

Effective: June, 2021

Document Number: 88-028698-01E

Programmer’s Guide
ACR Series Controllers

USER INFORMATION

2 ACR Programmer’s Guide

User Information

Warning: ACR7000 and IPA products are used to control electrical and

mechanical components of motion control systems. You should

test your motion system for safety under all potential

conditions. Failure to do so can result in damage to equipment

and/or serious injury to personnel.

Warning: Risk of damage and/or personal injury.

The ACR7000 and IPA described in this guide contain no user-

serviceable parts. Attempting to open the case of any unit, or to

replace any internal component, may result in damage to the

unit and/or personal injury. This may also void the warranty.

ACR7000 and IPA products and the information in this guide are the proprietary property of Parker Hannifin

Corporation or its licensers, and may not be copied, disclosed, or used for any purpose not expressly authorized

by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this guide,

and software and hardware mentioned therein, at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any

kind or nature whatsoever, including but not limited to lost profits arising from or in any way connected with the

use of the equipment or this guide.

© 2021 Parker Hannifin Corporation

All Rights Reserved

Contact Information for Technical Assistance

Contact your local automation technology center (ATC) or distributor.

North America and Asia

Parker Hannifin

Electronic Motion and Controls Division

5500 Business Park Drive

Rohnert Park, CA 94928

Telephone: (707) 584-7558

Fax: (707) 584-8029

Email: emn.service@support.parker.com

Internet: http://www.parkermotion.com

mailto:emn.service@support.parker.com
http://www.parker.com/

 IMPORTANT SAFETY INFORMATION

 ACR Programmer’s Guide 3

Important Safety Information

It is important that motion control equipment is installed and operated in such a way that all applicable safety

requirements are met. It is your responsibility as an installer to ensure that you identify the relevant safety

standards and comply with them; failure to do so may result in damage to equipment and personal injury. In

particular, you should study the contents of this user guide carefully before installing or operating the equipment.

The installation, set up, test and maintenance procedures given in this user guide should only be carried out by

competent personnel trained in the installation of electronic equipment. Such personnel should be aware of the

potential electrical and mechanical hazards associated with mains-powered motion control equipment—please see

the safety warnings below. The individual or group having overall responsibility for this equipment must ensure

that operators are adequately trained.

Under no circumstances will the suppliers of the equipment be liable for any incidental, consequential or special

damages of any kind whatsoever, including but not limited to lost profits arising from or in any way connected with

the use of the equipment or this guide.

Warning: High-performance motion control equipment is capable of

producing rapid movement and very high forces. Unexpected

motion may occur especially during the development of

controller programs. KEEP WELL CLEAR of any machinery

driven by stepper or servo motors. Never touch any part of the

equipment while it is in operation.

This product is sold as a motion control component to be

installed in a complete system using good engineering practice.

Care must be taken to ensure that the product is installed and

used in a safe manner according to local safety laws and

regulations. In particular, the product must be positioned such

that no part is accessible while power may be applied.

This and other information from Parker Hannifin Corporation,

its subsidiaries, and authorized distributors provides product or

system options for further investigation by users having

technical expertise. Before you select or use any product or

system, it is important that you analyze all aspects of your

application and review the information concerning the product

in the current product catalog. The user, through its own

analysis and testing, is solely responsible for making the final

selection of the system and components and assuring that all

performance, safety, and warning requirements of the

application are met.

If the equipment is used in any manner that does not conform to

the instructions given in this user guide, then the protection

provided by the equipment may be impaired.

The information in this user guide, including any apparatus, methods, techniques, and concepts described herein,

are the proprietary property of Parker Hannifin or its licensors, and may not be copied disclosed, or used for any

purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to modify equipment

and user guides without prior notice. No part of this user guide may be reproduced in any form without the prior

consent of Parker Hannifin.

