / 4$	$2^{7 / 8}$	$3^{1 / 4}$	$3^{1 / 4}$	99/16
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	4	1/2	$11 / 2$	$3^{1 / 8}$	$3^{1 / 2}$	$3^{1 / 2}$	$9^{13 / 16}$
	3	$2^{3 / 4} 412$	$2^{1 / 4}-12$	$3^{1 / 2}$	3.749	1	25/8	$2^{7 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	$3^{1 / 8}$	$3^{1 / 2}$	$3^{1 / 2} / 2$	$9^{13 / 16}$
	$3^{1 / 2}$	$3^{1 / 4-12}$	$2^{1 / 2}-12$	$3^{1 / 2}$	4.249	1	3	$3^{3 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	$3^{1 / 8}$	$3^{1 / 2}$	$3^{1 / 2} 2$	$9^{13 / 16}$
14	$2^{1 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	4	1/2	$11 / 2$	$3^{3 / 8}$	$3^{13 / 16}$	$3^{13 / 16}$	111/8
	3	$2^{3 / 4} 412$	$2^{1 / 4}-12$	$31 / 2$	3.749	1	25/8	$2^{7 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	3 $3 / 8$	$3^{13 / 16}$	$3^{13} / 16$	111/8
	$3^{1 / 2}$	$3^{1 / 4-12}$	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	$3^{3 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	3 ${ }^{3 / 8}$	$3^{13 / 16}$	$3^{13} / 16$	111/8
	4	$3^{3 / 4} / 42$	3-12	4	4.749	1	$3^{3 / 8}$	$3^{7 / 8}$	$5^{1 / 2}$	1/2	$1^{1 / 2}$	$3^{3 / 8}$	$3^{13 / 16}$	$3^{13 / 16}$	$11^{1 / 8}$

Head Square Mount

Style REF

7" - 14" Bore

Cap Square Mount

Style BEF
7" - 14" Bore

Rod End Dimensions - See Table 2

Thread Style 1
Small Male

Thread Style 2 Intermediate Male

A high strength rod end stud is supplied on thread style 1 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3 Short Female

Style 6 Stub End

style 1 rod ends are recommended through 2" piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required If rod end is not specified, style 1 will be supplied.

"Special"

Thread Style 4
Special thread, extension, rod eye, blank, etc., are also available.
To order, specify
"Style 4" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions

Bore	E	EB	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	TE	Add Stroke	
									LB	P
7	71/2	9/16	$3 / 4$	$3 / 4$	2	$11 / 2$	9/16	6.75	57/8	31/4
8	81/2	11/16	$3 / 4$	$3 / 4$	2	$1^{1 / 2}$	9/16	7.57	57/8	$31 / 4$
10	105/8	13/16	1	$3 / 4$	$2^{1 / 4}$	2	11/16	9.40	71/8	41/8
12	$12^{3 / 4}$	13/16	1	$3 / 4$	$2^{1 / 4}$	2	11/16	11.10	75/8	45/8
14	$14^{3 / 4}$	15/16	11/4	$3 / 4$	$2^{3 / 4}$	$2^{1 / 4}$	$3 / 4$	12.87	87/8	51/2

Table 2-Rod Dimensions												Table 3-Envelope and Mounting Dimensions				
	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions									Y	Add Stroke		
Bore		$\begin{gathered} \text { Style } \\ 2 \\ \text { CC } \end{gathered}$	$\begin{aligned} & \text { Style } \\ & \text { 1\& } 3 \\ & \text { KK } \end{aligned}$	A	$\begin{gathered} +.000 \\ -.002 \\ \text { B } \end{gathered}$	C	D	NA	TT	V	W	WF		XK	ZB	ZJ
7	$1^{3 / 8}$	$1^{1 / 4}-12$	1-14	15/8	1.999	5/8	$1^{1 / 8}$	15/16	4	1/4	7/8	15/8	$2^{13 / 16}$	$5^{1 / 4}$	75/16	$6^{3 / 4}$
	13/4	$1^{1 / 2}$-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	$1^{11 / 16}$	4	3/8	$1^{1 / 8}$	$1^{7 / 8}$	$3^{1 / 16}$	$5^{1 / 2}$	79/16	7
	2	$1^{1 / 4} 4$-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	4	3/8	$1^{1 / 4}$	2	$3^{3 / 16}$	57/8	$7^{11 / 16}$	$7^{1 / 8}$
8	$1^{3 / 8}$	$1^{1 / 4} 412$	1-14	15/8	1.999	5/8	$1^{1 / 8}$	15/16	4	1/4	7/8	15/8	$2^{13 / 16}$	$5^{1 / 4}$	75/16	$6^{3 / 4}$
	$1^{3 / 4}$	11/2-12	1/4/12	2	2.374	3/4	$1^{11 / 2}$	$1^{11 / 16}$	4	3/8	$11 / 8$	17/8	$3^{1 / 16}$	$5^{1 / 2}$	79/16	7
	2	$1^{1 / 4} 412$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	4	3/8	$11 / 4$	2	33/16	5\%/8	$7^{11 / 16}$	71/8
	$2^{1 / 2}$	$2^{1 / 4}-12$	$1^{7 / 8-12}$	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	4	1/2	$1^{1 / 2}$	$2^{1 / 4}$	$3^{7 / 16}$	57/8	7 ${ }^{15 / 16}$	$7^{3 / 8}$
10	$1^{3 / 4}$	11/2-12	$1^{1 / 4}-12$	2	2.374	3/4	$1^{11 / 2}$	$1^{11 / 16}$	4	3/8	$1^{1 / 8}$	$1^{7 / 8}$	$3^{1 / 8}$	$6^{1 / 4}$	$8^{15 / 16}$	$8^{1 / 4}$
	2	$1^{3 / 4}-12$	$11 / 2-12$	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	4	3/8	$11 / 4$	2	$3^{1 / 4}$	$63 / 8$	91/16	83/8
	$2^{1 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	$2^{1 / 16}$	$2^{3 / 8}$	4	1/2	$1^{1 / 2}$	$2^{1 / 4}$	$3^{1 / 2}$	65/8	95/16	85/8
	3	$2^{3 / 4}-12$	$2^{1 / 4}-12$	$31 / 2$	3.749	1	25/8	$2^{7 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	$2^{1 / 4}$	$3^{1 / 2}$	65/8	95/16	$8{ }^{5} / 8$
12	2	$1^{3 / 4}-12$	$1^{1 / 2}$-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15} / 6$	4	3/8	$1^{1 / 4}$	2	$3^{1 / 4}$	$67 / 8$	99/16	$8^{7 / 8}$
	$2^{1 / 2}$	$2^{1 / 4-12}$	17/8-12	3	3.124	1	$2^{1 / 16}$	23/8	4	1/2	$1^{1 / 2}$	$2^{1 / 4}$	$3^{1 / 2}$	71/8	$9^{13 / 16}$	91/8
	3	$2^{3 / 4}-12$	$2^{1 / 4-12}$	$3^{1 / 2}$	3.749	1	$2^{5 / 8}$	$2^{7 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	$2^{1 / 4}$	$3^{1 / 2}$	71/8	$9^{13 / 16}$	91/8
	$3^{1 / 2}$	$3^{1 / 4} 412$	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	33/8	$5^{1 / 2}$	1/2	$11 / 2$	$2^{1 / 4}$	$3^{1 / 2}$	71/8	$9^{13 / 16}$	91/8
14	$2^{1 / 2}$	$2^{1 / 4}-12$	$1^{7 / 8-12}$	3	3.124	1	$2^{1 / 16}$	23/8	4	1/2	$11 / 2$	$2^{1 / 4}$	$3^{13 / 16}$	$8^{1 / 8}$	111/8	$10^{3 / 8}$
	3	$2^{3 / 4}-12$	$2^{1 / 4}-12$	$3^{1 / 2}$	3.749	1	25/8	$2^{7 / 8}$	$5^{1 / 2}$	1/2	$1^{1 / 2}$	21/4	$3^{13 / 16}$	$8^{1 / 8}$	111/8	103/8
	$31 / 2$	$3^{1 / 4-12}$	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	$3^{3 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	$2^{1 / 4}$	$3^{13 / 16}$	$8^{1 / 8}$	111/8	103/8
	4	$3^{3 / 4}-12$	3-12	4	4.749	1	$3^{3 / 8}$	$3^{7 / 8}$	$5^{1 / 2}$	1/2	$11 / 2$	$2^{1 / 4}$	$3^{13 / 16}$	$8^{1 / 8}$	111/8	$10^{3 / 8}$

Head Trunnion Mount
Style TM1
7" - 14" Bore

Cap Trunnion Mount

Style TM2
7" - 14" Bore

Intermediate Fixed Trunnion Mount
Model TM3
8" - 14" Bore

*Dimension XI to be specified by customer.

Rod End Dimensions - See Table 2

Thread Style 1
Small Male

Thread Style 2 Intermediate Male
 diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Thread Style 3 Short Female

style 1 rod ends are recommended through 2 " piston rod diameters and style 2 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 1 will be supplied.

Style 6
Stub End

Table 1-Envelope and Mounting Dimensions

Bore	BD	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	$\begin{array}{\|c} \hline+.000 \\ \text { TD } \\ -.001 \\ \hline \end{array}$	TL	TM	UT	UM	UV	Add Stroke	
														LB	P
7	-	71/2	$3 / 4$	$3 / 4$	2	11/2	9/16	1.375	$1^{3 / 8}$	-	101/4	-	-	57/8	31/4
8	$2^{1 / 2}$	81/2	$3 / 4$	$3 / 4$	2	$1^{1 / 2}$	9/16	1.375	$13 / 8$	93/4	$11^{11 / 4}$	$12^{1 / 2}$	91/2	57/8	31/4
10	3	105/8	1	$3 / 4$	$2^{1 / 4}$	2	${ }^{11} / 16$	1.750	$1^{3 / 4}$	12	141/8	151/2	113/4	71/8	41/8
12	3	$12^{3 / 4}$	1	$3 / 4$	$2^{1 / 4}$	2	${ }^{11 / 16}$	1.750	$1^{13 / 4}$	14	161/4	171/2	$13^{3 / 4}$	75/8	45/8
14	$3^{1 / 2}$	143/4	$11 / 4$	$3 / 4$	$2^{3 / 4}$	21/4	$3 / 4$	2.000	2	161/4	183/4	201/4	16	87/8	51/2

Table 3-Envelope and
Table 2-Rod Dimensions Mounting Dimensions

	Rod Dia. MM	Thread		Rod Extensions and Pilot Dimensions								XG	$\begin{gathered} \mathrm{XI}^{*} \\ \text { (Min.) } \\ \hline \end{gathered}$	Y	Add Stroke	
Bore		$\begin{gathered} \text { Style } \\ 2 \\ \text { CC } \end{gathered}$	Style 1 \& 3 KK	A	$\begin{array}{\|c} +.000 \\ -.002 \\ \text { B } \\ \hline \end{array}$	C	D	NA	TT	V	W				XJ	ZB
7	$1^{3 / 8}$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	1/4	7/8	$2^{5 / 8}$	-	$2^{13 / 16}$	6	75/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	11/2	$1^{11 / 16}$	4	$3 / 8$	$1^{1 / 8}$	$2^{7 / 8}$	-	31/16	61/4	79/16
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	4	$3 / 8$	$1^{1 / 4}$	3	-	3/16	$6^{3 / 8}$	711/16
8	$13 / 8$	11/4-12	1-14	15/8	1.999	5/8	11/8	15/16	4	1/4	7/8	2/8	$4^{15 / 16}$	$2^{13 / 16}$	6	75/16
	$1^{3 / 4}$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	$1^{11 / 16}$	4	$3 / 8$	$1^{1 / 8}$	27/8	53/16	31/16	61/4	79/16
	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	4	3/8	$1^{1 / 4}$	3	55/16	$3^{3 / 16}$	$6^{3 / 8}$	$7^{11 / 16}$
	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	21/16	$2^{3 / 8}$	4	1/2	$1^{1 / 2}$	31/4	5 $/ 16$	$3^{7 / 16}$	65/8	$7^{15 / 16}$
10	$13 / 4$	11/2-12	11/4-12	2	2.374	$3 / 4$	$1^{1 / 2}$	$1^{11 / 16}$	4	$3 / 8$	$1^{1 / 8}$	3	$5^{11 / 16}$	31/8	71/4	$8^{15 / 16}$
	2	13/4-12	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	$1^{15 / 16}$	4	3/8	$1^{1 / 4}$	31/8	$5^{13 / 16}$	$3^{1 / 4}$	$73 / 8$	91/16
	$2^{1 / 2}$	21/4-12	17/8-12	3	3.124	1	21/16	$2^{3 / 8}$	4	1/2	$1^{1 / 2}$	3/8	61/16	31/2	75/8	95/16
	3	$2^{3 / 4}-12$	$2^{1 / 4} / 12$	$3^{1 / 2}$	3.749	1	25/8	$2^{7 / 8}$	51/2	1/2	$1^{1 / 2}$	3/8	61/16	$3^{11 / 2}$	75/8	95/16
12	2	$1^{3 / 4}-12$	11/2-12	$2^{1 / 4}$	2.624	7/8	$1^{11 / 16}$	15/16	4	3/8	$1^{1 / 4}$	31/8	$5^{13 / 16}$	$3^{1 / 4}$	$7^{7 / 8}$	9\%/16
	$2^{1 / 2}$	$2^{1 / 4}-12$	17/8-12	3	3.124	1	21/16	$2^{3 / 8}$	4	1/2	$1^{1 / 2}$	33/8	61/16	$3^{1 / 2}$	81/8	$9^{13 / 16}$
	3	$2^{3 / 4}-12$	$2^{1 / 4} 412$	$3^{1 / 2}$	3.749	1	25/8	$2^{7 / 8}$	$5^{1 / 2}$	1/2	$1^{1 / 2}$	33/8	61/16	$31 / 2$	81/8	$9^{13 / 16}$
	$3^{1 / 2}$	$3^{1 / 4} 412$	$2^{1 / 2}$-12	$3^{1 / 2}$	4.249	1	3	$33 / 8$	51/2	1/2	$1^{1 / 2}$	3/3	61/16	$31 / 2$	81/8	$9^{13 / 16}$
14	$2^{1 / 2}$	$2^{1 / 4} 412$	17/8-12	3	3.124	1	21/16	$2^{3 / 8}$	4	1/2	$1^{1 / 2}$	3/8	$6^{13 / 16}$	$3^{13 / 16}$	91/4	111/8
	3	$2^{3 / 4}-12$	$2^{1 / 4} 412$	$3^{1 / 2}$	3.749	1	25/8	$2^{7 / 8}$	51/2	1/2	$1^{1 / 2}$	3/8	$6^{13 / 16}$	$3^{13 / 16}$	91/4	111/8
	$3^{1 / 2}$	$3^{1 / 4} 412$	$2^{11 / 2-12}$	$3^{1 / 2}$	4.249	1	3	$33 / 8$	51/2	1/2	$1^{1 / 2}$	3/8	$6^{13 / 16}$	$3^{13 / 16}$	91/4	111/8
	4	$3^{3 / 4}-12$	3-12	4	4.749	1	33/8	37/8	51/2	1/2	$1^{1 / 2}$	3/8	$6^{13 / 16}$	$3^{13 / 16}$	91/4	111/8

* Dimension XI to be specified by customer.

Cap Fixed Clevis Mount

Style PB2
7" - 14" Bore

Tie Rod Extended Mount

Style NM3

Rod End Dimensions - See Table 2

Thread Style 1
Small Male

Thread Style 2 Intermediate Male
 diameter rods. Larger sizes or special rod ends are cut threads. Style 1 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered,

Table 1—Envelope and Mounting Dimensions

Bore	AA	BB	CB	$\begin{array}{c\|} \hline+.000 \\ C D^{*} \\ -.001 \end{array}$	CW	DD	E	$\begin{gathered} \text { EE } \\ \text { NPTF } \end{gathered}$	F	G	J	K	L	LR	M	MR	R	Add Stroke	
																		LB	P
7	8.1	25/16	$11 / 2$	1.000	$3 / 4$	5/8-18	71/2	$3 / 4$	$3 / 4$	2	11/2	9/16	11/2	$11 / 4$	1	13/16	5.73	57/8	31/4
8	9.1	$2^{5 / 16}$	$1^{1 / 2}$	1.000	$3 / 4$	5/8-18	81/2	$3 / 4$	$3 / 4$	2	$1^{1 / 2}$	9/16	11/2	$1^{1 / 4}$	1	$1^{3 / 16}$	6.44	57/8	$31 / 4$
10	11.2	$2^{11 / 16}$	2	1.375	1	3/4-16	105/8	1	$3 / 4$	$2^{1 / 4}$	2	11/16	$2^{1 / 8}$	$1^{7 / 8}$	$1^{3 / 8}$	15/8	7.92	$71 / 8$	41/8
12	13.3	$2^{11 / 16}$	$2^{1 / 2}$	1.750	$11 / 4$	3/4-16	$12^{3 / 4}$	1	$3 / 4$	$2^{1 / 4}$	2	11/16	21/4	21/8	$1^{3 / 4}$	21/8	9.40	$75 / 8$	45/8
14	15.4	3 3/16	$2^{1 / 2}$	2.000	$1^{1 / 4}$	7/8-14	$14^{3} / 4$	$11 / 4$	$3 / 4$	$2^{3 / 4}$	$2^{1 / 4}$	$3 / 4$	$2^{1 / 2}$	$2^{3 / 8}$	2	$2^{3 / 8}$	10.90	87/8	51/2

${ }^{*} \mathrm{CD}$ is pin diameter.

Table 3-Envelope and Mounting Dimensions
Table 2—Rod Dimensions

Y	Add Stroke		
	XC	ZB	ZC
$2^{13 / 16}$	81/4	75/16	91/4
$3^{1 / 16}$	$8^{1 / 2}$	79/16	91/2
$3^{3 / 16}$	85/8	$711 / 16$	95/8
$2^{13 / 16}$	81/4	75/16	91/4
$3^{1 / 16}$	81/2	79/16	91/2
33/16	85/8	$711 / 16$	95/8
$3^{7 / 16}$	87/8	$7{ }^{15} / 16$	97/8
31/8	103/8	85/16	$11^{3 / 4}$
$31 / 4$	$10^{1 / 2}$	91/16	117/8
$3^{1 / 2}$	$10^{3 / 4}$	95/16	121/8
$3^{1 / 2}$	$10^{3 / 4}$	95/16	$12^{1 / 8}$
$3^{1 / 4}$	111/8	99/16	$12^{7 / 8}$
$3^{1 / 2}$	$11^{3 / 8}$	$9^{13 / 16}$	$13^{1 / 8}$
31/2	113/8	913/16	$13^{1 / 8}$
$3^{1 / 2}$	113/8	913/16	$13^{1 / 8}$
$3^{13 / 16}$	$12^{7} / 8$	111/8	$14^{7} / 8$
$3^{13 / 16}$	$12^{7} / 8$	111/8	$14^{7} / 8$
$3^{13 / 16}$	$12^{7 / 8}$	$11^{1 / 8}$	$14^{7 / 8}$
$3{ }^{13 / 16}$	$12^{7 / 8}$	111/8	$14^{7 / 8}$

To determine dimensions for a double rod cylinder, first refer to the desired single rod mounting style cylinder shown on preceding pages of this catalog. After selecting necessary dimensions from that drawing, return to this page and supplement the single rod dimensions with those shown on the drawing and dimension table below. Note that double rod cylinders have a head (Dim. G) at both ends and that dimension LD or LF replaces LB or LG. The double rod dimensions differ from, or are in addition to those for single rod cylinders shown on preceding pages and provide the information needed to completely dimension a double rod cylinder. On a double rod cylinder where the two rod ends are different, be sure to clearly state which rod end is to be assembled at which end.
Port position 1 is standard. If other than standard, specify position 2,3 , or 4 when viewed from one end only.
If only one end of these Double Rod Cylinders is to be cushioned, be sure to specify clearly which end this will be.
Specify XI dimension from rod end \#1.

How to Use Double Rod Cylinder Dimension Drawings
11/2" to 6" Bores
Tie Rod Retained Cartridge

1½" to 6" Bores
Removable Cartridge

All dimensions are in inches and apply to standard rod sizes only. For alternate rod sizes, determine all envelope dimensions (within LD dim.) as described above and then use appropriate rod end dimensions for proper rod size from single rod cylinder.

			Stro		Add 2X Stroke
Bore	Rod Dia. MM	LD	LF	SS	ZM
$1^{1 / 2}$	5/8	47/8	41/8	33/8	$6^{1 / 8}$
2	5/8	47/8	$41 / 8$	$3^{3 / 8}$	$6^{1 / 8}$
$2^{1 / 2}$	5/8	5	$4^{1 / 4}$	$3^{1 / 2}$	$6^{1 / 4}$
$3^{1 / 4}$	1	6	$4^{3 / 4}$	$3^{3 / 4}$	$7^{1 / 2}$
4	1	6	$4^{3 / 4}$	$3^{3 / 4}$	$7^{1 / 2}$
5	1	$6^{1 / 4}$	5	$3^{5 / 8}$	73/4
6	$1^{3 / 8}$	7	$5^{1 / 2}$	41/8	$8^{3 / 4}$
7	$1^{3 / 8}$	71/8	5/8	$4^{1 / 4}$	87/8
8	$1^{3 / 8}$	$71 / 8$	5/8	$41 / 4$	87/8
10	$1^{3 / 4}$	$8^{1 / 8}$	65/8	$4^{7 / 8}$	$10^{3 / 8}$
12	2	85/8	71/8	53/8	111/8
14	$2^{1 / 2}$	101/8	8/8	$63 / 8$	$13^{1 / 8}$
Replaces: On single rod mounting styles:		LB	LG	SS	-
		All Mtg. Styles		SL	All Mtgs.

*Mounting style XTM3 not available in 7" bore size.

Spherical Bearing Mount - Style SA

$11 / 2^{\prime \prime}$ to 6" Bore Sizes

Bore	Rod Dia. MM	Thread**	A	WF	Add Stroke		CD*	EX	MA	MS	NR	Max. Oper. PSI \dagger
		Style 3 KK			XC	ZC						
$11 / 2$	5/8	7/16-20	$3 / 4$	1	53/8	61/8	. $5000-0005$	7/16	$3 / 4$	15/16	5/8	250
	1	3/4-16	$1^{1 / 8}$	$1^{3 / 8}$	53/4	61/2						
2	5/8	7/16-20	$3 / 4$	1	53/8	61/8	. 5000 -0005	7/16	$3 / 4$	15/16	5/8	250
	1	3/4-16	11/8	$1^{3 / 8}$	$53 / 4$	$6^{1 / 2}$						
	$1^{3 / 8}$	1-14	$1^{5 / 8}$	15/8	6	$6^{3 / 4}$						
$2^{11 / 2}$	5/8	7/16-20	$3 / 4$	1	51/2	$61 / 4$. 5000 -.0005	7/16	$3 / 4$	15/16	5/8	250
	1	3/4-16	$1^{1 / 8}$	$1^{3 / 8}$	57/8	65/8						
	$1^{3 / 8}$	1-14	15/8	15/8	61/8	67/8						
	$1^{3 / 4}$	$1^{1 / 4} 4$-12	2	17/8	63/8	71/8						
$3^{1 / 4}$	1	3/4-16	$1^{1 / 8}$	$1^{3 / 8}$	$67 / 8$	77/8	. $7500-.0005$	21/32	1	$1^{3 / 8}$	1	250
	$1^{3 / 8}$	1-14	15/8	15/8	71/8	81/8						
	$1^{3 / 4}$	$1^{1 / 4} 4-12$	2	$1^{7 / 8}$	$7^{3 / 8}$	$8^{3 / 8}$						
	2	$1^{11 / 2}-12$	$2^{1 / 4}$	2	71/2	81/2						
4	1	3/4-16	$1^{1 / 8}$	$1^{3 / 8}$	67/8	$7^{7} / 8$. $7500-.0005$	21/32	1	$13 / 8$	1	250
	$1^{3 / 8}$	1-14	15/8	15/8	71/8	81/8						
	$1^{3 / 4}$	11/4-12	2	$1^{7 / 8}$	73/8	83/8						
	2	11/2.12	$2^{1 / 4}$	2	71/2	$8^{1 / 2}$						
5	1	3/4-16	11/8	$1^{3 / 8}$	71/8	81/8	. $7500-.0005$	21/32	1	$1^{3 / 8}$	1	250
	13/8	1-14	15/8	15/8	73/8	83/8						
	$1^{3 / 4}$	11/4-12	2	17/8	75/8	85/8						
	2	$1^{1 / 2} 2$-12	$2^{1 / 4}$	2	$73 / 4$	$8^{3 / 4}$						
6	$1^{3 / 8}$	1-14	15/8	15/8	$8^{1 / 8}$	$9^{3 / 8}$	1.0000-.0005	7/8	$1^{11 / 4}$	$1^{11 / 16}$	$1^{1 / 4}$	250
	$1^{3 / 4}$	$1^{1 / 4} 4 \cdot 12$	2	17/8	83/8	95/8						
	2	11/2-12	$2^{1 / 4}$	2	$8^{1 / 2}$	$9^{3 / 4}$						
	$2^{1 / 2}$	17/8-12	3	$2^{1 / 4}$	$83 / 4$	10						

\dagger Maximum operating pressure at $4: 1$ design factor is based on tensile strength of material.
Pressure ratings are based on standard commercial bearing ratings.
Note: For additional dimensions see page 24.

* Dimension CD is hole diameter.
** To match pin diameter in rod eye and cap, when an oversize rod is required, specify rod end style ' 4 ', 'KK' thread and ' A ' thread length for the standard rod diameter (first rod listed for the bore), and 'W' for the oversize rod. Order the rod eye and clevis bracket for the required bore size from the tables on the spherical bearings accessory page.

Spherical Bearing Mount - Style SA 8" to 14" Bore Sizes

	Rod Dia. MM	Thread**			Add	roke	CD*	EX	MA	MS	NR	Max. Oper. PSI \dagger
Bore		Style 3 KK	A	W	XC	ZC						
8	13/8	1-14	15/8	7/8	$8^{1 / 4}$	91/2	1.0000-0005	7/8	$1^{1 / 4}$	$1^{11 / 16}$	$1^{1 / 4}$	250
	$1^{3 / 4}$	$1^{1 / 4} 4$-12	2	$1^{1 / 8}$	$8^{1 / 2}$	$9^{3} / 4$						
	2	11/2-12	$2^{1 / 4}$	11/4	85/8	97/8						
	$2^{1 / 2}$	17/8-12	3	$1^{1 / 2}$	87/8	101/8						
10	$1^{3 / 4}$	11/4-12	2	11/8	$10^{3 / 8}$	$12^{1 / 4}$	1.3750-0005	13/16	17/8	$2^{7 / 16}$	15/8	250
	2	11/2-12	$2^{1 / 4}$	$1^{1 / 4}$	101/2	$12^{3 / 8}$						
	$2^{1 / 2}$	17/8-12	3	$1^{1 / 2}$	$10^{3 / 4}$	125/8						
	3	$2^{1 / 4} 4$-12	$3^{1 / 2}$	$1^{1 / 2}$	$10^{3 / 4}$	125/8						
12	2	11/2-12	$2^{1 / 4}$	$1^{1 / 4}$	111/8	135/8	1.7500-0005	$1^{17 / 32}$	$2^{1 / 2}$	$2^{7 / 8}$	$2^{1 / 16}$	250
	$2^{1 / 2}$	17/8-12	3	$1^{11 / 2}$	113/8	$13^{7 / 8}$						
	3	$2^{1 / 4} 4$-12	$3^{1 / 2}$	$1^{1 / 2}$	113/8	137/8						
	$3^{1 / 2}$	$2^{1 / 2}$ /212	$3^{1 / 2}$	$1^{1 / 2}$	$11^{3 / 8}$	137/8						
14	$2^{1 / 2}$	17/8-12	3	$1^{1 / 2}$	$12^{7 / 8}$	153/8	2.0000-0005	$1^{3 / 4}$	$2^{1 / 2}$	3/16	$2^{3 / 8}$	250
	3	$2^{1 / 4} 4$-12	$3^{1 / 2}$	$1^{1 / 2}$	$12^{7 / 8}$	153/8						
	$3^{1 / 2}$	$2^{1 / 2}$-12	$3^{1 / 2}$	$1^{1 / 2}$	$12^{7 / 8}$	153/8						
	4	3-12	4	11/2	$12^{7 / 8}$	153/8						

† Maximum operating pressure at 4:1 design factor is based on tensile strength of material.
Pressure ratings are based on standard commercial bearing ratings.
Note: For additional dimensions see page 32.

* Dimension CD is hole diameter.
** To match pin diameter in rod eye and cap, when an oversize rod is required, specify rod end style ' 4 ', 'KK' thread and ' A ' thread length for the standard rod diameter (first rod listed for the bore), and 'W' for the oversize rod. Order the rod eye and clevis bracket for the required bore size from the tables on the spherical bearings accessory page.

Cylinder Accessories

Spherical Bearing Mount - Style SA

Atlas offers a complete range of Cylinder Accessories to assure you of the greatest versatility in present or future cylinder applications. Accessories offered for the
respective cylinder include the Rod Eye, Pivot Pin and Clevis Bracket. To select the proper part number for any desired accessory refer to the charts below.

Spherical Rod Eye

Order to fit Piston Rod Thread Size.

Bore Sizes	$1^{11 / 2, ~} 2$ \& $2^{1 / 2}$	$3^{11 / 4,4} 4$ \&	6 \& 8	10	12	14
Part No.	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6
CD	.5000--0005	.7500-0005	1.0000-0005	1.3750-0005	1.7500-0005	2.0000-.0005
A	11/16	1	$1^{1 / 2}$	2	$2^{1 / 8}$	$2^{7 / 8}$
CE	7/8	11/4	17/8	$2^{1 / 8}$	$2^{1 / 2}$	$2^{3 / 4}$
EX	7/16	21/32	7/8	13/16	$1^{17 / 32}$	$13 / 4$
ER	13/16	11/8	$11 / 4$	$1^{11 / 16}$	21/16	$2^{1 / 2}$
LE	$3 / 4$	11/16	17/16	17/8	21/8	21/2
JK	7/16-20	$3 / 4-16$	1-14	11/4-12	11/2-12	17/8-12
JL	7/8	15/16	$1^{1 / 2}$	2	$2^{1 / 4}$	$2^{3 / 4}$
$\begin{gathered} \text { LOAD } \\ \text { CAPACITY } \\ \text { LBS. } \end{gathered}$	2644	9441	16860	28562	43005	70193

Pivot Pin	Bore Sizes	$1^{1 / 2}, 2$ \& $\mathbf{2}^{1 / 1 / 2}$	$3^{11 / 4,4} 4$ \& 5	6 \& 8	10	12	14
	Part No.	PP-616	PP-624	PP-632	PP-644	PP-656	PP-654
	CD	.4997-0004	.7497-0005	.9997-0005	1.3746-0006	1.7496-0006	1.9996-0007
	CL	19/16	$2^{1 / 32}$	$2^{1 / 2}$	35/16	$4^{7 / 32}$	$4^{15 / 16}$
	$\begin{aligned} & \text { LOAD } \\ & \text { CAPACITY } \\ & \text { LBS. } \end{aligned}$	8600	19300	34300	65000	105200	137400

Pivot Pins are furnished with (2) Retainer Rings.

Clevis Bracket

Order to fit Cap or Rod Eye.