CONTENTS

4 ACR Programmer’s Guide

Contents

User Information ... 2

Contact Information for Technical Assistance .. 2

Important Safety Information .. 3

Contents ... 4

Change Summary .. 20

Revision E Changes ... 20

Before We Begin ... 21

Assumptions of Technical Experience .. 21

Before You Begin ... 22

CHAPTER 1 Parker Motion Manager ... 23

Parker Motion Manager .. 24

Getting Started with PMM ... 25

Connection .. 26

Uploading a Project from the Controller to PMM .. 28

Procedure ... 28

Downloading a Project from PMM to the Controller .. 29

Procedure ... 29

Reference.. 31

Parker Motion Manager Parts ... 33

Menu ... 33

File Menu .. 34

Edit Menu.. 34

Tools Menu .. 34

Window Menu .. 35

 CONTENTS

 ACR Programmer’s Guide 5

Help Menu .. 35

Tools → Options.. 36

Toolbar ... 36

Explorer ... 38

Connection .. 38

Configuration Wizard .. 38

Program Editor .. 38

Terminal Emulator.. 38

Tools .. 39

Status Panels .. 39

Scopes ... 39

Message Window ... 39

Watch Windows .. 40

Configuration Wizard ... 43

Axes .. 43

Master (Units) ... 45

Drive/Motor .. 46

Drive/Motor (ACR7xT Stepper) ... 46

Motor Settings ... 46

Drive Settings .. 46

Drive/Motor (ACR7xV Servo or IPA) .. 47

Drive/Motor (ACR7xC) ... 48

Feedback .. 49

Scaling ... 50

Specify Transmission .. 51

Specify Reducer(s) .. 51

CONTENTS

6 ACR Programmer’s Guide

Enter Scaling Factor ... 51

Fault ... 52

Hardware Limit Detection ... 52

Assign Digital Inputs for Specific Functions .. 52

Software Limit Detection ... 53

Maximum Position Error Detection .. 53

Position Maintenance Settings ... 53

Memory .. 54

Finish and System Code ... 55

Program Editor ... 56

Terminal Emulator ... 57

Prompts .. 57

Basic Terminal Operations .. 57

User Buttons ... 61

Tools ... 63

Servo Tuner .. 63

Channels ... 63

Position Loop Gains ... 65

Move Configuration ... 65

Timebase ... 66

Display ... 68

Status Axis(0)... 68

The Scope ... 68

Jog/Home/Limits ... 70

Communications ... 70

Drive .. 70

 CONTENTS

 ACR Programmer’s Guide 7

Hardware Limits ... 73

Software Limits ... 74

Position Error .. 75

LED Legend .. 75

OS Update ... 76

Status Panels .. 78

Motion Status Panel (ACR7000 Family) ... 78

Axis Status Bits .. 79

Programs ... 79

Axis Position .. 79

Master ... 80

Online Status ... 80

Motion Enable Input ... 80

Drive Status Panel (ACR7xV and ACR7xT) ... 80

Control Status ... 81

Drive Faults .. 82

Controller Information ... 82

Common Status Panel (IPA) .. 83

Status ... 83

Buttons .. 83

Control Status and Drive Faults ... 84

Controller Information ... 84

Programs ... 85

Numeric Status ... 85

Bit Status .. 88

Ethernet/IP Status Panel ... 89

CONTENTS

8 ACR Programmer’s Guide

Failure Status ... 89

Scanner Parameters ... 90

Scanner Parameter Status ... 90

EtherNet/IP Node Data .. 91

Controls .. 91

Servo Loop Status .. 92

Scopes ... 93

Common Tools .. 93

Channels ... 93

Timebase ... 94

Controls .. 94

Display ... 96

The Scope ... 97

Oscilloscope .. 98

Strip Chart ... 99

XY Plot .. 100

CHAPTER 2 ACR Basics .. 101

ACR Basics ... 102

Delimiter ... 102

Remarks .. 103

Program Labels .. 104

Move—Default Motion ... 104

Axis Names .. 105

Stopping Motion .. 107

Program Flow .. 109

Wait for Bit or Parameter .. 110

 CONTENTS

 ACR Programmer’s Guide 9

Selection .. 111

IF/THEN .. 111

IF/ELSE/ENDIF ... 112

ELSE IF Condition ... 113

GOSUB/RETURN... 113

GOTO ... 113

GOTO and GOSUB Sample Program ... 114

Repetition ... 115

FOR/TO/STEP/NEXT .. 115

WHILE/WEND ... 115

Bits, Parameters and Variables .. 116

User Bits and Parameters ... 117

Using Parameters and Bits .. 118

Setting Binary Bits ... 118

Clearing Binary Bits .. 118

Printing the Current Value ... 119

A Word on Aliases .. 119

Programming Example ... 119

Local Variables ... 120

Defines .. 121

Starting, Pausing, and Halting Programs .. 123

Running a Program ... 123

Running a Program at Power Up .. 123

Listening to a Program .. 123

Viewing a Running Program ... 123

Halting a Program ... 124

CONTENTS

10 ACR Programmer’s Guide

Pausing a Program .. 124

Resuming a Paused Program .. 124

Affecting Multiple Programs ... 124

Restart Controller.. 124

Running Startup Programs .. 124

Parametric Evaluation .. 124

Parentheses and Operational Order ... 125

Nested Parentheses ... 126

Examples ... 126

Example Code Conventions .. 127

ACR System ... 128

ACR Architecture .. 128

Ethernet .. 130

Ethernet TCP/IP .. 130

EtherNet/IP Scanner .. 130

EtherNet/IP Node .. 131

Ethernet/IP Peer-to-Peer .. 131

Command Syntax .. 133

Description of Format ... 133

Arguments and Syntax ... 134

Variable Substitution Syntax ... 135

Nested Commands Syntax ... 136

Commands Lists .. 137

Axis Limits .. 137

Character I/O .. 138

Drive Control .. 138

 CONTENTS

 ACR Programmer’s Guide 11

Feedback Control ... 138

Global Objects .. 139

Interpolation .. 139

Logic Function ... 140

Memory Control .. 140

Non-Volatile .. 140

Operating System ... 141

Program Control .. 141

Program Flow .. 142

Servo Control ... 143

Setpoint Control ... 143

Transformation ... 144

Velocity Profile .. 144

Startup Programs .. 145

Resetting the Controller ... 145

Memory ... 146

Return to Factory Default .. 146

Configuration ... 147

What is Configuration Code? .. 147

The Code ... 147

Resources Reserved for Generated Code ... 151

Flash Memory .. 152

CHAPTER 3 Making Motion .. 153

Making Motion ... 154

Four Basic Categories of Motion .. 154

Move Types .. 154

CONTENTS

12 ACR Programmer’s Guide

Absolute Motion ... 155

Incremental Motion .. 155

Comparing Absolute and Incremental Motion .. 156

Combining Types of Motion .. 157

Immediate Mode ... 157

Differences Between FOV and VEL ... 158

What are Motion Profiles? ... 158

Interaction Between Motion Profilers ... 159

Primary Setpoint ... 159

Velocity Profile Commands .. 162

Velocity Profile Setup .. 162

Feedback Control Commands... 163

REN Details.. 164

RES Details ... 165

Coordinated Moves Profiler .. 166

Jog Profiler .. 168

JOG VEL Details ... 172

JOG Commands .. 173

JOG REN Details .. 174

JOG RES Details .. 175

Gear Profiler .. 176

Cam Profiler ... 178

Homing .. 180

Homing Subroutines .. 182

Basic Homing (Homing Backup Disabled) .. 183

Positive Homing (Homing Backup Enabled) ... 183

 CONTENTS

 ACR Programmer’s Guide 13

Negative Homing (Homing Backup Enabled) ... 185

Limit Detection ... 186

Dedicated I/O for Homing ... 186

Stopping Motion and Moves ... 187

Kill All Moves versus Kill All Motion Request ... 187

Flag Comparison ... 188

Bit Status Window Comparison ... 188

Contoured (Tiered) Profiles .. 191

Blended (Tiered) Interpolated Moves .. 193

High-speed Position Capture (INTCAP) .. 193

Lock.. 195

Rotary Axis... 197

External Time Base ... 198

Servo Loop Fundamentals .. 198

Setpoint Compensation ... 198

Viewing the Setpoint Calculations .. 199

Following Error ... 199

Ballscrew Compensation .. 200

BSC with PPU .. 200

Encoder Accuracy .. 201

Slope Correction .. 201

Inverse Kinematics .. 205

Programming the Inverse Kinematics .. 205

CHAPTER 4 Writing AcroBASIC Programs ... 207

Writing AcroBasic Programs ... 208

Application Examples ... 209

CONTENTS

14 ACR Programmer’s Guide

Sample Motion Program ... 209

Enable Drives Subroutine ... 211

Absolute Interpolated Motion Subroutine ... 211

Incremental Interpolated Motion Subroutine .. 212

Basic Absolute and Incremental Motion Subroutine .. 212

Absolute Jog Moves Subroutine .. 212

Incremental Jog Moves Subroutine... 213

Absolute and Incremental Jog Moves Subroutine ... 213

Homing Subroutine .. 213

Advanced Homing .. 214

Homing for XYZ System .. 215

Open Sample ... 217

Teach Array ... 218

Programmable Limit Switch ... 219

EIP Scanner–Wago 750 ... 221

Joystick .. 222

Capture Data ... 224

Peer-to-Peer .. 225

ACR7xT Status ... 225

ACR7xT Home to Hard Stop ... 227

Time Subroutine ... 228

Error Recovery (IPA) .. 229

Add-On Instructions (AOIs) for IPA ... 230

Xpress HMI with ACR7000 ... 231

Xpress HMI with IPA ... 232

Testing Programs .. 234

 CONTENTS

 ACR Programmer’s Guide 15

Program Not Running? .. 234

Axis Motion Status? .. 234

Graphing with Oscilloscopes ... 235

Sampling .. 235

Adding Lines of Code to Programs .. 236

Trace a Program ... 236

CHAPTER 5 Binary Host Interface ... 238

Binary Host Interface .. 239

Binary Data Transfer .. 239

Control Character Prefixing .. 240

Transmitting ... 240

Receiving ... 240

High Bit Stripping .. 240

Transmitting ... 241

Receiving ... 241

Binary Data Packets ... 241

Packet Request .. 241

Group Code and Index ... 241

Isolation Mask .. 241

Parameter Access ... 242

Packet Header ... 242

Packet Data .. 242

Usage Example .. 243

Binary Parameter Access .. 243

Usage Example .. 243

Binary Get Long .. 244

CONTENTS

16 ACR Programmer’s Guide

Binary Set Long ... 244

Binary Get IEEE ... 244

Binary Set IEEE .. 245

Binary Peek Command .. 245

Usage Example .. 247

Binary Poke Command .. 247

Usage Example .. 248

Binary Address Command .. 248

Usage Example .. 249

Binary Parameter Address Command ... 250

Usage Example .. 250

Binary Mask Command ... 251

Usage Example .. 251

Binary Parameter Mask Command ... 252

Usage Example .. 252

Binary Move Command ... 252

Header Code 0 ... 254

Move Modes .. 258

Linear Moves ... 260

Arc Moves .. 260

NURB or SPLINE Moves .. 261

Binary SET and CLR ... 261

Binary FOV Command .. 262

Binary ROV Command .. 264

Application: Binary Global Parameter Access ... 266

Description .. 267

 CONTENTS

 ACR Programmer’s Guide 17

Reading Global Variables .. 267

Setting Global Variables .. 267

CHAPTER 6 Troubleshooting ... 269

Troubleshooting .. 270

Problem Isolation .. 270

Information Collection .. 270

Troubleshooting Table .. 270

APPENDIX A Connecting to the Controller ... 280

Connecting to the Controller .. 281

Setting the IP Address and Subnet Mask—PC ... 281

Verifying the IP Address ... 284

Troubleshooting .. 284

Lost the ACR’s IP Address? ... 285

Finding an ACR with the Scan Tool ... 285

Finding an ACR Using WireShark .. 286

Resetting the ACR74T via Hardware .. 287

APPENDIX B Ethernet Basics ... 288

Ethernet Basics .. 289

IP Addresses, Subnets and Subnet Masks ... 289

IP Addresses... 289

Subnets .. 291

Subnet IDs .. 291

Subnet Masks ... 291

APPENDIX C Servo PID Tuning ... 293

Servo PID Tuning .. 294

Purpose of Tuning .. 294

CONTENTS

18 ACR Programmer’s Guide

Test Simple Motion First ... 294

Basic Tuning Process .. 294

Explanation of Tuning Gains ... 297

Proportional Gain (PGAIN) ... 297

Derivative Gain (DGAIN) .. 297

Integral Gain (IGAIN) .. 297

Integral Limit (ILIMIT) .. 297

Integral Delay (IDELAY) ... 297

Torque Limit (TLM) ... 297

Tips and Tricks .. 297

Can’t reach speed? ... 298

Can’t accelerate? ... 298

Derivative Smoothing .. 298

Advanced Tuning Gains ... 298

FF Velocity (FFVEL) .. 298

FF Acceleration (FFACC) ... 298

Derivative Width (DWIDTH) ... 298

Feedback Velocity (FBVEL) .. 299

Lowpass Filter (LOPASS) .. 299

Notch Filter (NOTCH) .. 299

APPENDIX D PMM Improvements Over ACR-View ... 300

PMM Improvements Over ACR-View ... 301

APPENDIX E ACR7xC/ACR9000 Comparison ... 317

ACR7xC/ACR9000 Comparison .. 318

APPENDIX F ACR7xV/IPA Differences ... 320

ACR7xV/IPA Differences .. 321

 CONTENTS

 ACR Programmer’s Guide 19

APPENDIX G 6K to ACR Command Reference ... 322

6K to ACR Command Reference .. 323

APPENDIX H ACR7000 Bits and Parameters ... 331

ACR7000 Bits and Parameters .. 332

ACR7xT Control and Status Bits ... 332

ACR7xT Latched Fault and Warning Bits ... 332

ACR7xT Control and Status Parameters ... 333

ACR7xV Configuration Bits and Parameters ... 334

ACR7xV Status Parameters ... 338

ACR7xV Status 1 Flags .. 338

ACR7xV Status 2 Flags .. 340

BEFORE WE BEGIN

20 ACR Programmer’s Guide

Change Summary

The change summary below lists the latest additions, changes, and corrections to the ACR Programmer’s Guide

and the corresponding section of Parker Motion Manager Online Help.

Revision E Changes
Document 88-028698-01E (ACR Programmer’s Guide) supersedes document 88-028698-01D. Changes

associated with this document are noted in this section.

• Updated for ACR7000 series and IPA, adding Parker Motion Manager. For prior ACR products, see

previous revision D.

 BEFORE WE BEGIN

 ACR Programmer’s Guide 21

Before We Begin

This document is intended to accompany the printed and online documents listed below, as part of the ACR

product user documentation.

Assumptions of Technical Experience
To effectively use the information in this manual, you should have a fundamental understanding of the following:

• Electronics concepts such as voltage, switches, current, etc.

• Motion control concepts such as motion profiles, torque, velocity, distance, force, etc.

• Programming skills in a high-level language such as C or Python is helpful.

• Ethernet communication and networking.

• Safety requirements, standards and best practices for automation machinery.

 If you are new to the AcroBASIC Programming Language, read the Quick Start and Chapter 1 thoroughly.

Reference Document Description

PMM Quick Start Guide Walkthrough of Parker Motion Manager for first time users

ACR Command Reference Provides detailed descriptions of all AcroBASIC language commands with

examples
ACR Parameter & Bit Reference Provides list of all ACR and IPA Parameters and Bits with explanations
EtherNet/IP User Guide Feb 2015 How to setup ACR7000 or IPA as master for Wago 750 series expansion

I/O

ComACRServer6 User Guide Provides information about ComACRserver6 and detailed descriptions of

its properties and methods for PC interface via Visual Basic .NET, Visual

C++, Visual C#, Wonderware or LabView

ACR7000 Stepper Controller

Hardware Guide

Hardware-related information specific to the ACR7000 Stepper

ACR7000 Stepper Connection

Guide

IO connection document

ACR7000 Servo Controller User

Guide

Hardware-related information specific to the ACR7000 servo

ACR7000 Servo Connection

Guide

IO Connection document

ACR7000 Controller Hardware

Guide

Hardware-related information specific to the ACR7000 controller

ACR7000 Controller Connection

Guide

IO connection document

IPA Hardware Installation Guide Hardware-related information specific to the IPA

IPA Quick Reference Guide IO connection document

BEFORE WE BEGIN

22 ACR Programmer’s Guide

Before You Begin
Before you begin to implement the ACR or IPA controller’s features in your application you should complete the

items listed below.

• Complete all the installation provided in Hardware Installation Guide.

• For linear actuators, precision stages, linear motor systems and systems with limited travel, install end-of-

travel sensors and enable and test end-of-travel sensors.

• If you are controlling any servo axes, complete the servo tuning procedures. Be sure to use Parker

Motion Manager’s built-in tuning utility to easily tune the axis and integrate the gains into your motion

program.

• If you are new to the AcroBASIC Programming Language, begin with the Parker Motion Manager Quick

Start and read Chapter 1 (Programming Basics) thoroughly.

Keep in mind that this Programmer’s Guide covers most of what programmers need, but it is ultimately the

responsibility of the programmer to consider the requirements of the machine and develop their application

accordingly.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 23

CHAPTER 1

Parker Motion Manager

PARKER MOTION MANAGER

24 ACR Programmer’s Guide

Parker Motion Manager

The ACR7000 series controller and IPA are configured and programmed with Parker Motion Manager (PMM), a

Windows-based programming tool designed to simplify and speed up your ACR programming efforts.

PMM’s Configuration Wizard has been streamlined to help you quickly set the controller’s:

• Units for each Master.

• Motor parameters for each axis.