Bore Sizes	$1^{1 / 2}, 2$ \& $2^{1 / 1 / 2}$	3114, 4 \& 5	6 \& 8	10	12	14
Part No.	SAB-1	SAB-2	SAB-3	SAB-4	SAB-5	SAB-6
CD	1/2	$3 / 4$	1	$1^{3 / 8}$	$1^{13 / 4}$	2
CF	7/16	${ }^{21 / 32}$	7/8	13/16	$1^{17 / 32}$	$1^{3 / 4}$
cW	1/2	5/8	$3 / 4$	1	$1^{1 / 4}$	$1^{1 / 2}$
DD	${ }^{13 / 32}$	17/32	17/32	${ }^{21 / 32}$	${ }^{29 / 32}$	${ }^{29 / 32}$
E	3	$3^{3 / 4}$	$5^{1 / 2}$	$6^{1 / 2}$	$8^{1 / 2}$	105/8
F	1/2	5/8	$3 / 4$	7/8	$1^{1 / 4}$	$1^{1 / 2}$
FL	$1^{1 / 2}$	2	$2^{1 / 2}$	$3^{1 / 2}$	$4^{1 / 2}$	5
LR	15/16	$1^{3 / 8}$	$1^{11 / 16}$	$2^{7 / 16}$	$2^{7 / 8}$	35/16
M	1/2	7/8	1	$1^{3 / 8}$	$1^{13 / 4}$	2
MR	5/8	1	13/16	15/8	$2^{1 / 16}$	$2^{3 / 8}$
R	2.05	2.76	4.10	4.95	6.58	7.92
$\begin{aligned} & \text { LOAD } \\ & \text { CAPACITY } \\ & \text { LBS. } \end{aligned}$	5770	9450	14300	20322	37800	50375

Part numbers for clevis bracket include pins and keepers.

End of Stroke Magnetic Principle Type Proximity Switch

Reliable: Proximity type sensor never contacts cylinder moving parts; eliminating wear and adjustments.

Positive Action: Multiple magnet design provides "snap action." Eliminates creep and false signals.

Versatile: Sealed stainless steel switch body can be used with any operating fluid and is impervious to most environmental conditions.

Switch Extension in Inches

Bore	Rod Dia.	HR	HB
11/2	5/8	$33 / 8$	$31 / 8$
	1	$31 / 2$	
2	5/8	3 3/16	$27 / 8$
	1	$35 / 16$	
	$13 / 8$	$37 / 16$	
$21 / 2$	5/8	$215 / 16$	2 5/8
	1	$31 / 16$	
	$13 / 8$	$31 / 4$	
	$13 / 4$	$37 / 16$	
$31 / 4$	1	$31 / 8$	$23 / 4$
	$13 / 8$	$31 / 4$	
	$13 / 4$	$31 / 2$	
	2	$311 / 16$	
4	1	$23 / 4$	2 7/16
	$13 / 8$	$215 / 16$	
	$13 / 4$	$31 / 8$	
	2	$31 / 4$	
5	1	$21 / 4$	1 15/16
	$13 / 8$	$27 / 16$	
	$13 / 4$	$25 / 8$	
	2	$23 / 4$	
6	$13 / 8$	$115 / 16$	$11 / 2$
	$13 / 4$	$21 / 8$	
	2	$21 / 4$	
	$21 / 2$	$25 / 8$	
7	$13 / 8$	$23 / 4$	1
	$13 / 4$	$215 / 16$	
	2	$21 / 8$	
8	$13 / 8$	$27 / 16$	2
	$13 / 4$	$25 / 8$	
	2	$23 / 4$	
	$21 / 2$	$31 / 8$	
10	$13 / 4$	$11 / 2$	$11 / 8$
	2	$13 / 4$	
	$21 / 2$	2	
	3	$21 / 4$	

Switch Options
Quick disconnect. Explosion proof. Extra-long leads.

As shown in the sketches above, these switches are magnetically operated. Dual magnets provide a dependable "snap action" for positive position sensing.
In the "unoperated" position, the magnet assembly is attracted in the direction of the arrow, causing a finely ground stainless steel connecting rod to hold the contacts open.
In the "operated" position a ferrous part (cushion or piston) enters the sensing area and attracts the magnet assembly which causes the rod to draw the contacts closed.

How to Order:

To order switches, enter an " S " in the Options field of the cylinder model code. Describe the modification in notes by specifying:

1. Magnaswitch
2. Installation in head, cap, or both ends of the cylinder
3. Location in the head or cap (position \#1, 2,3 , or 4) not occupied by a port or mounting

Specifications

Switch Type:

Magnetic Principle

Contacts:

Single Pole-Double Throw (SPDT)

Contact Rating*:

2 Amp at 110-240 VAC (UL \& CSA) 100 MA at 12 VDC 50 MA at 24 VDC (CSA)
Note: Check current draw of solenoid valves.
Connection: 36" long, 3 wire, potted in cable. Can be wired Normally Open or Normally Closed. Leads are tagged (Com, N/O, N/C)
Switch Pressure Rating: 3000 PSI
Switch Press
Non Shock

Atlas
 Non-Lube Heavy-Duty Air Cylinders

AL Series

For millions of trouble free cycles

- Nominal pressure - 250 PSI - Air Service

■ Standard Bore Sizes - $11 / 2$ " through 14"
■ Piston Rod Diameters - $5 / 8$ " through 4"

- 14 Standard Mounting Styles
- NFPA Interchangeable
- Exceeds Automotive Specifications

The AL Series Non-Lube Air Cylinder with Proven Performance Millions of trouble free cycles with ZERO LEAKAGE.

Increased Market Demand and continuous research and testing efforts inspired the development of the AL Series Non-Lubricated Air Cylinder. The AL Series piston rod and cylinder barrel surfaces act as highly efficient lubricant reservoirs, maintaining their own lubricant film. Other manufacturers pack grease into grooves and pockets and call them reservoirs. The fact of the matter is that as those grooves empty out over time; grease is being transported out of the cylinder and into the control system components and the atmosphere. The AL Series concept eliminates that problem by maintaining the lubricant film where it belongs: on the seals, bearing surfaces, piston rod and cylinder bore.

Benefits include...long seal and bearing life and since no oil is added through the use of lubricators - no oil is expelled into the atmosphere with the exhaust air as the cylinder strokes.

Anatomy of AL Series Sealing and Lubricant Retention Systems

In the AL Series you get all the cost saving benefits and features of the popular heavy-duty Series A air cylinder including...

■ Bolt-On Rod Gland Assembly for positive no leak sealing

■ Piston rod, hard chrome-plated and casehardened steel

■ High strength rolled thread Piston Rod Stud

■ Steel tube cylinder body with chrome-plated micro finish bore...

Plus the innovative "Non-Lube" feature which further increases your benefits of lower operating and maintenance costs.

Standard Specifications

■ Heavy-Duty Service - ANSI/(NFPA) T3.6.7 R2-1996 Mounting Dimension Standards

■ Standard Construction - Square Head Tie Rod Design

■ Standard Temperature - $-10^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$

- Standard Fluid - Filtered Air

■ Strokes - Available in any practical stroke length
■ Cushions - Optional at either end or both ends of stroke. "Float Check" at cap end.

In line with our policy of continuing product improvement, specifications in this bulletin are subject to change.

Available Bore and Rod Sizes

Bore Sizes Available	$1^{1 / 1 / 2^{\prime \prime}}$	$2^{\prime \prime}$	$2^{1 / 2 "}$	$3^{1 / 4 "}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$	$10^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$

Rod Sizes Available	$5 / 8^{\prime \prime}$	$1^{\prime \prime}$	$1^{3 / 8^{\prime \prime}}$	$1^{3 / 4 "}$	$2^{\prime \prime}$	$2^{1 / 2 "}$	$3^{\prime \prime}$	$3^{1 / 2 "}$	$4^{\prime \prime}$

How to Order AL Series Non-Lube Air Cylinders

Data Required on all AL Cylinder Orders

When ordering AL Series cylinders, be sure to specify each of the following requirements:
(Note: Duplicate cylinders can be ordered by giving the SERIAL NUMBER from the nameplate of the original cylinder. Factory records supply a quick, positive identification.)
a) Bore Size

b) Mounting Style

Specify your choice of mounting style - as shown in this catalog. If double rod is wanted, specify "with double rod."
c) Series Designation (AL)
d) Length of Stroke

See page 65 for complete model code requirements.

e) Piston Rod Diameter

Specify rod diameter in AL Series cylinders, standard rod diameters will be furnished if not otherwise specified, unless length of stroke makes the application questionable.

f) Piston Rod End Thread Style

Give thread style number or specify dimensions. Thread style number 1 will be supplied if not otherwise specified.
g) Cushions (if required)

Specify "Cushion-head end," "Cushion-cap end" or "Cushion-both ends" as required. If cylinder is to have a double rod and only one cushion is required, be sure to specify clearly which end of the cylinder is to be cushioned.

Catalog HY04-AC0910-5
Cylinder Accessories

Heavy Duty Industrial Air Cylinders Atlas Series A

Cylinder Accessories

Atlas offers a complete range of cylinder accessories to assure you of the greatest versatility in present and future cylinder applications.

Rod End Accessories

Accessories offered for the rod end of the cylinder include Rod Clevis, Eye Bracket, Female Rod Eye, Clevis Bracket, and Pivot Pin. To select the proper part number for any desired accessory, refer to the table below or on the opposite page and look in the row to the right of the rod thread in the first column. For economical accessory selection, it is recommended that rod end style 1 be specified on your cylinder order.

Accessory Load Capacity

The various accessories have been load rated for your convenience. The load Capacity in lbs. Is the recommended maximum load for that accessory based on a $4: 1$ design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

Thread Size	Rod Clevis		Eye Bracket		Pivot Pin	
	Part Number	Load Capacity (Lbs.)	Part Number	Load Capacity (Lbs.)	Part Number	Shear Capacity (Lbs.)
	JIC-40	2950	EB-195	3375	PP-368A	58900
$1 / 2-20$	JIC-41	4000	EB-195	3375	PP-368A	58900
$3 / 4-16$	JIC-42A	11200	EB-196	8400	PP-369A	13250
$3 / 4-16$	JIC-42	9300	EB-196	8400	PP-369A	13250
$7 / 8-14$	JIC-43A	18800	EB-197	13500	PP-370A	23560
$7 / 8-14$	JIC-43	12700	EB-197	13500	PP-370A	23560
$1-14$	JIC-44A	19500	EB-197	13500	PP-370A	23560
$1-14$	JIC-44	16875	EB-197	13500	PP-370A	23560
$11 / 4-12$	JIC-45A	33500	EB-198	24700	PP-371A	44550
$11 / 4-12$	JIC-45	26800	EB-198	24700	PP-371A	44550
$11 / 2-12$	JIC-46	39500	EB-199	39375	PP-372A	72150
$13 / 4-12$	JIC-47	54700	EB-200	45000	PP-215A	94250
$17 / 8-12$	JIC-48	56250	EB-200	45000	PP-215A	94250
$21 / 4-12$	JIC-49	84375	EB-201	67500	PP-374A	94250
$21 / 2-12$	JIC-50	84375	EB-202	67500	PP-375A	147250
$23 / 4-12$	JIC-51	84375	EB-202	67500	PP-216A	212050
$31 / 4-12$	JIC-52A	156700	EB-38	126000	PP-545A	288600
$31 / 4-12$	JIC-52	157500	EB-38	126000	PP-545A	288600
$31 / 2-12$	JIC-53A	193200	EB-39	162000	PP-547A	377000
$31 / 2-12$	JIC-53	202500	EB-39	162000	PP-547A	377000
$4-12$	JIC-54A	221200	EB-39	162000	PP-547A	377000
$4-12$	JIC-54	202500	EB-39	162000	PP-547A	377000

Rod Clevis Dimensions

Pivot Pin Dimensions

Part Number	A	CB	CD	CE	CW	ER	KK
	$3 / 4$	$3 / 4$	$1 / 2$	$11 / 2$	$1 / 2$	$1 / 2$	$7 / 16-20$
JIC-41	$3 / 4$	$3 / 4$	$1 / 2$	$11 / 2$	$1 / 2$	$1 / 2$	$1 / 2-20$
JIC-42A	$11 / 8$	$11 / 4$	$3 / 4$	$21 / 8$	$5 / 8$	$3 / 4$	$3 / 4-16$
JIC-42	$11 / 8$	$11 / 4$	$3 / 4$	$23 / 8$	$5 / 8$	$3 / 4$	$3 / 4-16$
JIC-43A	$15 / 8$	$11 / 2$	1	$215 / 16$	$3 / 4$	1	$7 / 8-14$
JIC-43	$15 / 8$	$11 / 2$	1	$31 / 8$	$3 / 4$	1	$7 / 8-14$
JIC-44A	$15 / 8$	$11 / 2$	1	$215 / 16$	$3 / 4$	1	$1-14$
JIC-44	$15 / 8$	$11 / 2$	1	$31 / 8$	$3 / 4$	1	$1-14$
JIC-45A	$17 / 8$	2	$13 / 8$	$33 / 4$	1	$13 / 8$	$11 / 4-12$
JIC-45	2	2	$13 / 8$	$41 / 8$	1	$13 / 8$	$11 / 4-12$
JIC-46	$21 / 4$	$21 / 2$	$13 / 4$	$41 / 2$	$11 / 4$	$13 / 4$	$11 / 2-12$
JIC-47	3	$21 / 2$	2	$51 / 2$	$11 / 4$	2	$13 / 4-12$
JIC-48	3	$21 / 2$	2	$51 / 2$	$11 / 4$	2	$17 / 8-12$
JIC-49	$31 / 2$	3	$21 / 2$	$61 / 2$	$11 / 2$	$21 / 2$	$21 / 4-12$
JIC-50	$31 / 2$	3	3	$63 / 4$	$11 / 2$	$23 / 4$	$21 / 2-12$
JIC-51	$31 / 2$	3	3	$63 / 4$	$11 / 2$	$23 / 4$	$23 / 4-12$
JIC-52A	$31 / 2$	4	$31 / 2$	$73 / 4$	2	$31 / 2$	$31 / 4-12$
JIC-52	$41 / 2$	4	$31 / 2$	$81 / 2$	2	$31 / 2$	$31 / 4-12$
JIC-53A	$4 \ddagger$	$41 / 2$	4	$813 / 16$	$21 / 4$	4	$31 / 2-12$
JIC-53	5	$41 / 2$	4	$913 / 16$	$21 / 4$	4	$31 / 2-12$
JIC-54A	$4 \ddagger$	$41 / 2$	4	$813 / 16$	$21 / 4$	4	$4-12$
JIC-54	$51 / 2$	$41 / 2$	4	10	$21 / 4$	4	$4-12$

Part Number	CD	CL
PP-368A	$1 / 2$	$17 / 8$
PP-369A	$3 / 4$	$25 / 8$
PP-370A	1	$31 / 8$
PP-371A	$13 / 8$	$41 / 8$
PP-372A	$13 / 4$	$53 / 16$
PP-373A	2	$53 / 16$
PP-374A	$21 / 2$	$63 / 16$
PP-375A	3	$61 / 4$
PP-545A	$31 / 2$	$81 / 4$
PP-547A	4	9

1. Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
2. Pivot Pins are furnished with (2) Retainer Rings.
\ddagger Consult appropriate cylinder rod end dimensions for compatibility.
Part numbers for Rod Clevis include pins and keepers.

Eye Bracket Dimensions

1. When used to mate with the Rod Clevis, select by thread size in table above.
2. When used to mount the Style PB2 Cylinder, select by bore size below.

Part Number	CB	CD	DD	E	F	FL	LR	M	MR	R	Bore
EB-195	$3 / 4$	$1 / 2$	$13 / 32$	$21 / 2$	$3 / 8$	$11 / 8$	$3 / 4$	$1 / 2$	$9 / 16$	1.63	$11 / 2^{\prime \prime}, 2^{\prime \prime \prime}, 21 / 2^{\prime \prime}$
EB-196	$11 / 4$	$3 / 4$	$17 / 32$	$31 / 2$	$5 / 8$	$17 / 8$	$11 / 4$	$3 / 4$	$7 / 8$	2.55	$31 / 4^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}$
EB-197	$11 / 2$	1	$21 / 32$	$41 / 2$	$3 / 4$	$21 / 4$	$11 / 2$	1	$11 / 4$	3.25	$6^{\prime \prime}, 7^{\prime \prime}, 8^{\prime \prime}$
EB-198	2	$13 / 8$	$21 / 32$	5	$7 / 8$	3	$21 / 8$	$13 / 8$	$15 / 8$	3.82	$10^{\prime \prime}$
EB-199	$21 / 2$	$13 / 4$	$29 / 32$	$61 / 2$	$7 / 8$	$31 / 8$	$21 / 4$	$13 / 4$	$21 / 8$	4.95	$12^{\prime \prime}$
EB-200	$21 / 2$	2	$11 / 16$	$71 / 2$	1	$31 / 2$	$21 / 2$	2	$27 / 16$	5.73	$14^{\prime \prime}$
EB-201	3	$21 / 2$	$13 / 16$	$81 / 2$	1	4	3	$21 / 2$	3	6.58	-
EB-202	3	3	$15 / 16$	$91 / 2$	1	$41 / 4$	$31 / 4$	$23 / 4$	$31 / 4$	7.50	-
EB-38	4	$31 / 2$	$113 / 16$	$125 / 8$	$111 / 16$	$511 / 16$	4	$31 / 2$	$41 / 8$	9.62	-
EB-39	$41 / 2$	4	$21 / 16$	$147 / 8$	$115 / 16$	$67 / 16$	$41 / 2$	4	$51 / 4$	11.45	-

Rod End Accessories

Accessories offered for the rod end of the cylinder include Rod Clevis, Eye Bracket, Female Rod Eye, Clevis Bracket, and Pivot Pin. To select the proper part number for any desired accessory, refer to the table below or on the opposite page and look in the row to the right of the rod thread in the first column. For economical accessory selection, it is recommended that rod end style 1 be specified on your cylinder order.

Accessory Load Capacity

The various accessories have been load rated for your convenience. The load Capacity in Ibs. is the recommended maximum load for that accessory based on a 4:1 design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at the maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

	Female Rod Eye		Clevis Bracket		Pivot Pin	
Thread Size	Part Number	Load Capacity (Lbs.)	Part Number	Load Capacity (Lbs.)	Part Number	Shear Capacity (Lbs.)
$7 / 16-20$	REE-89	2950	CB-205	4500	PP-368A	5890
$1 / 2-20$	REE-90	3375	CB-205	4500	PP-368A	5890
$3 / 4-16$	REE-91	8400	CB-206	8400	PP-369A	13250
$7 / 8-14$	REE-92	12700	CB-207	13500	PP-370A	23560
$1-14$	REE-93	13500	CB-207	13500	PP-370A	23560
$11 / 4-12$	REE-94	24750	CB-208	24700	PP-371A	44550
$11 / 2-12$	REE-95	39375	CB-209	39375	PP-372A	72150
$13 / 4-12$	REE-96	45000	CB-210	54000	PP-215A	94250
$17 / 8-12$	REE-97	45000	CB-210	54000	PP-215A	94250
$21 / 4-12$	REE-98	67500	CB-211	67500	PP-374A	147250
$21 / 2-12$	REE-99	81000	CB-212	124000	PP-375A	212050
$23 / 4-12$	REE-100	94500	CB-213	124000	PP-216A	212050
$31 / 4-12$	REE-36	126000	CB-242	126000	PP-545A	288600
$31 / 2-12$	REE-37	126000	CB-242	126000	PP-545A	288600
$4-12$	REE-38	162000	CB-243	144000	PP-546A	288600
$41 / 2-12$	REE-39	180000	CB-244	144000	PP-547A*	377000

*This size supplied with cotter pins.

Female Rod Eye Dimensions

Pivot Pin Dimensions

Part Number	A	CA	CB	CD	ER	KK
REE-89	$3 / 4$	$11 / 2$	$3 / 4$	$1 / 2$	$23 / 32$	$7 / 16-20$
REE-90	$3 / 4$	$11 / 2$	$3 / 4$	$1 / 2$	$23 / 32$	$1 / 2-20$
REE-91	$11 / 8$	$21 / 16$	$11 / 4$	$3 / 4$	$11 / 16$	$3 / 4-16$
REE-92	$11 / 8$	$23 / 8$	$11 / 2$	1	$17 / 16$	$7 / 8-14$
REE-93	$15 / 8$	$213 / 16$	$11 / 2$	1	$17 / 16$	$1-14$
REE-94	2	$37 / 16$	2	$13 / 8$	$131 / 32$	$11 / 4-12$
REE-95	$21 / 4$	4	$21 / 2$	$13 / 4$	$21 / 2$	$11 / 2-12$
REE-96	$21 / 4$	$43 / 8$	$21 / 2$	2	$227 / 32$	$13 / 4-12$
REE-97	3	5	$21 / 2$	2	$227 / 32$	$17 / 8-12$
REE-98	$31 / 2$	$513 / 16$	3	$21 / 2$	$39 / 16$	$21 / 4-12$
REE-99	$31 / 2$	$61 / 8$	3	3	$41 / 4$	$21 / 2-12$
REE-100	$35 / 8$	$61 / 2$	$31 / 2$	3	$41 / 4$	$23 / 4-12$
REE-36	$41 / 2$	$75 / 8$	4	$31 / 2$	$431 / 32$	$31 / 4-12$
REE-37	5	$75 / 8$	4	$31 / 2$	$431 / 32$	$31 / 2-12$
REE-38	$51 / 2$	$91 / 8$	$41 / 2$	4	$511 / 16$	$4-12$
REE-39	$51 / 2$	$91 / 8$	5	4	$511 / 16$	$41 / 2-12$

Part Number	CD	CL
	$1 / 2$	$17 / 8$
PP-369A	$3 / 4$	$25 / 8$
PP-370A	1	$31 / 8$
PP-371A	$13 / 8$	$41 / 8$
PP-372A	$13 / 4$	$53 / 16$
PP-215A	2	$511 / 16$
PP-374A	$21 / 2$	$63 / 16$
PP-375A	3	$61 / 4$
PP-216A	3	$63 / 4$
PP-545A	$31 / 2$	$81 / 4$
PP-546A	4	$85 / 8$
PP-547A	4	9

1. Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
2. Pivot Pins are furnished with (2) Retainer Rings.

Clevis Bracket Dimensions

Part Number	CB	CD	CW	DD	\mathbf{E}	\mathbf{F}	FL	LR	\mathbf{M}	MR	\mathbf{R}
CB-205	$3 / 4$	$1 / 2$	$1 / 2$	$13 / 32$	$31 / 2$	$1 / 2$	$11 / 2$	$3 / 4$	$1 / 2$	$5 / 8$	2.55
CB-206	$11 / 4$	$3 / 4$	$5 / 8$	$17 / 32$	5	$5 / 8$	$17 / 8$	$13 / 16$	$3 / 4$	$29 / 32$	3.82
CB-207	$11 / 2$	1	$3 / 4$	$21 / 32$	$61 / 2$	$3 / 4$	$21 / 4$	$11 / 2$	1	$11 / 4$	4.95
CB-208	2	$13 / 8$	1	$21 / 32$	$71 / 2$	$7 / 8$	3	2	$13 / 8$	$121 / 32$	5.73
CB-209	$21 / 2$	$13 / 4$	$11 / 4$	$29 / 32$	$91 / 2$	$7 / 8$	$35 / 8$	$23 / 4$	$13 / 4$	$27 / 32$	7.50
CB-210	$21 / 2$	2	$11 / 2$	$11 / 16$	$123 / 4$	1	$41 / 4$	$33 / 16$	$21 / 4$	$225 / 32$	9.40
CB-211	3	$21 / 2$	$11 / 2$	$13 / 16$	$123 / 4$	1	$41 / 2$	$31 / 2$	$21 / 2$	$31 / 8$	9.40
CB-212	3	3	$11 / 2$	$15 / 16$	$123 / 4$	1	6	$41 / 4$	3	$319 / 32$	9.40
CB-213	$31 / 2$	3	$11 / 2$	$15 / 16$	$123 / 4$	1	6	$41 / 4$	3	$319 / 32$	9.40
CB-242	4	$31 / 2$	2	$113 / 16$	$151 / 2$	$111 / 16$	$611 / 16$	5	$31 / 2$	$41 / 8$	12.00
CB-243	$41 / 2$	4	2	$21 / 16$	$171 / 2$	$115 / 16$	$711 / 16$	$53 / 4$	4	$47 / 8$	13.75
CB-244	5	4	2	$21 / 16$	$171 / 2$	$115 / 16$	$711 / 16$	$53 / 4$	4	$47 / 8$	13.75

- This size supplied with cotter pins.

Part numbers for clevis bracket include pins and keepers.

"Style 5" Piston Rod End

Split Couplers and Weld Plates

> \WARNING: Piston rod separation from the machine member can result in severe personal injury or even death to nearby personnel. The cylinder user must make sure the weld holding the weld plate to the machine is of sufficient quality and size to hold the intended load. The cylinder user must also make sure the bolts holding split coupler to the weld plate are of sufficient strength to hold the intended load and installed in such a way that they will not become loose during the machine's operation.

Table 1 - Part Numbers and Dimensions

ROD DIA.	A	B	C	D	E	F	BOLT SIZE	SPLIT COUPLER PART NO.	$\begin{gathered} \text { WELD } \\ \text { PLATE } \\ \text { PART NO. } \end{gathered}$
5/8	1.50	2.00	. 50	. 56	. 250	4	\#10-24 x . 94 LG	SC-062	WP-062
1	2.00	2.50	. 50	. 88	. 250	6	. $250-20 \times 1.25 \mathrm{LG}$	SC-100	WP-100
$1^{3 / 8}$	2.50	3.00	. 63	1.00	. 250	6	. 312 -18 $\times 1.0$ LG	SC-138	WP-138
$1^{3 / 4}$	3.00	4.00	. 63	1.25	. 250	8	. 312 -18 $\times 1.75$ LG	SC-175	WP-175
2	3.50	4.00	. 75	1.63	. 375	12	. $375-16 \times 2.25 \mathrm{LG}$	SC-200	WP-200
$2^{1 / 2}$	4.00	4.50	. 75	1.88	. 375	12	. $375-16 \times 2.50 \mathrm{LG}$	SC-250	WP-250
3	5.00	5.50	1.00	2.38	. 375	12	. $500-13 \times 3.25 \mathrm{LG}$	SC-300	WP-300
$3^{1 / 2}$	5.88	7.00	1.00	2.63	. 375	12	. $625-11 \times 3.50 \mathrm{LG}$	SC-350	WP-350
4	6.38	7.00	1.00	2.63	. 375	12	. $625-11 \times 3.50$ LG	SC-400	WP-400

[^1]
Atlas "Style 5" Piston Rod End Split Flange Coupling Rod End

- Simplifies alignment
- Reduces assembly time
- Allows full rated pneumatic pressure in push and pull directions
■ Available in $5 / 8^{\prime \prime}$ through 4 " piston rod diameters

Style 5 Rod End

Dimensions Style 5 Rod End

MM Rod Dia.	AD	AE	AF	AM	AL
$5 / 8$	$5 / 8$	$1 / 4$	$3 / 8$.57	$1^{3 / 4}$
1	${ }^{15} / 16$	$3 / 8$	$1^{11 / 16}$.95	$2^{1 / 2}$
$1^{3 / 8}$	$1^{1 / 16}$	$3 / 8$	$7 / 8$	1.32	$2^{3 / 4}$
$1^{3 / 1} 4$	$1^{5 / 16}$	$1 / 2$	$1 / 8$	1.70	$3^{1 / 8}$
2	$1^{11 / 16}$	$5 / 8$	$1^{3 / 8}$	1.95	$3^{3 / 4}$
$2^{1 / 2}$	$1^{15} / 16$	$3 / 4$	$1^{3 / 4}$	2.45	$4^{1 / 2}$
3	$2^{7 / 16}$	$7 / 8$	$2^{1 / 4}$	2.95	$4^{7 / 8}$
$3^{1 / 2}$	$2^{11 / 16}$	1	$2^{1 / 2}$	3.45	$5^{5 / 8}$
4	$2^{11 / 16}$	1	3	3.95	$5^{3 / 4}$

See cylinder dimension pages for B, F, G, VA and VB per bore and rod diameter.

Linear Alignment Couplers are available in 18 standard thread sizes...

Cost Saving Features and Benefits Include...

- Maximum reliability for trouble-free operation, long life and lower operating costs
- Increased cylinder life by reducing wear on piston and rod bearings

■ Simplifying cylinder installation and reducing assembly costs

■ Increase rod bearing and rod seal life for lower maintenance costs

Alignment Coupler

See Table 1 for Part Numbers and Dimensions

Table 1 - Part Numbers and Dimensions

Part No.	A	B	C	D	E	F	G	H	J	K	M	Max. Pull Load (lbs.)	Approx. Weight (lbs.)
RC-3-5	5/16-24	11/8	$1^{3 / 4}$	${ }^{15} / 16$	1/2	1/2	3/8	$3 / 4$	$3 / 8$	15/16	6°	1200	. 35
RC-3-6	3/8-24	$11 / 8$	$13 / 4$	15/16	1/2	1/2	3/8	$3 / 4$	3/8	${ }^{15} / 16$	6°	2425	. 35
RC-3-7	7/16-20	$1^{3 / 8}$	2	11/8	$3 / 4$	5/8	1/2	7/8	3/8	$1^{3 / 32}$	6°	3250	. 55
RC-3-8	1/2-20	$1^{3 / 8}$	2	$1^{1 / 8}$	$3 / 4$	5/8	1/2	7/8	3/8	$1^{3 / 32}$	6°	4450	. 55
RC-3-10	5/8-18	$1^{3 / 8}$	2	11/8	$3 / 4$	5/8	1/2	7/8	3/8	$1^{3 / 32}$	6°	6800	. 55
RC-3-12	$3 / 4-16$	2	25/16	15/8	11/8	15/16	3/4	15/16	7/16	19/32	6°	9050	1.4
RC-3-14	$7 / 8-14$	2	25/16	15/8	11/8	15/16	$3 / 4$	15/16	7/16	19/32	6°	14450	1.4
RC-3-16	1-14	$3^{1 / 8}$	3	$2^{3 / 8}$	15/8	17/16	$11 / 4$	$17 / 8$	$3 / 4$	125/32	6°	19425	4.8
RC-3-20	11/4-12	$3^{1 / 8}$	3	$2^{3 / 8}$	15/8	$1^{7 / 16}$	$11 / 4$	17/8	$3 / 4$	$1^{25 / 32}$	6°	30500	4.8
RC-2-24	11/2-12	4	$43 / 8$	$2^{1 / 4}$	$2^{1 / 4}$	$1^{3 / 4}$	11/2	$1^{15 / 16}$	7/8	$2^{3 / 4}$	10°	45750	9.8
RC-2-28	$1^{3 / 4}-12$	4	$43 / 8$	21/4	$2^{1 / 4}$	$1^{3 / 4}$	11/2	$1^{15 / 16}$	7/8	$2^{3 / 4}$	10°	58350	9.8
RC-2-30	17/8-12	5	55/8	3	3	$2^{1 / 4}$	$1^{15 / 16}$	$2^{5 / 8}$	$1^{3 / 8}$	$33 / 8$	10°	67550	19.8
RC-2-32	2-12	5	$55 / 8$	3	3	$2^{1 / 4}$	15/16	25/8	$13 / 8$	$33 / 8$	10°	77450	19.8
RC-2-36	$2^{1 / 4} 412$	$6^{3 / 4}$	$63 / 8$	$3^{1 / 4}$	$3^{1 / 2}$	$2^{3 / 4}$	$2^{3 / 8}$	$2^{7 / 8}$	15/8	$3^{3 / 4}$	10°	99250	35.3
RC-2-40	21/2-12	7	$61 / 2$	4	$3^{1 / 2}$	$3^{1 / 4}$	$2^{7 / 8}$	$33 / 8$	15/8	$37 / 8$	10°	123750	45.3
RC-2-44	$2^{3 / 4}-12$	7	61/2	4	$3^{1 / 2}$	$3^{1 / 4}$	$2^{7 / 8}$	$33 / 8$	15/8	$37 / 8$	10°	150950	45.3
RC-2-48	3-12	7	$6^{1 / 2}$	4	$3^{1 / 2}$	$3^{1 / 4}$	$2^{7 / 8}$	$3^{3 / 8}$	15/8	37/8	10°	180850	45.3
RC-2-52	$3^{1 / 4-12}$	91/4	$8^{1 / 2}$	$5^{1 / 4}$	$4^{1 / 2}$	4	$3{ }^{3 / 8}$	$41 / 2$	2	$5^{1 / 2}$	10°	213450	-

How to Order Linear Alignment Couplers - When ordering a cylinder with a threaded male rod end, specify the coupler of equal thread size by part number as listed in Table 1, i.e.; Piston Rod "KK" dimension is $3 / 4$ " -16 ", specify coupler part number RC-3-12.