• Scaling for each axis.

• Inputs for Limit and Home sensors.

PMM is an updated code development tool enabling programmers to:

• Create, edit, download and upload AcroBASIC programs.

• Test and debug programs and controller operation.

• Test motion and tune your system to optimize performance.

• Monitor controller, integrated drive, bit and parameter status.

• Use high-performance software oscilloscopes for advanced programming.

• Use an improved Servo Tuner screen featuring auto-scaling graphs.

Ease of use improvements:

• Start Page showing recent projects.

• Projects stored as single files for easy sharing and archiving.

• Improved Terminal Emulator with user buttons, preset buttons for common commands and a command

repeat feature that can be accessed using the arrow keys.

• Product-specific status panels.

• Copy Axis feature to save time when configuring similar axes.

As program development is done within PMM, let’s first learn the main parts of PMM.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 25

Getting Started with PMM

When first starting PMM, the Start screen will appear. A new project can be initiated or an existing project can be

opened. As projects are created, they will appear under Recent Projects. The Start screen can be disabled or re-

enabled under Tools → Options. That menu also allows clearing the list of Recent Projects.

When creating a new project, give it a name, a location on the hard drive and a type (model number on the side of

controller). The IP address has been set as the controller default of 192.168.100.1. Users can also upload from

the controller for existing machines using the Create Project From Device check box.

PARKER MOTION MANAGER

26 ACR Programmer’s Guide

Connection
The Connect window can be opened by clicking the controller name in the Explorer (left-hand side of PMM). The

connection status is shown on the Explorer. The red circle with white X will appear when not connected to the

controller, making it easy to determine if you are not connected when in the Program Editor, Status Panels,

Scopes, etc.

The Ping button performs a quick check to see if your PC can see the controller's IP address successfully.

The Connect button attempts to connect to the controller specified by the IP Address field.

The PC IP Address field displays your PC's IP address. The first three octets (numbers) of this address will need to

match the first three octets of the controller’s IP address (192.168.100.x). The last number will be between 2-255

and unique on your network. Use the PC Network Settings button to change your PC’s IP address.

Need to change PC’s IP address? See Setting the IP Address and Subnet Mask—PC.

A project can have multiple controllers. Right-click on the project name to add additional controllers. This can be

for machines with more than one controller that store all of their configurations in one project file.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 27

Multiple connections are supported but each controller will need its own unique IP address. For the ACR7000,

use the IP command in the Terminal Emulator to change the controller’s IP address. Issue the ESAVE command

and cycle power to make it take effect. Be sure to label and note the controller’s IP address!

For the IPA, use dial the switches (S1 and S10) to set the IP address, or set the dials to 99 and use the IP

command like with the ACR7000.

Troubleshooting a connection? See Connecting to the Controller.

PARKER MOTION MANAGER

28 ACR Programmer’s Guide

Uploading a Project from the Controller to PMM
One of the most common tasks with any motion controller is to upload a project from an installed controller so

that it can be downloaded to a replacement controller. There are two ways to upload a project in PMM:

• If there is no pre-existing project file on the PC, the user can upload the entire project from the

controller using the New Project dialog.

• If a project is already loaded in PMM, it can be updated to match the project on the controller by using

the upload button in the Toolbar.

This guide will show uploading from the New Project dialog as it is the better option for quickly replacing a

controller.

Procedure

Step 1: Open Parker Motion Manager.

Step 2: Click File → New Project (or the equivalent Toolbar button).

Step 3: Give the project a name and choose a location to store the uploaded file. The defaults are fine. Put in the IP

address of the controller from which you want to upload. Check the Create Project From Device check box. Click

OK.

Step 4: Wait for the upload to complete.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 29

Step 5: Once the upload is complete, the project will be loaded and PMM will connect to the controller automatically.

Step 6: Save the uploaded project to the PC by clicking File →Save Project or File → Save Project As. There is an equivalent

Toolbar button for this as well.

Downloading a Project from PMM to the Controller
There are two ways to download a project from PMM to an ACR controller:

• The Configuration Wizard has a check box on the Finish screen that initiates a download when the user

clicks Finish.

• The project can be downloaded using a button in the Toolbar.

This procedure will be explained assuming the user is downloading via the button in the Toolbar.

Procedure

Step 1: Open the Parker Motion Manager project that is going to be downloaded to the controller.

Step 2: Connect to the controller. See the previous section for details on establishing a connection.

Step 3: Click the download button in the Toolbar.

Step 4: The Download Project to Controller dialog box will appear. This dialog box allows the user to configure what parts of

the project are downloaded to save time during development and troubleshooting. Users who are installing a

replacement controller should configure the options like they are set below (all boxes checked, Download

Program(s) pull-down set to All Programs). Click OK.

PARKER MOTION MANAGER

30 ACR Programmer’s Guide

Step 5: Wait for the download to finish.

Step 7: A dialog will appear requesting that the controller be rebooted. Click Yes to reboot it, which will allow the new

motor configurations (if applicable) to take effect.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 31

Step 8: After the reboot is done, the PMM File Transfer dialog will reappear. Click Show Report to see what was

downloaded. Errors will be highlighted in red.

Reference

Several dialogs shown in the Procedure section above deserve more explanation. This information is shown

separately to keep the procedure light and easy to follow.

The Download Project to Controller dialog

has several options for choosing what gets

downloaded.

The Controller pull-down allows the user to

select which controller is being targeted for

download. This only affects projects with

multiple controllers.

The Download Configuration check box selects

whether the Configuration Wizard data

(System Code) will be sent down during the

download. It is sometimes helpful to uncheck

this if minor tweaks are being made to a

program. If the box is checked, existing

programs and defines will be deleted, meaning

new ones will need to be downloaded to take

their place at some point.

PARKER MOTION MANAGER

32 ACR Programmer’s Guide

The Download Defines check box selects whether defines are sent down.

The Download Program(s) check box selects whether programs are sent down. The associated pull-down selects

which program to send down. The user can also select All Programs.

There are also indicator lights to show that the drives have been disabled and the programs have been halted.

NOTE: Downloading to the controller will disable all drives and halt all programs.

The PMM File Transfer Dialog also has several

useful features.

The Module column shows the various items

scheduled for download, most of which are

programs. Defines and configuration data are

listed as well.

The Size(KB) column shows the size of the

data.

The Progress(%) column will show Pending…

for sections whose download has not started

(or are not scheduled). It will otherwise

show how much of a section has been

download.

The S/F (success/failure) column shows a red

“x” for sections that failed to download

properly (or were never started). It shows a

green check mark for sections that completed

without errors.

The Errors column shows how many errors

were present during download of a section.

These can be AcroBASIC syntax errors,

parameter range violations invalid options.

The Show Report button displays a full report of what was downloaded and highlights errors in red.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 33

Parker Motion Manager Parts

The main screen of PMM is divided the into seven different sections shown above: Menu, Toolbar, Explorer,

Workspace, Message Window and Watch Window(s).

Each section is further explained in the following pages.

Menu
The Menu bar provides quick access to common project management tools and options. Many of them are

familiar to Windows users.

PARKER MOTION MANAGER

34 ACR Programmer’s Guide

File Menu

Manage project files. Most of these are standard Windows file

management tools and are self-explanatory.

Revert Project reloads the project from the saved copy on the hard drive.

Print allows the user to print any text-based editor (like the Program

Editor) to PDF or a printer.

Recent Projects provides a list of recently edited projects so that they can

be quickly reopened.

Edit Menu

Provides a few standard text editing tools, such as Copy and Paste. The tools in

this menu are only usable in text-based editors like the Program Editor and

textual fields like the ones in the Memory Configuration screen.

Tools Menu

Provides certain tools specific to PMM.

Download Project can be used to quickly download an entire project to the

controller.

Upload Project can be used to upload a project from the controller into PMM,

overwriting the current project data.

Run Program and Halt Program can be used to start or stop one or more

programs.

Scan IP Address is useful for finding a controller whose IP address is unknown. More information about using this

tool can be found in Finding an ACR with the Scan Tool.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 35

Window Menu

Provides options for managing internal PMM windows.

Close All is useful for quickly decluttering the screen.

Show Message Window, Show Watch Windows and Show Start Page all

display their respective windows, which are covered later.

Help Menu

Holds various help-related topics.

Parker Motion Manager User’s Guide will open the

help file, which is an indexed and searchable CHM

file designed to allow for rapid look-up.

Parker Motion Manager Release Notes can help in

case you believe you have encountered a software

bug.

Take System Snapshot can help if you need to send

data about your PC configuration to Parker

engineers.

About Parker Motion Manager will display the version of PMM.

PARKER MOTION MANAGER

36 ACR Programmer’s Guide

Tools → Options

This dialog contains settings for PMM. Most of them

are self-explanatory.

The Show menu and toolbar tool tips option is useful

for new programmers who are not familiar with

PMM yet.

The Show debug messages option can be helpful if you

are using a pre-release build (unusual) or need to

supply application crash information to Parker

support.

Toolbar
The Toolbar is where the most commonly used tools are kept. Each tool gets an icon and a tool-tip (“hover-over”

text) that helps identify and describe it.

Icon availability changes automatically and depends upon the Workspace.

Opens a dialog for creating a new project.

Opens a dialog for selecting a previously saved project.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 37

Saves the changes to the current project.

Opens a print dialog for sending the current text to a printer (including print-to-PDF).

Displays/hides the Message Window.

Undoes the last change made to the text in the active control.

Redoes the last change made to the text in the active control.

Cuts the selected text to the Clipboard.

Copies the selected text to the Clipboard.

Pastes the selected text from the Clipboard.

Opens the Find/Replace dialog for finding and/or replacing the current text.

Increases the indentation of the selected line in the active program editor.

Decreases the indentation of the selected line in the active program editor.

Comments the selected block of text in the active program editor.

Uncomments the selected block of text in the active program editor.

Adds a bookmark to selected line in the active program editor. Bookmarks are useful for quickly navigating

very large programs.

Goes to the next bookmark in the active program editor.

Goes to the previous bookmark in the active program editor.

Removes a bookmark from the selected line in the active program editor.

Opens the Download Project to Controller dialog.

Opens the Upload Project from Controller dialog.

Opens the Starts Program(s) dialog.

PARKER MOTION MANAGER

38 ACR Programmer’s Guide

Opens the Halt Program(s) dialog.

Explorer
The Explorer is divided into several sections.

Connection

These tools allow the user to rename the controller, add another controller to

the project, delete a controller, connect to a controller or disconnect from a

controller. The Connect screen also provides useful information about the

controller, such as firmware level and model number.

Configuration Wizard

This wizard is a comprehensive start-to-finish configuration tool that sets up axis

names, motor data, engineering units, I/O configuration, default move

characteristics and more.

Program Editor

The various program editors are where programs are written.

The Defines editor is a tabular editor where a user can set up named aliases

(known as “defines”) for commonly used parameters. PMM’s Defines editor

provides a user-friendly experience by checking user input for validity.

Terminal Emulator

This is one of the most useful tools in PMM and will receive detailed coverage

later. The Terminal Emulator is used to send ASCII commands directly to the

controller.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 39

Tools

The Servo Tuner is a graphical tuning tool that helps the user run test moves,

evaluate performance and update gains. Not available for stepper axes.

The Jog/Home/Limits screen is used to test jog motion on each axis, allowing the

user to quickly verify that the hardware and configuration are working correctly.

The OS Update tool is used to update to load a new OS onto the controller.

Status Panels

The Motion Status Panel and Drive Status Panel are used to investigate faults and

view position/speed data.

The Numeric Status and Bit Status panels are used to check the status of any bit

or parameter in the controller.

The EtherNet/IP Status Panel displays connection and fault data specific to

EtherNet/IP.

The Servo Loop Status panel visually connects the various position command

registers on each axis with the output being generated to meet that position.

Scopes

The scopes allow the user to graph any parameter in the controller to help

evaluate performance or track down process issues.

Message Window
The Message Window provides status and error information while online with the controller. It also displays

“housekeeping” messages from PMM when not online. It is recommended that it be kept open when online.

Informational messages appear in blue, warnings appear in yellow and errors appear in red. The Messages

Window is particularly useful when troubleshooting connection issues with the controller. Notice the two

warnings shown at the top of the image below:

PARKER MOTION MANAGER

40 ACR Programmer’s Guide

• WatchdogTimeout Reconnect Event triggered. This means that PMM has previously lost its connection

to the controller but is attempting to reestablish it. This happens when the controller is rebooted after a

download.

• WatchdogTimeout Event triggered. This is the warning that occurs immediately after PMM loses its

connection to the controller. Again, this will occur during a reboot.

Click on column headers to sort messages by that column’s data. Right-clicking the header presents an option to

clear messages. The messages can also be selected and copied to a text file, email or spreadsheet program.

Watch Windows
Watch windows let the user monitor bits and parameters in real time when PMM in online with the controller.

Four watch windows are available. These are saved within the project. If the user closes the project and loads the

project again, the watch windows are also loaded.

Right-click to the right of Messages to display watch windows or go to Menu → Window → Show Watch Windows.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 41

Each watch window can hold 20 rows of bits or parameters.

To add defines to a watch window, go to Program Editor → Defines and right-click the define you want to add.

Then, click Watch and select the watch window that should display the define.

Bits and parameters can also be added to a watch window from the Motion Status Panel or Drive Status Panel. To

add a bit or parameter, right-click on the indicator of interest and select a watch window:

This feature is also supported on the Numeric Status panel.

PARKER MOTION MANAGER

42 ACR Programmer’s Guide

The Bit Status panel can also be used to populate watch windows.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 43

Configuration Wizard

The Configuration Wizard steps users through setting the controller for the motor or drive type, scaling,

limit/home sensor assignment and fault settings for each axis. These will be specific to the controller type. An

ACR74T integrated stepper will have four axes and need to know the step motor part number, whereas an

ACR78C controller will have eight axes and need to know the drive types (servo or stepper) and feedback

resolution for servos or closed-loop steppers. The ACR74V integrated servo will need to know the servo motor

type for each axis while the IPA is a single-axis servo. All screens in the Configuration Wizard have three common

buttons located at the bottom:

• Previous and Next allow the user to navigate back and forth through the Configuration Wizard.

• Reset to Default sets all parameters on the current screen back to their default values.

NOTE: The information presented here is referential in nature. For an example of setting up an

ACR for the first time, see the Parker Motion Manager Quick Start Guide.