Theoretical Push and Pull Forces

Push Force and Displacement

Cyl. Bore (Inches)	Piston Area (Sq. In.)	Cylinder Push Stroke Force In Pounds At Various Pressures						Cu. Ft. Free Air At 80 Lbs. Pressure, Required To Move Max. Load 1 Inch
		25	50	65	80	100	250	
$1^{1 / 2}$	1.767	44	88	115	142	177	443	. 00659
2	3.14	79	157	204	251	314	785	. 01171
$2^{1 / 2}$	4.91	123	245	319	393	491	1228	. 01830
$3^{1 / 4}$	8.30	208	415	540	664	830	2075	. 03093
4	12.57	314	628	817	1006	1257	3143	. 04685
5	19.64	491	982	1277	1571	1964	4910	. 07320
6	28.27	707	1414	1838	2262	2827	7068	. 10541
7	38.49	962	1924	2502	3079	3849	9623	. 14347
8	50.27	1257	2513	3268	4022	5027	12568	. 18740
10	78.54	1964	3927	5105	6283	7854	19635	. 29280
12	113.10	2828	5655	7352	9048	11310	28275	. 42164
14	153.94	3849	7697	10006	12315	15394	38485	. 57389

Deductions for Pull Force and Displacement

PistonRodDia.(Inches)	Piston Area (Sq. In.)	Piston Rod Diameter Force In Pounds At Various Pressures						Cu. Ft. Free Air At 80 Lbs. Pressure, Required To Move Max. Load 1 Inch
		To determine Cylinder Pull Force or Displacement, deduct the following Force or Displacement corresponding to Rod Size, from selected Push Stroke Force or Displacement corresponding to Bore Size in table above.						
		25	50	65	80	100	250	
5/8	. 307	8	15	20	25	31	77	. 00114
1	. 785	20	39	51	65	79	196	. 00293
$1^{3 / 8}$	1.49	37	75	97	119	149	373	. 00554
$1^{13 / 4}$	2.41	60	121	157	193	241	603	. 00897
2	3.14	79	157	204	251	314	785	. 01171
$2^{1 / 2}$	4.91	123	245	319	393	491	1228	. 01830
3	7.07	177	354	460	566	707	1767	. 02635
$3^{1 / 2}$	9.62	241	481	625	770	962	2405	. 03587
4	12.57	314	628	817	1006	1257	3143	. 04685

General Formula

The cylinder output forces are derived from the formula:

$$
\text { Where } \begin{aligned}
& \mathrm{F}=\mathrm{P} \times \mathrm{F} \times \mathrm{A} \\
& \mathrm{P}=\text { Prese in pounds. } \\
& \\
& \mathrm{A}=\text { pounds at the cylinder in } \\
& \\
& \\
& \\
& \text { in square inch, gauge } \\
& \\
&
\end{aligned}
$$

Free Air refers to normal atmospheric conditions of the air at sea level (14.7 psi). Use above cu. ft. free air required data
to compute CFM required from a compressor at $80 \mathrm{psi} . \mathrm{cu} . \mathrm{ft}$. of free air required at other pressures can be calculated using formula below.

$$
V_{1}=\frac{\left(P_{2}+14.7\right) V_{2}}{14.7}
$$

Where V1 = Free air consumption per inch of stroke (cubic feet).
V2 $=$ Cubic feet displaced per inch of stroke.
P2 = Gauge pressure required to move maximum load.

Heavy Duty Industrial Air Cylinders Atlas Series A

Operating Fluids and Temperature Range

Series A cylinders are equipped with seals for use with lubricated air. In some cases special seals are required.

Class 1 Seals

Class 1 seals are the standard seals provided in a cylinder assembly. They are intended for use with fluids such as: air, nitrogen, mineral base hydraulic oil or MIL-H-5606 within the temperature range of $-10^{\circ} \mathrm{F}\left(-23^{\circ} \mathrm{C}\right)$ to $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$. The individual seals may be nitrile (Buna-N), enhanced polyurethane, polymyte, PTFE or filled PTFE.

Class 4 Seals - Nitrile Seals

Class 4 seals are intended for low temperature service with the same type of fluids as used with Class 1 seals within the temperature range of $-50^{\circ} \mathrm{F}\left(-46^{\circ} \mathrm{C}\right)$ to $+150^{\circ} \mathrm{F}\left(+66^{\circ} \mathrm{C}\right)$. Class 4 seals are nitrile seals. Lipseals will have leather, polymyte or PTFE back-up washers when required. O-rings will have nitrile back-up washers when required.
Note: Certain fluids may react adversely with Class 4 seals compared to Class 1 seals.

Class 5 Seals - Fluorocarbon Seals

Class 5 seals are intended for elevated temperature service. Note: In addition, Class 5 seals can be used with fluids listed below under Class 1 service. Class 5 seals can operate with a temperature range of $-10^{\circ} \mathrm{F}\left(-23^{\circ} \mathrm{C}\right)$ to $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$. Fluorocarbon seals may be operated to $+400^{\circ} \mathrm{F}\left(+204^{\circ} \mathrm{C}\right)$ with limited service life. For temperatures above $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$ the cylinder must be manufactured with non-studded piston rod thread and a pinned piston to rod connection. Class 5 seals are fluorocarbon seals. Lipseals will have PTFE back-up washers when required. O-rings will have fluorocarbon back-up when required.

Lipseal Pistons

Under most conditions lipseals provide the best all around service for pneumatic applications. Lipseals with a back-up washers are often used for hydraulic applications when virtually zero static leakage is required. Lipseals will function properly in these applications when used in conjunction with moderate hydraulic pressures.

Warning

The piston rod stud and the piston rod to piston threaded connections are secured with an anaerobic adhesive which is temperature sensitive. Cylinders specified with fluorocarbon seals are assembled with anaerobic adhesive having a maximum temperature rating of $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$. Cylinders specified with all other seal compounds are assembled with anaerobic adhesive have a maximum operating temperature rating $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$. These temperature limitations are necessary to prevent the possible loosening of the threaded connections. Cylinders originally manufactured with Class 1 seals (Nitrile) that will be exposed to ambient temperatures above $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$ must be modified for higher temperature service. Contact the factory immediately and arrange for the piston to rod and the stud to piston rod connections to be properly reassembled to withstand the higher temperature service.

Class No.	Typical Fluids	Temperature Range
1 Standard Nitrile	Air, Nitrogen Hydraulic Oil, Mil-H-5606 Oil	$-10^{\circ} \mathrm{F}\left(-23^{\circ} \mathrm{C}\right)$ to $+165^{\circ} \mathrm{F}\left(+74^{\circ} \mathrm{C}\right)$
4 Special (Nitrile) (At extra cost)	Low Temperature Air	$-50^{\circ} \mathrm{F}\left(-46^{\circ} \mathrm{C}\right)$ to $+150^{\circ} \mathrm{F}\left(+66^{\circ} \mathrm{C}\right)$
5 Optional (At extra cost) (Fluorocarbon Seals)	High Temperature	See above paragraph on Fluorocarbon seals for recommended temperature range.

Ports

Atlas Series A pneumatic cylinders are supplied with NPTF pipe thread ports. If specified on your order, extra ports can be provided on the sides of heads or caps that are not occupied by mountings or cushion valve.

Standard port location is position 1 as shown on line drawings in product catalog and Figure 1 below. Cushion adjustment needle and check valves are at position 2 (or 3), depending on mounting style. Heads or caps which do not have an integral mounting can be rotated and assembled with ports at 90° or 180° from standard position. Mounting styles on which head or cap can be rotated at no extra charge are shown in Table A below. To order, specify by position number. In such assemblies the cushion adjustment needle and check valve rotate accordingly since their relationship with port position does not change.

Figure 1

Head (Rod) End

Table A

Model	Port Position Available	
	Head End	Cap End
NM1, NM2, NM3, REF2, BEF2, REF, BEF, REF1, BEF1, TM3	$1,2,3$ or 4	$1,2,3$ or 4
TM2, PB2, SA	$1,2,3$ or 4	1 or 3
TM1	1 or 3	$1,2,3$ or 4
SL, FS	1	1

Ports can be supplied at positions other than those shown in Table A at an extra charge. To order, specify port position as shown in Figure 1.

International Ports

Other port configurations to meet international requirements are available at extra cost. Atlas Series A cylinders can be supplied, on request, with British standard taper port (BSPT). Such port has a taper of 1 in 16 measured on the diameter ($1 / 16^{\prime \prime}$ per inch). The thread form is Whitworth System, and size and number of threads per inch are as follows:

Table B
British Standard Pipe Threads

Nominal Pipe Size	No. Threads Per Inch	Pipe O.D.
$1 / 8$	28	.383
$1 / 4$	19	.518
$3 / 8$	19	.656
$1 / 2$	14	.825
$3 / 4$	14	1.041
1	11	1.309
$1^{1 / 4}$	11	1.650
$1^{1 / 1 / 2}$	11	1.882
2	11	2.347

British standard parallel internal threads are designated as BSPP and have the same thread form and number of threads per inch as the BSPT type and can be supplied, on request, at extra cost. Unless otherwise specified, the BSPP or BSPT port size supplied will be the same nominal pipe size as the NPTF port for a given bore size cylinder.

Metric ports can also be supplied to order at extra cost. Consult factory.

Oversize Ports

Oversize NPTF ports can be provided, at an extra charge. For ports one size larger than standard, welded port bosses which protrude from the side of the head or cap are supplied. For dimensions, see drawing below and table.

Oversize NPTF Port Boss Dimensions

Bore	$\begin{gathered} \text { EE } \\ \text { (NPTF) } \end{gathered}$	A (Dia.)	B	C	D	P
11/2	1/2	11/8	15/16	9/16	1/2	$2^{3 / 16}$
2	1/2	11/8	15/16	9/16	$1 / 2$	$2^{3 / 16}$
21/2	1/2	$11 / 8$	15/16	9/16	$1 / 2$	25/16
$3^{1 / 4}$	$3 / 4$	$1^{3 / 8}$	1	11/16	5/8	29/16
4	$3 / 4$	13/8	1	11/16	5/8	29/16
5	$3 / 4$	$1^{3 / 8}$	1	11/16	5/8	$2^{13 / 16}$
6	1	$1^{3 / 4}$	$1^{3 / 16}$	15/16	$3 / 4$	33/16
7-8	1	$1^{3 / 4}$	$1^{3 / 16}$	15/16	$3 / 4$	35/16
10	11/4	$2^{1 / 4}$	15/16	$1^{1 / 8}$	1	$41 / 4$
12	11/4	$2^{1 / 4}$	15/16	11/8	1	$4^{3 / 4}$
14	$1^{1 / 2}$	$2^{1 / 2}$	19/16	$1^{1 / 4}$	11/8	51/2

Heavy Duty Industrial Air Cylinders
Atlas Series A

Stroke Tolerance

Stroke length tolerances are required due to buildup of tolerances of piston, head, cap and cylinder body. Standard production stroke tolerances run $+1 / 33^{\prime \prime}$ to $-1 / 64$ " up to 20" stroke, $+1 / 32$ " to $-.20^{\prime \prime}$ for $21^{\prime \prime}$ to 60 " and $+1 / 32$ " to $-1 / 32^{\prime \prime}$ for greater than 60 " stroke. For closer tolerances on stroke length, it is necessary to specify the required tolerance plus the operating pressure
and temperature at which the cylinder will operate. Stroke tolerances smaller than .015 " are not generally practical due to elasticity of cylinders. If machine design requires such close tolerances, use of a stroke adjuster may achieve the desired result.

Cylinder Weights

The weights shown in Table A are for Atlas Series A and AL cylinders with various piston rod diameters. To determine the net weight of a cylinder, first select the proper basic weight for zero stroke, then calculate the weight of the cylinder stroke and add the result to the basic weight. For extra rod extension, use piston
rod weights per inch shown in Table B. Weights of cylinders with intermediate rods may be estimated from table below by taking the difference between the piston rod weights per inch and adding it to the standard rod diameter weight for the cylinder bore size involved.

Table A Cylinder Weights, in pounds, for Series A \& AL cylinders

Bore Size	Rod Dia.	Single Rod Cylinders Basic Wt. Zero Stroke		Add Per Inch of Stroke	Double Rod Cylinders Basic Wt. Zero Stroke		Add Per Inch of Stroke
		NM1, NM2, NM3, REF2, BEF2, REF, BEF, FS	REF1, BEF1, SL, TM1, TM2, PB2, TM3, SA		XNM1, XNM3, XREF2, XFS	$\begin{aligned} & \text { XREF2, XSL, } \\ & \text { XTM1, XTM3 } \\ & \hline \end{aligned}$	
11/2"	5/8"	3.7	4.3	. 3	4.2	4.8	. 6
	$1^{\prime \prime}$	4.5	5.1	. 4	5.8	6.7	. 8
$2 "$	5/8"	6.5	6.9	. 5	8.2	8.6	1.0
	$1{ }^{1 \prime}$	7.0	7.5	. 63	9.0	9.5	1.3
	$13 / 8 "$	8.5	8.9	. 8	11.2	11.6	1.6
2 1/2"	5/8"	9.0	9.7	. 6	11.4	12.1	1.2
	$1{ }^{\prime \prime}$	9.5	10.0	. 73	12.0	12.5	1.5
	$13 / 4{ }^{\prime \prime}$	13.2	13.6	1.1	19.8	20.5	2.2
$31 / 4 "$	1"	16.5	17.5	. 8	22.0	23.0	1.6
	$13 / 8 "$	17.0	18.0	1.0	22.5	23.5	2.0
	2"	27.0	28.0	1.4	43.0	44.0	2.8
$4 "$	1"	26.0	31.0	1.0	33.0	38.0	2.0
	$13 / 8 "$	26.5	31.5	1.2	33.5	38.5	2.5
	$21 / 2^{\prime \prime}$	36.0	42.0	2.0	53.0	58.0	4.0
5"	1"	39.0	46.0	1.1	48.0	55.0	2.2
	$13 / 8 "$	39.5	46.5	1.3	48.5	55.5	2.6
	2"	40.0	57.0	1.7	59.0	66.0	3.4
$6{ }^{\prime \prime}$	$13 / 8{ }^{\prime \prime}$	68.0	77.0	1.5	80.0	89.0	3.0
	$21 / 2^{\prime \prime}$	78.0	87.0	2.3	88.0	107.0	4.5
7"	$13 / 8^{\prime \prime}$	80.0	85.0	2.0	92.0	97.0	4.0
	$2 "$	82.0	87.0	3.5	96.0	101.0	7.0
8"	$13 / 8{ }^{\prime \prime}$	94.0	99.0	2.0	108.0	113.0	4.0
	$21 / 2^{\prime \prime}$	104.0	109.0	2.8	126.0	131.0	5.5
10"	$13 / 4{ }^{\prime \prime}$	182.0	188.0	2.5	178.0	184.0	5.0
	$21 / 2^{\prime \prime}$	190.0	196.0	3.1	193.0	199.0	6.5
12"	$2{ }^{\prime \prime}$	274.0	282.0	3.5	270.0	280.0	7.0
	$31 / 2^{\prime \prime}$	290.0	298.0	5.3	302.0	312.0	10.6
14"	$21 / 2^{\prime \prime}$	435.0	448.0	4.5	440.0	655.0	9.0
	$4{ }^{17}$	456.0	469.0	6.7	482.0	697.0	13.4

Table B

Rod Dia.	Piston Rod Wt. Per Inch	Rod Dia.	Piston Rod Wt. Per Inch	Rod Dia.	Piston Rod Wt. Per Inch
$5 / 8^{\prime \prime}$.09	$13 / 4^{\prime \prime}$.68	$3^{\prime \prime}$	
$1^{\prime \prime}$.22	$2^{\prime \prime}$.89	$3^{\prime \prime}$	2.00
$13 / 8^{\prime \prime}$.42	$21 / 2^{\prime \prime}$	1.40	$4^{\prime \prime}$	2.72

Stop Tubing

Stop tube is recommended to lengthen the distance between the bushing and piston to reduce bearing loads when the cylinder is fully extended. This is especially true of horizontally mounted and long stroke cylinders. Long stroke cylinders achieve additional stability through the use of a stop tube.