Axes
The first item in the Configuration Wizard is the Axes screen, used to create basic functional groupings of axes.

Each axis has an alias, a short alphabetical name up to four letters long that can be used to command it to move

(X25 Y4), enable (DRIVE ON X), reset (RES X) or perform other tasks. Numbers and special characters are

not permitted in axis aliases—only letters are allowed. The defaults are:

• Axis 0 is X.

• Axis 2 is Y.

• Axis 2 is Z.

• Axis 3 is A.

• Axis 4 is B.

• Axis 5 is C.

• Axis 6 is U.

• Axis 7 is V.

PARKER MOTION MANAGER

44 ACR Programmer’s Guide

Users can rename the axes if they prefer. The names are only used for identifying the axes and to not ascribe any

specific motion properties. For instance, an axis called U is not required to be a rotary axis.

The Command Output specifies the output hardware that will be used for an axis. This feature is mainly included

for the ACR7xC so that the user can select ±10 VDC output or step-and-direction output. For the ACR7xT,

ACR7xV and IPA, the Command Output is fixed as the drive hardware is included in the product. Technically, the

user is also permitted to change the order of axes—Axis 0 can be made to use the hardware typically reserved for

Axis 3, for instance. This practice is discouraged and is permitted mainly to provide contingencies in the event of

hardware failure (swapping an axis to get a machine running).

Each axis is assigned to a master which is a motion trajectory calculator. A master is attached to a program

(Program 0 for Master 0, Program 1 for Master 1, etc.). Each axis must be assigned to a master. By default, they

are all assigned to Master 0. The number of masters available is equal to the number of axes available on the

product and is never more than eight.

Interpolated motion between multiple axes requires that they be attached to the same master. Interpolated

motion refers to path-based motion that requires more than simple sequencing. The chart below helps explain

what types of motion are considered “interpolated” in the ACR.

Interpolated:

• Diagonal lines.

• Circles/arcs.

• Splines.

• Smoothed paths (look-ahead).

• Modulo motion.

Not Interpolated:

• Jogging.

• Gearing.

• Camming.

• Single-axis moves (via jog profiler).

• Homing (via jog profiler).

Each axis can also be commanded to be moved separately, as is the case with jog moves.

Some machines have multiple functional axis groups. For example, a machine might have one cartesian system that

performs a stacking process and another that handles an inspection process. Multiaxis ACR controllers are

capable of handling separate axis groups, a task best accomplished using multiple masters. Assigning a set of axes

to Master 0 allows for interpolated motion on those axes in Program 0—axes attached to Master 1 are similarly

coordinated using Program 1 and so on.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 45

In the system shown above, the two subsystems would be attached to different masters, like Master 0 and Master

1. This would allow the controller to tightly coordinate moves within each subsystem, but would also allow each

subsystem to maintain its independence from the other.

The advantage to using interpolated motion on a master is that it is easy to make a move on several axes start and

stop at the same time, following exactly the path that the user needs. This can save process time and fulfill certain

machine goals (e.g. “move the product in a circle”).

Master (Units)
The second screen in the Configuration

Wizard is the Master screen. Here the

units for the master can be selected.

Users can use inches, millimeters,

degrees, revolutions, encoder counts or

specify their own. The units selected

here are used throughout the rest of the

configuration and in AcroBASIC

programs. Selecting Inches, Millimeters,

Degrees or Revolutions offers advantages

on the Scaling screen later in the

configuration. Selecting Counts amounts

to no scaling, as all moves will use

encoder or stepper counts as their unit

of measure. Selecting Other provides no

special features—this selection should

only be used in special circumstances.

Users can also set default values for velocity, acceleration, deceleration and stop ramps for interpolated motion.

The stop ramp is used when stopping motion with interpolated moves. The provided diagram explains how the

PARKER MOTION MANAGER

46 ACR Programmer’s Guide

selected dynamics affect the motion profile. Note that the motion defaults can be changed at any time during

program execution, so getting them right here is not critical.

The Master alias can be changed to name the group of axes. This name is only used within PMM for

documentation purposes and is not used in the AcroBASIC program, nor is it stored in the controller.

Drive/Motor
The Drive/Motor screen lets the user configure what motor is connected to the AC. In the case of the ACR7xC,

the user instead configures parameters for the attached servo or stepper drive. This screen’s display is highly

dependent on the model of ACR in use, so it will be covered separately for each one.

The Motor/Drive screen includes an Invert Motor Direction checkbox. This makes it easier to reverse the

direction the user wants to be positive for the application. By default, clockwise looking at the motor shaft is

positive for all rotary motors, except the P Series drives with P Series motors which are counterclockwise positive

by default. For linear motors, the default positive direction is away from the cable exit on the coil.

Drive/Motor (ACR7xT Stepper)
This screen allows the user to configure the type of stepper

motor connected to this axis.

Motor Settings

For Parker motors, use the Motor Series and Motor

Size/Winding pull-downs to select the type of motor in use.

The motor’s model number can be found on its product label.

This will populate all the other data in the Motor Setting

subpanel.

For third-party motors, select Other from Motor Series. Three

fields are available for editing:

• The Motor Part Number field is for documentation

purposes only.

• The Full Steps/Rev field should usually be set to 200

which corresponds to a 1.8° step motor (50

cycle/rev). Set this field to 400 for motors with 0.9°

steps (100 cycle/rev).

• Max Motor Current is the published current rating for

the motor in amps peak-of-sine.

Drive Settings

There are several fields here. The defaults are fine for most

applications, but they are explained below for clarity.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 47

• The MicroSteps/Rev pull-down allows the user to configure how fine the smallest possible step is for this

axis. There is usually never a reason to set it to any value other than the default of 51,200, which is the

highest setting.

• The User Max Motor Current field allows the user to reduce current to the motor. Lowering this value can

help keep the motor cool but will also limit the maximum available torque.

• The Enable Standby Current Reduction check box allows the drive to reduce the current it delivers to the

motor when it is not moving. Using this check box reduces motor heating during standstill periods, but

also limits the available holding torque.

• The Standby Current % field allows the user to configure how much current will be delivered when standby

current reduction is enabled. The default is 50%, which is typically sufficient.

• The Standby Current Delay, ms field is the length of time between the end of motion and the start of

standby current reduction. The default is 0 ms. It can help to increase this time if the stepper motor

appears to “slip” a little at the tail end of a move.

• The Invert Motor Direction checkbox switches the direction of positive motion for the axis, useful if the

default positive direction is found to be going the wrong way.

Drive/Motor (ACR7xV Servo or IPA)
This screen allows the user to configure the

type of servo motor connected to this axis.

Use the Series, Frame, Stack, Winding and

Feedback pull-downs to configure the model

of motor used on this axis. The motor

model number should be printed on the

label on the side of the motor. This will set

motor parameters such as rated current,

encoder resolution, torque constant and

many others. For non-Parker motors, set

the Series to Other (more on this below).

The Invert Motor Direction checkbox switches

the direction of positive motion for the axis,

useful if the default positive direction is found to be going the wrong way.

The Brake checkbox should be checked for motors with a built-in failsafe brake. The ACR7xV has built-in brake

supplies tapped from the internal 24 VDC control power. The IPA has a dry contact brake relay that requires an

external 24 VDC supply.

The Select Cooling Method pull-down can be set to Heat Sink or No Heat Sink. For motors that will mount to a

metal actuator, like an electric cylinder or ballscrew table, this should be set to Heat Sink. For motors that will be

left in open air, it is better to select No Heat Sink. For motors that will be connected to gearheads run at a high

duty cycle, No Heat Sink is also a more appropriate option since gearheads can generate significant heat on their

own. The No Heat Sink option reduces the torque rating of the motor slightly to help prevent it from overheating.

The Show Advanced Motor Parameters checkbox activates a hidden screen that is not normally needed when using a

Parker motor—it is unchecked by default. However, it should be checked whenever a third-party motor or

PARKER MOTION MANAGER

48 ACR Programmer’s Guide

Parker kit motor is being used. It should also be checked for Parker linear motors purchased without mechanics

(i.e. Parker did not provide the encoder and bearings).

There are two notes on this screen and the second one bears clarification. For the ACR7xV, the axes are broken

into pairs. Axis 0 and Axis 1 are on the first power board, Axis 2 and Axis 3 are on the second power board and

so on. Each power board can only support one type of feedback. If a motor with BiSS-C feedback is selected for

Axis 0, so must one be selected for Axis 1. If incremental feedback is needed on Axis 3, then Axis 2 will need to

use a motor with incremental feedback. Users should plan accordingly when selecting motors.

Drive/Motor (ACR7xC)
This screen allows the user configure the type of

servo/stepper drive and motor connected to this axis.

The Drive pull-down is used to select the model of Parker

servo or stepper drive connected to this axis. Available

drives will be filtered depending on whether the user

configured this axis for stepper or servo output. All of

Parker’s currently offered compatible drives are listed as well

as several legacy models. For third-party drives, select Other.

Note that any axis set up for servo output must be

connected to a servo drive configured for ±10 VDC analog

torque control. Some Parker servo drives are listed for both

servo and stepper output because they support ±10 VDC

torque control as well as step-and-direction.

If the axis is configured as a stepper axis, a

Resolution field will be made available next to the

drive selection. This must be filled out with the

drive’s command resolution. Selecting a Parker

drive populates the resolution with the default for that drive. It is important to double-check the resolution

setting on drive to make sure the correct value is entered in this field.

The Motor pull-down is used to select the motor for this axis. The main purpose for doing this is to configure the

encoder resolution, used in scaling calculations. Both rotary and linear motors from Parker are listed. These

motors are filtered based on their compatibility with the selected drive. For third-party motors, select Other.

The Motor Type radio selector can be set to Rotary for rotary motors or Linear for linear motors. This helps with

automatic scaling calculations later. If a Parker motor and drive have been selected, this option is grayed out. If

Motor is set to Other, the user needs to select Rotary or Linear as appropriate.

The Invert Motor Direction checkbox switches the direction of positive motion for the axis, useful if the default

positive direction is found to be going the wrong way.

If Drive is set to Other, two additional radio selectors will become visible. These configure axis I/O for normally

open or normally closed operation. The Drive Fault Input radio selector configures the input used by the drive to

report a fault. On ACR7xC axis connectors, this input is on pins 16 and 17. The Drive Enable Output configures

the output used by the controller to enable the drive. On ACR7xC axis connectors, this output is on pins 20 and

21.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 49

Consult the drive’s documentation to know which is appropriate.

Feedback
The ACR7000 and IPA controllers support several standard

feedback types. The Feedback screen allows the user to fine-tune

their configuration. Each controller type has its own version of the

screen, but there are a few common tools:

• Set Up Position Feedback. This option is only present for

stepper axes. Stepper axes do not require position

feedback, but support it as an option. Unchecking this box

turns feedback off.

• Source Input. This selects which encoder will be used for

feedback on this axis. ACR74T and ACR7xC units allow

the user to select any encoder except the auxiliary encoder. ACR7xV units only allow the user to select

one of the two encoders on the same power board as this axis. So, Axis 0 can use either Encoder 0 or

Encoder 1 for feedback.

• Use built-in motor encoder. If this option is selected, all

options below it are grayed out and default values are used

from the motor file.

• Type. This option is only available for the ACR7xC. It

allows the user to select either quadrature (default)

encoder feedback or SSI (Serial Synchronous Interface).

The SSI option is useful for interfacing with certain kinds of

position sensors, including devices that are not traditional

encoders. It is also useful when interfacing with an Aries

AE/SE servo drive for legacy machine upgrades.

• Package. The user can select Rotary or Linear. This helps PMM work out scaling by determining which

set of units apply.

• Resolution. Encoder resolution in counts/rev for

rotary encoders or counts/mm for linear encoders.

• Invert Encoder Direction. This option is only

available for the ACR7xC. It allows the user to

change the positive direction (polarity) of the

encoder. This is useful in cases where the command

and feedback signal polarities do not match due to

system design.

The ACR74T integrated stepper has optional quadrature

encoder inputs for each axis. Open loop steppers (step

motors without encoders) are supported as well as closed-

loop steppers. The eCL series closed-loop step motors’ encoder extension cables connect to these inputs,

resulting in a plug-and-play solution. Selecting an eCL motor sets the motor settings on the previous screen and

PARKER MOTION MANAGER

50 ACR Programmer’s Guide

the encoder resolution under Feedback. Linear quadrature encoders, such as with Parker precision stages, are

also supported.

The ACR7xV integrated servo requires encoder feedback for

closed-loop servo control. If a Parker servo motor was selected on

the Drive/Motor screen, the feedback screen will have already been

set based on the motor specifications.

The ACR7xC standalone controller supports stepper and servo

axes. Servo axes will produce a ±10 VDC analog signal to an

external servo amplifier and read its encoder feedback. The

ACR7xC supports both standard quadrature feedback (rotary or

linear) and SSI. The auxiliary encoder only supports quadrature. By

selecting the motor type on the Drive/Motor screen, the Feedback will have already been set.

The ACR7xC also supports stepper drives and servo drives in step-and-direction mode. In this mode, the drive is

closing the position loop. The controller does not require feedback but can read the encoder if connected.

Position Maintenance is available for end-of-move corrections for stepper systems and can use rotary or linear

feedback.

Scaling
The Scaling screen allows users to define a

relationship between encoder or stepper counts and

engineering units. The controller needs to know how

many counts are in one inch, millimeter, degree,

revolution or whatever other unit is in use. Instead of

requiring the user to perform this calculation, PMM

provides an easy way to configure the unit scale based

on easily found data about the components in use.

Parker actuators, precision stages and gearheads have

been added. Use the part number marked on the

products to set the order code in PMM. Configuring

the Parker mechanics in use will automatically import

the correct scaling factors, like gear ratio or screw

pitch. Generic screw, belt, chain and gear elements

are still available to support non-Parker mechanics.

The top subpanel shows the units currently in use on this axis.

NOTE: The tools on this screen pertain to setting up rotary motors. For linear motors, leave all

options at default (None) and click Next.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 51

Specify Transmission

This subpanel allows the user to select the type of

linear or rotary mechanics in use. Parker mechanics

are available by selecting Parker Actuator/Precision Stage

or Parker Rodless Actuator from the top pull-down

menu. Following that, the type of actuator can be

selected using the Series pull-down. Most Parker

actuators have multiple drive train options, which are

specified in the model number. The Order Code pull-

down can be used to choose from the available

options.