When specifying cylinders with long stroke and stop tube, be sure to call out the net stroke and the length of the stop tube. Machine design can be continued without delay by laying in a cylinder equivalent in length to the NET STROKE PLUS STOP TUBE LENGTH, which is referred to as GROSS STROKE.

Drawing A

Double piston design is supplied on air cylinders with cushion head end or both ends.

Drawing B

This design is supplied on all non-cushion cylinders.

Mounting Classes

Standard mountings for fluid power cylinders fall into three basic groups. The groups can be summarized as follows:
Group 1 Straight Line Force Transfer with fixed mounts which absorb force on cylinder centerline.
Group 2 Pivot Force Transfer. Pivot mountings permit a cylinder to change its alignment in one plane.
Group 3 Straight Line Force Transfer with fixed mounts which do not absorb force on cylinder centerline.
Because a cylinder's mounting directly affects the maximum pressure at which the cylinder can be used, the chart below should be helpful in selection of the proper mounting combination for your application. Stroke length, piston rod connection to load, extra piston rod length over standard, etc., should be considered for thrust loads. Alloy steel mounting bolts are recommended for all mounting styles, and thrust keys are recommended for Group 3.

Group 1 FIXED MOUNTS which absorb force on cylinder centerline.	
Heavy-Duty Service	Style NM2
For Thrust Loads	Style NM3
For Tension Loads	
Medium-Duty Service	Styles BEF1, BEF2
For Thrust Loads	Styles REF1, REF2
For Tension Loads	
Light-Duty Service	Style BEF2
For Thrust Loads	Style REF2
For Tension Loads	

Group 2 PIVOT MOUNTS which absorb force on cylinder centerline.

Piston Rod - Stroke Selection Chart

How to Use the Chart

The selection of a piston rod for thrust (push) conditions requires the following steps:

1. Determine the type of cylinder mounting style and rod end connection to be used. Then consult the chart below and find the "stroke factor" that corresponds to the conditions used.
2. Using this stroke factor, determine the "basic length" from the equation:

$$
\begin{aligned}
& \text { Basic } \\
& \text { Length }
\end{aligned}=\begin{aligned}
& \text { Actual } \\
& \text { Stroke }
\end{aligned} \times \begin{aligned}
& \text { Stroke } \\
& \text { Factor }
\end{aligned}
$$

The graph is prepared for standard rod extensions beyond the face of the gland retainers. For rod extensions greater than standard, add the increase to the stroke in arriving at the "basic length."
3 . Find the load imposed for the thrust application by multiplying the full bore area of the cylinder by the system pressure.
4. Enter the graph along the values of "basic length" and "thrust" as found above and note the point of intersection:
A) The correct piston rod size is read from the diagonally curved line labeled "Rod Diameter" next above the point of intersection.
B) The required length of stop tube is read from the right of the graph by following the shaded band in which the point of intersection lies.
C) If required length of stop tube is in the region labeled "consult factory," submit the following information for an individual analysis:

1) Cylinder mounting style.
2) Rod end connection and method of guiding load.
3) Bore, required stroke, length of rod extension (Dim. "LA") if greater than standard, and series of cylinder used.
4) Mounting position of cylinder. (Note: If at an angle or vertical, specify direction of piston rod.)
5) Operating pressure of cylinder if limited to less than standard pressure for cylinder selected.

| Recommended Mounting Styles for |
| :--- | :---: | :---: | :---: | :---: |
| Maximum Stroke and Thrust Loads |\quad| Rod End |
| :---: |
| Connection |

Cushion ratings for air cylinders only are described in Table B-7 and Graph B-3. To determine whether a cylinder will adequately stop a load without damage to the cylinder, the weight of the load (including the weight of the piston and the piston rod from Table B-6) and the maximum speed of the piston rod must first be determined. Once these two factors are known, the Kinetic Energy Graph may be used. Enter the graph at its base for the value of weight determined, and project vertically to the required speed value. The point of intersection of these two lines will be the cushion rating number required for the application.

To determine the total load to be moved, the weight of the piston and rod must be included.

Total Weight $=$ Weight of the piston and non-stroke rod length (Column 1) + weight of the rod per inch of stroke x the inches of stroke (Column 2) + the load to be moved.

Table B-6 — Weight

Bore Dia.	Column 1 Basic Wgt. (Lbs.) for Piston \& Non-Stroke Rod	Rod Dia.	Column 2 Basic Wgt. (Lbs.) for 1" Stroke
11/2	1.5	5/8	. 087
2	3.0	1	. 223
$2^{1 / 2}$	5.4	$1^{3 / 8}$. 421
$3^{1 / 4}$	8.3	$1^{3 / 4}$. 682
4	14.2	2	. 89
5	29	$2^{1 / 2}$	1.39
6	41	3	2.0
8	89	$31 / 2$	2.73
10	115	4	3.56
12	161		
14	207		

Example: A 3-1/4" bore cylinder, having a 1" diameter rod and $25^{\prime \prime}$ stroke; load to be moved is 85 lbs . Total load to be moved is then $8.3 \mathrm{lbs} .+.223 \mathrm{lbs} . / \mathrm{in} . \times 25 \mathrm{in} .+85 \mathrm{lbs}$. or a total of 99 lbs.

Graph B3 - Kinetic Energy - Air Cylinders

Air Cylinder Cushion Ratings / Requirements

Heavy Duty Industrial Air Cylinders
Atlas Series A

Now refer to Table B-7 and find the cushion ratings, using bore size and rod diameter of the cylinder selected. If a simple circuit is used, with no meter out or speed control, use the "no back pressure, Column A" values. If a meter out or speed control is to be used, use the back pressure column values, If the cushion rating found in Table B-7 (below) is greater than the number determined in Graph B-3, then

Table B-7 - Air Cylinder Cushion Ratings

Bore Diameter	Rod Diameter	Rating with No Back Pressure	Rating with Back Pressure
$11 / 2$	Cap End	12	17
	5/8	8	14
	1	3	8
2	Cap End	14	20
	5/8	12	18
	1	9	15
	13/8	6	11
$2^{1 / 2}$	Cap End	17	23
	5/8	14	20
	1	14	19
	13/8	12	18
	$1^{3 / 4}$	8	13
$3^{1 / 4}$	Cap End	21	26
	5/8	18	24
	13/8	17	23
	$13 / 4$	16	22
	2	13	19
4	Cap End	23	28
	1	20	27
	13/8	20	26
	$1^{3 / 4}$	19	25
	2	17	23
	21/2	17	22
5	Cap End	26	31
	1	23	28
	13/8	23	28
	$13 / 4$	22	28
	2	20	26
6	Cap End	26	31
	13/8	26	31
	$1^{3 / 4}$	26	31
	2	24	29
	21/2	24	29
7	Cap End	28	33
	$13 / 8$	28	33
	$13 / 4$	28	33
	2	26	31

Air Requirement per Inch of Cylinder Stroke

The amount of air required to operate a cylinder is determined from the volume of the cylinder and its cycle in strokes per minute. This may be determined by use of the following formulae which apply to a single-acting cylinder.

$$
V=\frac{3.1416 L D^{2}}{4} \quad C=\frac{f V}{1728}
$$

the cylinder will stop the load adequately. If the cushion rating in Table $\mathrm{B}-7$ is smaller than the number found in Graph B-3, then a larger bore cylinder should be used. In those applications where back pressures exist in the exhaust lines, it is possible to exceed the cushion ratings shown in Table B-7. In these cases, consult the factory and advise the amount of back pressure.

Bore Diameter	Rod Diameter	Rating with No Back Pressure	Rating with Back Pressure
8	Cap End	29	35
	$1^{3 / 8}$	29	35
	$1^{3 / 4}$	29	34
	2	27	33
	$2^{1 / 2}$	26	32
10	Cap End	33	39
	$1^{3 / 4}$	32	38
	2	31	37
	$2^{1 / 2}$	31	36
	3	30	36
12	Cap End	35	41
	2	33	39
	$2^{1 / 2}$	33	38
	3	33	38
	$3^{1 / 2}$	32	38
14	Cap End	38	43
	$2^{1 / 2}$	37	42
	3	36	42
	$3^{1 / 2}$	36	41
	4	36	41

Where: V = Cylinder volume, cu. in.
$L=$ Cylinder stroke length, in.
D = Internal diameter of cylinder in.
C = Air required, cfm
$f=$ Number of strokes per minute
The air requirements for double-acting cylinder is almost double that of a single-acting cylinder, except for the volume of the piston rod.

The air flow requirements of a cylinder in terms of cfm should not be confused with compressor ratings which are given in terms of free air. If compressor capacity is involved in the consideration of cylinder air requirements it will be necessary to convert cfm values to free air values. This relationship varies for different gauge pressures.
Thrust (lbs.) = Operating Pressure x Area of Cylinder Bore
Note: On the "out" stroke the air pressure is working on the entire piston area, but on the "in" stroke the air pressure works on the piston area less the rod area.
Graph B-4 and B-5 offer a simple means to select pneumatic components for dynamic cylinder applications. It is only necessary to know the force required, the desired speed and the pressure which can be maintained at the inlet to the F-R-L "Combo." The graphs assume average
conditions relative to air line sizes, system layout, friction, etc. At higher speeds, consider appropriate cushioning of cylinders.
The general procedure to follow when using these graphs is:

1. Select the appropriate graph depending upon the pressure which can be maintained to the system — Graph B-4 for 100 psig and Graph B-5 for 80 psig.
2. Determine appropriate cylinder bore. Values underneath the diagonal cylinder bore lines indicate the maximum recommended dynamic thrust developed while the cylinder is in motion. The data in the table at the bottom of each graph indicates available static force for applications in which clamping force is a prime consideration in determining cylinder bore.

Graph B-4 - This graph is determined by having 100 psig available under flowing conditions.

THIS GRAPH IS DETERMINED BY HAVING 100 PSIG AVAILABLE UNDER FLOWING CONDITIONS.

Table B-8 — Thrust Developed

Bore Size	$1 \frac{1}{2}$	2	$2^{1 / 2}$	$3^{1 / 4}$	4	5	6	8	10
Dynamic Thrust (lbs.)	88	155	240	410	620	980	1400	2500	3920
Static Thrust (lbs.)	177	314	491	830	1250	1960	2820	5020	7850

3. Read upward on appropriate rod speed line to intersection with diagonal cylinder bore line. Read right from intersection point to determine the required C_{V} of the valve and the speed controls. Both the valve and speed controls must have this C_{V}.
The following examples illustrate use of the graphs:
Example 1: Assume it is necessary to raise a 900 lb . load 24 inches in two seconds. With 100 psig maintained at the inlet to the F-R-L, use Graph B-4. The 5 -inch bore cylinder is capable of developing the required thrust while in motion. Since 24 inches in two seconds is equal to 60 fpm , read upward on the 60 fpm line to the intersection of the 5 -inch bore diagonal line. Reading to the right indicates that the required valve and speed controls must each have a C_{V} of over 1.9.

Heavy Duty Industrial Air Cylinders Atlas Series A

Graph B-5 - This graph is determined by having 80 psig available under flowing conditions.

THIS GRAPH IS DETERMINED BY HAVING

 80 PSIG AVAILABLE UNDER FLOWING CONDITIONS.

Table B-9 - Thrust Developed

Bore Size	$1^{1 / 2}$	2	$2^{1 / 2}$	$3^{1 / 4}$	4	5	6	8	10
Dynamic Thrust (Ibs.)	60	100	160	260	400	630	900	1600	2500
Static Thrust (lbs.)	141	251	393	663	1000	1570	2260	4010	6280

(23)

Heavy Duty Industrial Air Cylinders
Atlas Series A

Parts		Assemblies (Includes Symbol Numbers Shown)		
Symbol	Description	Symbol	Description	Lipseal Type Piston
1	Head, ported, non-cushioned	C1SA	Head, ported, cushioned	1, 69, 70, 71 \& 72
7	Cap, ported, non-cushioned	C7SA	Cap, ported, cushioned	7, 69, 70, 73 \& 74
14	Gland	62	Rod gland kit	14, 40, 41, 43 \& 45
15	Tube	-	-	-
17	Piston, lipseal type	-	-	-
18	Cushion sleeve, cushioned cylinder only	-	-	-
19	Tie rod	-	-	-
23	Tie rod nut	-	-	-
27	Retainer	-	-	-
34	Piston rod, single rod type, non-cushioned	34SA	Piston \& rod assembly, single rod type - non-cushioned	17, 34, 42 \& 44
35	Piston rod, single rod type, cushioned head end	35SA	Piston \& rod assembly, single rod type - cush. head end	17, 18, 35, 42 \& 44
36	Piston rod, single rod type, cushioned cap end	36SA	Piston \& rod assembly, single rod type - cush. cap end	17, 36, 42 \& 44
37	Piston rod, single rod type, cushioned both ends	37SA	Piston \& rod assembly, single rod type - cush. both ends	17, 18, 37, 42 \& 44
40	Rod wiper	-		-
41	Rod seal	-		-
42	Piston seal	-		-
43	Back-up washer, gland	-	Seal Kits	-
44	Back-up washer, piston	-		-
45	O-ring, gland to head seal	-		-
47	O-ring, cylinder tube end seal	-		-
69	O-ring, cushion adjustment \& check valve screw	-		-
70	Needle valve, cushion adjustment	-		-
71	Ball, check valve	-	Cushion	-
72	Plug screw, check valve	-	Kits	-
73	Cushion bushing, cap end floating check valve	-	See table	-
74	Retaining ring, floating cushion bushing	-	below.	-
121	Piston Wear Ring	-		-
122	Socket cap screws	-		-

Standard Design Cushion Hardware Kits

Cushion Hardware Kits*

Bore Size	Rod Dia.	For Head Assemblies	For Cap Assemblies
$11 / 2$	$5 / 8$	ACUKH518	ACUKC522
	1	ACUKH518M	
2	$5 / 8,1$	ACUKH518	ACUKC522
	$13 / 8$	ACUKH518M	
$21 / 2$	$5 / 8-13 / 8$	ACUKH518	ACUKC522
	$13 / 4$	ACUKH518M	
$31 / 4$	All	ACUKH519	ACUKC523
4	All	ACUKH519	ACUKC523
5	All	ACUKH519	ACUKC523
6	All	ACUKH521	ACUKC524
7	All	ACUKH521	ACUKC524
8	All	ACUKH521	ACUKC524
10	All	ACUKH521	ACUKC525
12	All	ACUKH521	ACUKC526
14	All	ACUKH521	ACUKC527

Micro-Adjust Cushion Hardware Kits*

Bore Size	Rod Dia.	For Head and Cap Assemblies
$11 / 2-21 / 2$	All	AMAKHC15
$31 / 4-14$	All	AMAKHC25

* Cushion kits contain fluorocarbon seals and are suitable for class 1 \& 5 service.

1½" through 14" Bore Sizes

Rod Dia.	Class 1 Nitrile		Class 5 Fluorocarbon		Gland Wrench	Spanner Wrench	Retainer Screw Torque Inch Lbs. (-0\%, $+5 \%$ tolerance)
	Rod Gland Kits (Contains: 1 Each Sym. \#14, 40, 41, 43 \& 45)	Rod Seal Kits (Contains: 1 Each Sym. \#40, 41, 43 \& 45)	Rod Gland Kits (Contains: 1 Each Sym. \#14, 40, 41, 43 \& 45)	Rod Seal Kits (Contains: 1 Each Sym. \#40, 41, 43 \& 45)			
5/8	BH06RA000	BH06SA000	VH06RA000	VH06SA000	Not Required	Not Required	15
1	BH10RA000	BH10SA000	VH10RA000	VH10SA000			15
$13 / 8$	BH13RA000	BH13SA000	VH13RA000	VH13SA000			60
$13 / 4$	BH17RA000	BH17SA000	VH17RA000	VH17SA000			120
2	BH20RA000	BH20SA000	VH20RA000	VH20SA000			120
$21 / 2$	BH25RA000	BH25SA000	VH25RA000	VH25SA000			120
3	BH30RA000	BH30SA000	VH30RA000	VH30SA000	0695960000	0116770000	240
$31 / 2$	BH35RA000	BH35SA000	VH35RA000	VH35SA000	0695970000	0116770000	240
4	BH40RA000	BH40SA000	VH40RA000	VH40SA000	0695980000	0116780000	240

Piston Seal Kits

Bore Size	Class 1 Nitrile	Class 5 Fluorocarbon	Tie Rod Nut Specification Foot Lbs.* ($-0 \%,+5 \%$ tolerance)	Bore Size	Class 1 Nitrile	Class 5 Fluorocarbon	Tie Rod Nut Specification Foot Lbs.* ($-0 \%,+5 \%$ tolerance)
	Piston Seal Kits (Contains: 2 Each Sym. \#42, 44, 47)	Piston Seal Kits (Contains: 2 Each Sym. \#42, 44, 47)			Piston Seal Kits (Contains: 2 Each Sym. \#42, 44, 47)	Piston Seal Kits (Contains: 2 Each Sym. \#42, 44, 47)	
$11 / 2$	BH00LA015	VH00LL015	5	6	BH00LA060	VH00LL060	60
2	BH00LA020	VH00LL020	11	7	BH00LA070	VH00LL070	90
$21 / 2$	BH00LA025	VH00LL025	11	8	BH00LA080	VH00LL080	110
$31 / 4$	BH00LA032	VH00LL032	25	10	BH00LA100	VH00LL100	150
4	BH00LA040	VH00LL040	25	12	BH00LA120	VH00LL120	172
5	BH00LA050	VH00LL050	60	14	BH00LA140	VH00LL140	275

*When assembling the cylinder, be sure to torque the tie rods evenly.

Standard Seals - Class 1 Service Kits are standard. In addition to standard seals, each kit includes the special composite components ready for installation. These seals are suitable for use when air is the operating medium.

The recommended operating temperature range for Class 1 seals is $-10^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$.

Series AL Seal Kits

Detail "B"
Bores 1 1/2"-7"

Detail "C" Bores 8"-14"

Rod Gland and Rod Seal Kits

AL Seal Kits for Class 1 Service

Rod Dia.	Rod Gland Kits (Contains: 1 Each Sym. \#14, 40, 41, $\& 45)$	Rod Seal Kits (Contains: 1 Each Sym. \#40, 41, \& 45)	Retainer Screw Torque Inch Lbs. $(-0 \%,+5 \%$ tolerance)
$5 / 8$	BH06RL000	BH06SL000	15
1	BH10RL000	BH10SL000	15
$13 / 8$	BH13RL000	BH13SL000	60
$13 / 4$	BH17RL000	BH17SL000	120
2	BH20RL000	BH20SL000	120
$21 / 2$	BH25RL000	BH25SL000	120
3	BH30RL000	BH30SL000	240
$31 / 2$	BH35RLO00	BH35SL000	240
4	BH40RL000	BH40SL000	240

Bore Size	Piston Seal Kits (Contains: 2 Each Sym. \#42 \& 47)	Tie Rod Nut Specification Foot Lbs. $(-0 \%,+5 \%$ tolerance $)$
$11 / 2$	BH0OLL015	5
2	BH0OLL020	11
$21 / 2$	BH0OLL025	11
$31 / 4$	BH0OLL032	25
4	BH0OLL040	25
5	BH00LL050	60
6	BH00LL060	60
7	BH00LL070	90
8	BH00LL080	110
10	BH00LL100	150
12	BH00LL120	172
14	BH00LL140	275

How to Order Series A Cylinders

Data Required On All Cylinder Orders

When ordering Series A cylinders, be sure to specify each of the following requirements:
(NOTE: - Duplicate cylinders can be ordered by giving the SERIAL NUMBER from the original cylinder. Factory records supply a quick, positive identification.)

1. Series Designation ("A")
2. Bore
3. Style Option (X for double rod or Y for duplex designs, blank otherwise)
4. Mounting Style

Specify your choice of mounting as shown and dimensioned in this catalog.
5. Piston Rod Diameter

Call out rod diameter. Standard (smallest) rod diameter will be furnished if not specified, unless stroke length makes the application questionable.
6. Piston Rod End Style

Call out the rod end style or specify dimensions if non-standard. Rod end style 1 will be furnished if not specified.
7. Cushions

Specify cushions if required and at which end, using the codes provided. If double rod end with only one end cushioned, be sure to clearly indicate which end.
8. Ports

NPTF is standard.
9. Seals

Nitrile piston seals, rod seal, Buna-N static seals and a wiper seal are all standard, for use with lubricated compressed air. Fluorocarbon and EPR can be specified, subject to application temperature range.
10. Stroke

Specify length required.
11. Special Options

Specify. Consult factory for questions.

NOTE: On double rod end cylinders, repeat rod size and specify rod end threads for each side.
For duplex cylinders, the entire model code for each cylinder should be included and indicated as "back to back" or "rod to rod." If replacing existing cylinder or ordering parts, include the serial number.

Style 4 Rod End

A style 4 rod end indicates a special rod end configuration. All special rod ends must be described by at least all three: KK; A; or W/WF specified with the rod fully retracted. A sketch or drawing should be submitted for rod ends requiring special machining such as snap ring grooves,

Service Policy

When cylinders are returned to the factory for repairs, it is standard policy for Atlas Cylinders to make such part replacements as will put the cylinder in as good as new condition. Should the condition of the returned cylinder be such that expenses for repair exceed the cost of a new one, you will be notified.
keyways, tapers, multiple diameters, etc. It is good design practice to have this machining done on a diameter at least 0.065 inches smaller than the piston rod diameter. This allows the piston rod to have a chamfer preventing rod seal damage during assembly or maintenance.

Certified Dimensions

Atlas Cylinders guarantees that all cylinders ordered from this catalog will be built to dimensions shown. All dimensions are certified to be correct, and thus it is not necessary to request certified drawings.

Series A Ordering Guide

* AL - Non-Lube Air Cylinder - see pages 39-41.

AW - Wood Products Series A Cylinder - see below.
S^{*} The letter S refers to special options or modifications that deviate from the standard product offering. Non-standard modifications and options not identified in the cylinder model number should be added in the notes when placing an order.

Modifications which can be placed under the designator " S " are as follows:

- End-of-Stroke Switches
- EPS-6, EPS-7, CLS-1, CLS-4 Styles
(See bulletin AC0840-B11)
- MagnaSwitch
- Piston Bumper Seals
$\left(1^{1 / 22^{\prime \prime}}-5^{\prime \prime}\right.$ Bores except $1^{1 / 2 "} \times 1,2^{\prime \prime} \times 1^{3 / 8}$, $3^{1 / 4 "} \times 2^{\prime \prime}, 4^{\prime \prime} \times 1^{3 / 4} 4^{\prime \prime}$ and $4^{\prime \prime} \times 2^{\prime \prime}$)

Note: The standard \#1 port location is at the top of the cylinder, and the standard cushion adjustment screw is in position \#2 when facing the rod end of the cylinder. If multiple ports are required, the last character of the part number should be " S ", indicating modified and the desired port location specified in the notes.

Cylinders for Wood Products Applications

Atlas Cylinders has built a solid reputation in the Wood Products Industry where demanding applications require a cylinder that is up to the task. That is why we offer an option that makes Atlas Cylinders the most dependable and long lasting actuator for Timber Industry service.

* Set screw piston to piston rod

Two axial screws in the piston-to-rod joint prevent the assembly from unthreading.

* Polyurethane rod wiperseal

Durable rod wiperseal cleans the rod on the extend stroke and wipes the rod on the return stroke.

* Full square tie rod retained gland (up to 6" bore) More secure gland retention to resist impact loading at cylinder head end.

To order your Atlas cylinder with the Wood Products options specify
'AW' Series in the model code. See the example below.

AW	$\mathbf{0 3 2}$	PB2	0137	$\mathbf{1}$	BE	N	BH	10.000
Series	Bore	Mount	Rod	Rod End	Cushions	Ports	Seals	Stroke

Safety Guide for Selecting and Using Hydraulic, Pneumatic Cylinders and Their Accessories

WARNING: $\$ FAILURE OF THE CYLINDER, ITS PARTS, ITS MOUNTING, ITS CONNECTIONS TO OTHER OBJECTS, OR ITS CONTROLS CAN RESULT IN:

- Unanticipated or uncontrolled movement of the cylinder or objects connected to it.
- Falling of the cylinder or objects held up by it.
- Fluid escaping from the cylinder, potentially at high velocity.

THESE EVENTS COULD CAUSE DEATH OR PERSONAL INJURY BY, FOR EXAMPLE, PERSONS FALLING FROM HIGH LOCATIONS, BEING CRUSHED OR STRUCK BY HEAVY OR FAST MOVING OBJECTS, BEING PUSHED INTO DANGEROUS EQUIPMENT OR SITUATIONS, OR SLIPPING ON ESCAPED FLUID.

Before selecting or using Parker Hannifin Corporation (the Company) cylinders or related accessories, it is important that you read, understand and follow the following safety information. Training is advised before selecting and using the Company's products.

1.0 General Instructions

1.1 Scope - This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) cylinder products. This safety guide is a supplement to and is to be used with the specific Company publications for the specific cylinder products that are being considered for use.
1.2 Fail Safe - Cylinder products can and do fail without warning for many reasons. All systems and equipment should be designed in a fail-safe mode so that if the failure of a cylinder product occurs people and property won't be endangered.
1.3 Distribution - Provide a free copy of this safety guide to each person responsible for selecting or using cylinder products. Do not select or use the Company's cylinders without thoroughly reading and understanding this safety guide as well as the specific Company publications for the products considered or selected.
1.4 User Responsibility - Due to very wide variety of cylinder applications and cylinder operating conditions, the Company does not warrant that any particular cylinder is suitable for any specific application. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The hydraulic and pneumatic cylinders outlined in this catalog are designed to the Company's design guidelines and do not necessarily meet the design guideline of other agencies such as American Bureau of Shipping, ASME Pressure Vessel Code etc. The user, through its own analysis and testing, is solely responsible for:

- Making the final selection of the cylinders and related accessories.
- Determining if the cylinders are required to meet specific design requirements as required by the Agency(s) or industry standards covering the design of the user's equipment.
- Assuring that the user's requirements are met, OSHA requirements are met, and safety guidelines from the applicable agencies such as but not limited to ANSI are followed and that the use presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the cylinders are used.
1.5 Additional Questions - Call the appropriate Company technical service department if you have any questions or require any additional information. See the Company publication for the product being considered or used, or call 1-847-298-2400, or go to www.parker.com, for telephone numbers of the appropriate technical service department.
2.0 Cylinder and Accessories Selection
2.1 Seals - Part of the process of selecting a cylinder is the selection of seal compounds. Before making this selection, consult the "seal information page(s)" of the publication for the series of cylinders of interest.
The application of cylinders may allow fluids such as cutting fluids, wash down fluids etc. to come in contact with the external area of the cylinder. These fluids may attack the piston rod wiper and or the primary seal and must be taken into account when selecting and specifying seal compounds.
Dynamic seals will wear. The rate of wear will depend on many operating factors. Wear can be rapid if a cylinder is mis-aligned or if the cylinder has been improperly serviced. The user must take seal wear into consideration in the application of cylinders.
2.2 Piston Rods - Possible consequences of piston rod failure or separation of the piston rod from the piston include, but are not limited to are:
- Piston rod and or attached load thrown off at high speed.
- High velocity fluid discharge.
- Piston rod extending when pressure is applied in the piston retract mode.
Piston rods or machine members attached to the piston rod may move suddenly and without warning as a consequence of other conditions occurring to the machine such as, but not limited to:
- Unexpected detachment of the machine member from the piston rod.
- Failure of the pressurized fluid delivery system (hoses, fittings, valves, pumps, compressors) which maintain cylinder position.
- Catastrophic cylinder seal failure leading to sudden loss of pressurized fluid.
- Failure of the machine control system.

Follow the recommendations of the "Piston Rod Selection Chart and Data" in the publication for the series of cylinders of interest. The suggested piston rod diameter in these charts must be followed in order to avoid piston rod buckling.
Piston rods are not normally designed to absorb bending moments or loads which are perpendicular to the axis of piston rod motion. These additional loads can cause the piston rod to fail. If these types of additional loads are expected to be imposed on the piston rod, their magnitude should be made known to our engineering department.
The cylinder user should always make sure that the piston rod is securely attached to the machine member.
On occasion cylinders are ordered with double rods (a piston rod extended from both ends of the cylinder). In some cases a stop is threaded on to one of the piston rods and used as an external stroke adjuster. On occasions spacers are attached to the machine member connected to the piston rod and also used as a stroke adjuster. In both cases the stops will create a pinch point and the user should consider appropriate use of guards. If these external stops are not perpendicular to the mating contact surface, or if debris is trapped between the contact surfaces, a bending moment will be placed on the piston rod, which can lead to piston rod failure. An external stop will also negate the effect of cushioning and will subject the piston rod to impact loading. Those two (2) conditions can cause piston rod failure. Internal stroke adjusters are available with and without cushions. The use of external stroke adjusters should be reviewed with our engineering department.
The piston rod to piston and the stud to piston rod threaded connections are secured with an anaerobic adhesive. The strength of the adhesive decreases with increasing temperature. Cylinders which can be exposed to temperatures above $+250^{\circ} \mathrm{F}\left(+121^{\circ} \mathrm{C}\right)$ are to be ordered with a non studded piston rod and a pinned piston to rod joint.
2.3 Cushions - Cushions should be considered for cylinder applications when the piston velocity is expected to be over 4 inches/second. Cylinder cushions are normally designed to absorb the energy of a linear applied load. A rotating mass has considerably more energy than the same mass moving in a linear mode. Cushioning for a rotating mass application should be reviewed by our engineering department.
2.4 Cylinder Mountings - Some cylinder mounting configurations may have certain limitations such as but not limited to minimum stroke for side or foot mounting cylinders or pressure de-ratings for certain mounts. Carefully review the catalog for these types of restrictions.
Always mount cylinders using the largest possible high tensile alloy steel socket head cap screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.
2.5 Port Fittings - Hydraulic cylinders applied with meter out or deceleration circuits are subject to intensified pressure at piston rod end.
The rod end pressure is approximately equal to:

$$
\frac{\text { operating pressure } x \text { effective cap end area }}{\text { effective rod end piston area }}
$$

Contact your connector supplier for the pressure rating of individual connectors.
3.0 Cylinder and Accessories Installation and Mounting
3.1 Installation
3.1.1 - Cleanliness is an important consideration, and cylinders are shipped with the ports plugged to protect them from contaminants entering the ports. These plugs should not be removed until the piping is to be installed. Before making the connection to the cylinder ports, piping should be thoroughly cleaned to remove all chips or burrs which might have resulted from threading or flaring operations.
3.1.2 - Cylinders operating in an environment where air drying materials are present such as fast-drying chemicals, paint, or weld splatter, or other hazardous conditions such as excessive heat, should have shields installed to prevent damage to the piston rod and piston rod seals.
3.1.3 - Proper alignment of the cylinder piston rod and its mating component on the machine should be checked in both the extended and retracted positions. Improper alignment will result in excessive rod gland and/or cylinder bore wear. On fixed mounting cylinders attaching the piston rod while the rod is retracted will help in achieving proper alignment.
3.1.4 - Sometimes it may be necessary to rotate the piston rod in order to thread the piston rod into the machine member. This operation must always be done with zero pressure being applied to either side of the piston. Failure to follow this procedure may result in loosening the piston to rod-threaded connection. In some rare cases the turning of the piston rod may rotate a threaded piston rod gland and loosen it from the cylinder head. Confirm that this condition is not occurring. If it does, re-tighten the piston rod gland firmly against the cylinder head.
For double rod cylinders it is also important that when attaching or detaching the piston rod from the machine member that the torque be applied to the piston rod end of the cylinder that is directly attaching to the machine member with the opposite end unrestrained. If the design of the machine is such that only the rod end of the cylinder opposite to where the rod attaches to the machine member can be rotated, consult the factory for further instructions.
3.2 Mounting Recommendations
3.2.1 - Always mount cylinders using the largest possible high tensile alloy steel socket head screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.
3.2.2 - Side-Mounted Cylinders - In addition to the mounting bolts, cylinders of this type should be equipped with thrust keys or dowel pins located so as to resist the major load.
3.2.3 - Tie Rod Mounting - Cylinders with tie rod mountings are recommended for applications where mounting space is limited. The standard tie rod extension is shown as BB in dimension tables. Longer or shorter extensions can be supplied. Nuts used for this mounting style should be torqued to the same value as the tie rods for that bore size.
3.2.4 - Flange Mount Cylinders - The controlled diameter of the rod gland extension on head end flange mount cylinders can be used as a pilot to locate the cylinders in relation to the machine. After alignment has been obtained, the flanges may be drilled for pins or dowels to prevent shifting.
3.2.5 - Trunnion Mountings - Cylinders require lubricated bearing blocks with minimum bearing clearances. Bearing blocks should be carefully aligned and rigidly mounted so the trunnions will not be subjected to bending moments. The rod end should also be pivoted with the pivot pin in line and parallel to axis of the trunnion pins.
3.2.6 - Clevis Mountings - Cylinders should be pivoted at both ends with centerline of pins parallel to each other. After cylinder is mounted, be sure to check to assure that the cylinder is free to swing through its working arc without interference from other machine parts.
4.0 Cylinder and Accessories Maintenance, Troubleshooting and Replacement
4.1 Storage - At times cylinders are delivered before a customer is ready to install them and must be stored for a period of time. When storage is required the following procedures are recommended.
4.1.1 - Store the cylinders in an indoor area which has a dry, clean and noncorrosive atmosphere. Take care to protect the cylinder from both internal corrosion and external damage.
4.1.2 - Whenever possible cylinders should be stored in a vertical position (piston rod up). This will minimize corrosion due to possible condensation which could occur inside the cylinder. This will also minimize seal damage.
4.1.3 - Port protector plugs should be left in the cylinder until the time of installation.
4.1.4 - If a cylinder is stored full of hydraulic fluid, expansion of the fluid due to temperature changes must be considered. Installing a check valve with free flow out of the cylinder is one method.
4.1.5 - When cylinders are mounted on equipment that is stored outside for extended periods, exposed unpainted surfaces, e.g. piston rod, must be coated with a rust-inhibiting compound to prevent corrosion.

4.2 Cylinder Trouble Shooting

4.2.1 - External Leakage

4.2.1.1 - Rod seal leakage can generally be traced to worn or damaged seals. Examine the piston rod for dents, gouges or score marks, and replace piston rod if surface is rough.

Rod seal leakage could also be traced to gland wear. If clearance is excessive, replace rod bushing and seal. Rod seal leakage can also be traced to seal deterioration. If seals are soft or gummy or brittle, check compatibility of seal material with lubricant used if air cylinder, or operating fluid if hydraulic cylinder. Replace with seal material, which is compatible with these fluids. If the seals are hard or have lost elasticity, it is usually due to exposure to temperatures in excess of $165^{\circ} \mathrm{F}$. $\left(+74^{\circ} \mathrm{C}\right)$. Shield the cylinder from the heat source to limit temperature to $350^{\circ} \mathrm{F}$. $\left(+177^{\circ} \mathrm{C}\right.$.) and replace with fluorocarbon seals.
4.2.1.2 - Cylinder body seal leak can generally be traced to loose tie rods. Torque the tie rods to manufacturer's recommendation for that bore size.
Excessive pressure can also result in cylinder body seal leak. Determine maximum pressure to rated limits. Replace seals and retorque tie rods as in paragraph above. Excessive pressure can also result in cylinder body seal leak. Determine if the pressure rating of the cylinder has been exceeded. If so, bring the operating pressure down to the rating of the cylinder and have the tie rods replaced.
Pinched or extruded cylinder body seal will also result in a leak. Replace cylinder body seal and retorque as in paragraph above.
Cylinder body seal leakage due to loss of radial squeeze which shows up in the form of flat spots or due to wear on the O.D. or I.D.

- Either of these are symptoms of normal wear due to high cycle
rate or length of service. Replace seals as per paragraph above.

4.2.2 - Internal Leakage

4.2.2.1 - Piston seal leak (by-pass) 1 to 3 cubic inches per minute leakage is considered normal for piston ring construction. Virtually no static leak with lipseal type seals on piston should be expected. Piston seal wear is a usual cause of piston seal leakage. Replace seals as required.
4.2.2.2 - With lipseal type piston seals excessive back pressure due to over-adjustment of speed control valves could be a direct cause of rapid seal wear. Contamination in a hydraulic system can result in a scored cylinder bore, resulting in rapid seal wear. In either case, replace piston seals as required.
4.2.2.3 - What appears to be piston seal leak, evidenced by the fact that the cylinder drifts, is not always traceable to the piston. To make sure, it is suggested that one side of the cylinder piston be pressurized and the fluid line at the opposite port be disconnected. Observe leakage. If none is evident, seek the cause of cylinder drift in other component parts in the circuit.

4.2.3 - Cylinder Fails to Move the Load

4.2.3.1 - Pneumatic or hydraulic pressure is too low. Check the pressure at the cylinder to make sure it is to circuit requirements.
4.2.3.2 - Piston Seal Leak - Operate the valve to cycle the cylinder and observe fluid flow at valve exhaust ports at end of cylinder stroke. Replace piston seals if flow is excessive.
4.2.3.3 - Cylinder is undersized for the load - Replace cylinder with one of a larger bore size.

4.3 Erratic or Chatter Operation

4.3.1 - Excessive friction at rod gland or piston bearing due to load misalignment - Correct cylinder-to-load alignment.
4.3.2 - Cylinder sized too close to load requirements - Reduce load or install larger cylinder.
4.3.3 - Erratic operation could be traced to the difference between static and kinetic friction. Install speed control valves to provide a back pressure to control the stroke.
4.4 Cylinder Modifications, Repairs, or Failed Component - Cylinders as shipped from the factory are not to be disassembled and or modified. If cylinders require modifications, these modifications must be done at company locations or by the Company's certified facilities. The Industrial Cylinder Division Engineering Department must be notified in the event of a mechanical fracture or permanent deformation of any cylinder component (excluding seals). This includes a broken piston rod, tie rod, mounting accessory or any other cylinder component. The notification should include all operation and application details. This information will be used to provide an engineered repair that will prevent recurrence of the failure.
It is allowed to disassemble cylinders for the purpose of replacing seals or seal assemblies. However, this work must be done by strictly following all the instructions provided with the seal kits.

NOTES

Offer of Sale

The items described in this document and other documents and descriptions provided by Parker Hannifin Corporation, Hydraulics Group, and its authorized distributors ("Seller") are hereby offered for sale at prices to be established by Seller. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any item described in its document, when communicated to Seller verbally, or in writing, shall constitute acceptance of this offer. All goods or work described will be referred to as "Products".

1. Terms and Conditions. Seller's willingness to offer Products, or accept an order for Products, to or from Buyer is expressly conditioned on Buyer's assent to these Terms and Conditions and to the terms and conditions found on-line at www.parker.com/saleterms/. Seller objects to any contrary or additional term or condition of Buyer's order or any other document issued by Buyer.
2. Price Adjustments; Payments. Prices stated on the reverse side or preceding pages of this document are valid for 30 days. After 30 days, Seller may change prices to reflect any increase in its costs resulting from state, federal or local legislation, price increases from its suppliers, or any change in the rate, charge, or classification of any carrier. The prices stated on the reverse or preceding pages of this document do not include any sales, use, or other taxes unless so stated specifically. Unless otherwise specified by Seller, all prices are F.O.B. Seller's facility, and payment is due 30 days from the date of invoice. After 30 days, Buyer shall pay interest on any unpaid invoices at the rate of 1.5% per month or the maximum allowable rate under applicable law
3. Delivery Dates; Title and Risk; Shipment. All delivery dates are approximate and Seller shall not be responsible for any damages resulting from any delay. Regardless of the manner of shipment, title to any products and risk of loss or damage shall pass to Buyer upon tender to the carrier at Seller's facility (i.e., when it's on the truck, it's yours). Unless otherwise stated, Seller may exercise its judgment in choosing the carrier and means of delivery. No deferment of shipment at Buyers' request beyond the respective dates indicated will be made except on terms that will indemnify, defend and hold Seller harmless against all loss and additional expense. Buyer shall be responsible for any additional shipping charges incurred by Seller due to Buyer's changes in shipping, product specifications or in accordance with Section 13, herein.
4. Warranty. Seller warrants that the Products sold hereunder shall be free from defects in material or workmanship for a period of eighteen months from the date of delivery to Buyer. The prices charged for Seller's products are based upon the exclusive limited warranty stated above, and upon the following disclaimer DISCLAIMER OF WARRANTY: THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO PRODUCTS PROVIDED HEREUNDER. SELLER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
5. Claims; Commencement of Actions. Buyer shall promptly inspect all Products upon delivery. No claims for shortages will be allowed unless reported to the Seller within 10 days of delivery. No other claims against Seller will be allowed unless asserted in writing within 60 days after delivery or, in the case of an alleged breach of warranty, within 30 days after the date within the warranty period on which the defect is or should have been discovered by Buyer. Any action based upon breach of this agreement or upon any other claim arising out of this sale (other than an action by Seller for any amount due to Seller from Buyer) must be commenced within thirteen months from the date of tender of delivery by Seller or, for a cause of action based upon an alleged breach of warranty, within thirteen months from the date within the warranty period on which the defect is or should have been discovered by Buyer.
6. LIMITATION OF LIABILITY. UPON NOTIFICATION, SELLER WILL, AT ITS OPTION, REPAIR OR REPLACE A DEFECTIVE PRODUCT, OR REFUUN THE PURCHASE PRICE. IN NO EVENT SHALL SELLER BE LIABLE TO BUYER FOR PURCHASE PRICE. IN NO EVENT SHALL SELLER BE LTABLE TO BUYER FOR
ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTAL DAMAGES ARISING OUT OF, OR AS THE RESULT OF, THE SALE, DELIVERY, NON-DELIVERY, SERVICING, USE OR LOSS OF USE OF THE PRODUCTS OR ANY PART THEREOF OR FOR ANY CHARGES OR EXPENSES OF ANY NATURE INCURRED WITHOUT SELLER'S WRITTEN CONSENT, EVEN IF SELLER HAS BEEN NEGLIGENT, WHETHER IN CONTRACT, TORT OR OTHER LEGAL THEORY. IN NO EVENT WHETHER IN CONTRACT, TORT OR OTHER LEGAL THEORY. IN NO EVENT
SHALL SELLER'S LIABILITY UNDER ANY CLAIM MADE BY BUYER EXCEED THE PURCHASE PRICE OF THE PRODUCTS.
7. Contingencies. Seller shall not be liable for any default or delay in performance if caused by circumstances beyond the reasonable control of Seller.
8. User Responsibility. The user, through its own analysis and testing, is solely responsible for making the final selection of the system and Product and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application and follow applicable industry standards and Product information. If Seller provides Product or system options, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the Products or systems.
9. Loss to Buyer's Property. Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.
10. Special Tooling. A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns, acquired to manufacture Products. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the Products, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.
11. Buyer's Obligation; Rights of Seller. To secure payment of all sums due or otherwise, Seller shall retain a security interest in the goods delivered and this agreement shall be deemed a Security Agreement under the Uniform Commercial Code. Buyer authorizes Seller as its attorney to execute and file on Buyer's behalf all documents Seller deems necessary to perfect its security interest. Seller shall have a security interest in, and lien upon, any property of Buyer in Seller's possession as security for the payment of any amounts owed to Seller by Buyer.
12. Improper Use and Indemnity. Buyer shall indemnify, defend, and hold Seller harmless from any claim, liability, damages, lawsuits, and costs (including attorney fees), whether for personal injury, property damage, patent, trademark or copyright infringement or any other claim, brought by or incurred by Buyer, Buyer's employees, or any other person, arising out of: (a) improper selection, improper application or other misuse of Products purchased by Buyer from Seller; (b) any act or omission, negligent or otherwise, of Buyer; (c) Seller's use of patterns, plans, drawings, or specifications furnished by Buyer to manufacture Product; or (d) Buyer's failure to comply with these terms and conditions. Seller shall not indemnify Buyer under any circumstance except as otherwise provided.
13. Cancellations and Changes. Orders shall not be subject to cancellation or change by Buyer for any reason, except with Seller's written consent and upon terms that will indemnify, defend and hold Seller harmless against all direct, incidental and consequential loss or damage. Seller may change product features, specifications, designs and availability with notice to Buyer.
14. Limitation on Assignment. Buyer may not assign its rights or obligations under this agreement without the prior written consent of Seller.
15. Entire Agreement. This agreement contains the entire agreement between the Buyer and Seller and constitutes the final, complete and exclusive expression of the terms of the agreement. All prior or contemporaneous written or oral agreements or negotiations with respect to the subject matter are herein merged.
16. Waiver and Severability. Failure to enforce any provision of this agreement will not waive that provision nor will any such failure prejudice Seller's right to enforce that provision in the future. Invalidation of any provision of this agreement by legislation or other rule of law shall not invalidate any other provision herein. The remaining provisions of this agreement will remain in full force and effect.
17. Termination. This agreement may be terminated by Seller for any reason and at any time by giving Buyer thirty (30) days written notice of termination. In addition, Seller may by written notice immediately terminate this agreement for the following: (a) Buyer commits a breach of any provision of this agreement (b) the appointment of a trustee, receiver or custodian for all or any part of Buyer's property (c) the filing of a petition for relief in bankruptcy of the other Party on its own behalf, or by a third party (d) an assignment for the benefit of creditors, or (e) the dissolution or liquidation of the Buyer.
18. Governing Law. This agreement and the sale and delivery of all Products hereunder shall be deemed to have taken place in and shall be governed and construed in accordance with the laws of the State of Ohio, as applicable to contracts executed and wholly performed therein and without regard to conflicts of laws principles. Buyer irrevocably agrees and consents to the exclusive jurisdiction and venue of the courts of Cuyahoga County, Ohio with respect to any dispute, controversy or claim arising out of or relating to this agreement. Disputes between the parties shall not be settled by arbitration unless, after a dispute has arisen, both parties expressly agree in writing to arbitrate the dispute.
19. Indemnity for Infringement of Intellectual Property Rights. Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Section. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets ("Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that a Product sold pursuant to this Agreement infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If a Product is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using the Product, replace or modify the Product so as to make it noninfringing, or offer to accept return of the Product and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to Products delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any Product sold hereunder. The foregoing provisions of this Section shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.
20. Taxes. Unless otherwise indicated, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of Products.
21. Equal Opportunity Clause. For the performance of government contracts and where dollar value of the Products exceed $\$ 10,000$, the equal employment opportunity clauses in Executive Order 11246, VEVRAA, and 41 C.F.R. §§ 60-1.4(a), 60-741.5(a), and 60-250.4, are hereby incorporated.

Scan this QR code with your smart phone or mobile device to download the catalog. Look for QR code readers at an "App Store".

Parker Hannifin Corporation
Atlas Cylinders
500 South Wolf Road
Des Plaines, IL 60016
phone (847) 298-2400
fax (800) 892-1008
www.AtlasCylinders.com

[^0]: *Head end cushions for rod diameters not listed have cushion lengths with the limits shown.

[^1]: Note: Screws are not included with split coupler or weld plate.