If a Parker actuator is not selected, the option is provided to enter the lead of the screw or diameter of the roller

in the provided field. This field is filled automatically if a Parker actuator is selected.

Specify Reducer(s)

This subpanel works like the previous one, but is

intended to be used for gearheads. The top pull-down

allows the user to select whether a Parker gearhead is

being used or some other gearing system. If a Parker

gearhead is in use, the Series pull-down can be set to

any currently available model family from Parker. The

Order Code pull-down is used to select the gear ratio,

which will be printed on the product label.

Non-Parker reducers are also supported. Users can

choose a custom gearbox and enter the ratio manually. Other less common reduction options are also supported,

such as pulleys and chains. Users can enter pulley diameters or tooth counts to configure the scale.

Enter Scaling Factor

This subpanel displays the ratio of motor revolutions to linear or rotary output units. It normally does not permit

changes, but will allow the user to enter any number if None is selected as the transmission and reducer.

The axis Scaling screen allows users to set the number of motor revolutions for their units. Predefined

Transmissions and Reducers help calculate the scaling.

PARKER MOTION MANAGER

52 ACR Programmer’s Guide

Fault
The Fault screen allows the user to set which inputs

are connected to the end-of-travel limit sensors and

whether they are normally closed or normally open.

When a limit sensor is encountered, further motion

in that direction is prevented but the drive is not

disabled. Motion in the opposite direction can be

commanded. End-of-travel sensors should be

normally closed in case the sensor fails. For

example, if its cable is cut or its connection comes

loose, the sensor would fail open, faulting the axis

and stopping motion.

Hardware Limit Detection

The check boxes Enable Positive Hardware Limit Detection and Enable Negative Hardware Limit Detection are used to

turn on limit checking. Without these checked, the axis will not respond to the limit sensors. They are

unchecked by default since not all applications need or use limit sensors.

The Hardware Limit Deceleration is the stop rate when the controller encounters a limit sensor. Make sure this is

high enough to stop the motor/stage before the actual hard-stop is hit.

Assign Digital Inputs for Specific Functions

This table is where specific digital inputs are assigned as limits and home. Any onboard input can be used for any

of the three functions.

The positive, negative and home inputs can be assigned to any input and are no longer required to be consecutive.

Configuration is done in the Value column. The Positive Limit, Negative Limit and Home Limit pull-downs (set to No

Onboard Input in the image above) are used to select which input serves this limit/home function. The Input Type

pull-downs can be used to select between Normally Open and Normally Closed. Most Parker mechanics that ship

with limits have normally closed limit switches and a normally open home switch.

NOTE: Normally open/normally closed is not the same distinction as sinking/sourcing or

NPN/PNP. For more information about I/O, refer to the appropriate hardware manual.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 53

Software Limit Detection

Software limits can be used to limit travel range. If the travel

range is exceeded, the axis will be brought to a controlled stop.

This is especially useful in systems that use absolute encoders

but do not have limit switches. The check boxes Enable Positive

Limit and Enable Negative Limit turn on soft limit checking. The

associated fields set the distance from zero in user units at which the software limits will stop motion. The

Software Limit Deceleration field specifies the deceleration ramp that will be applied if the limits are violated.

Maximum Position Error Detection

Maximum Position Error is the maximum allowable error between

the commanded position and the actual encoder position. This is

required for a servo axis. This is not active for an open-loop stepper.

It can be used for a closed-loop stepper or servo in stepper mode

with the encoder connected. When the position error limit is violated, the controller assumes it has lost control

of the motor and disables the drive. The position error limits should be set large enough that the axis does not

generate nuisance faults during normal operation. They should also be set small enough that the drive cannot

cause the motor to “run away” in the event of catastrophic failure. The Positive Position Error and Negative Position

Error fields allow the user to set different limits in each direction if desired. Note that the negative limit must be

entered as a negative number.

Position Maintenance Settings

PMM allows Position Maintenance to be enabled for

end-of-move corrections with move settings and

deadband. This feature only applies to stepper axes

with encoder feedback. When active, Position

Maintenance tries to improve precision by issuing a

small correction move after motion stops to account for any position error at the end of the move. This move is

made automatically and is not shown to the user in the ACR’s position command registers.

The Position Maintenance Settings check box can be left unchecked (default) if Position Maintenance is not desired

or if there is no encoder available to support it. The fields within the subpanel configure move dynamics:

• Deadband configures the zone in which the axis is considered “settled”. If an axis gets close enough to its

intended destination that it is within the distance specified by Deadband, no corrective move is generated.

Note that this field is in stepper counts, not user units.

• Velocity configures the maximum velocity of the correction move in user units. It is best to keep this value

small to reduce the likelihood of a stall.

• Acceleration configures the acceleration and deceleration of the correction move in user units.

If the application calls for two axes that need to be set up identically, there is now an easy way to do it. Right-click

the axis in the Explorer and click Copy To. Changes can be made after the copy is complete.

New for

PMM!

New for

PMM!

PARKER MOTION MANAGER

54 ACR Programmer’s Guide

Memory
This screen helps the user allocate the ACR’s available memory to programs, global variables and Defines. The

memory allocation (in bytes) can be altered in the Value column. The Allocation bar at the bottom of the screen

shows how much memory is used and how much is free.

Memory for programs has already been allocated.

Only if the programs are very large (notified on

download) would these allocations need to be

increased. Program memory is consumed by

AcroBASIC code, locally dimensioned variables,

program statements with returns (GOSUB, IF,

WHILE and FOR statements) and interpolated

moves (e.g. X3 Y7).

Program 14 has a large allocation for the onboard

data capture for scopes. The Configuration Wizard

settings are stored within Program 15, which has a

fixed allocation.

By default, the number of global variables is 4096

(P0—P4095). These are 64-bit floating point values

available to the user for any use. They are not

retained by default, but their values can be saved to

flash using the FLASH IMAGE command. It is

recommended to leave this allocation at default.

The memory for defines is also set here. By default, the user is given 100 Defines. This is sufficient for many

applications, but some may need more. If more are required, the allocation must be increased and the

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 55

configuration must be downloaded to the controller again. If the configuration is re-downloaded, it is also a good

idea to download everything else as well since downloading a configuration wipes programs.

Finish and System Code
The Finish screen completes the Configuration Wizard. It displays any errors and warnings. Errors will need to

be corrected before downloading. Click on the error to go to that section and fix it.

Warnings are a heads-up to double-check the settings. Click on the warning to go to that section and fix it.

Warnings do not prevent proceeding to download.

If PMM is connected to the controller, the Download configuration to controller on Finish check box will be available

and checked by default. Clicking Finish completes the Configuration Wizard and generates the System Code. If the

aforementioned box is checked, it also initiates a project download.

When Finish is clicked, the entire Configuration Wizard settings are used to generate the AcroBASIC code shown

in the System Code viewer. The System Code is cleared when the project is closed or a setting within the

Configuration Wizard is changed. Finish needs to be clicked to regenerate this code before downloading. Clicking

Finish will also save the project.

PARKER MOTION MANAGER

56 ACR Programmer’s Guide

Program Editor

The Program Editor section in the Explorer has fifteen program editors (Program 00 to Program 14) and the

Defines editor. The program editors are used for writing programs in AcroBASIC and support syntax highlighting:

• BLUE for AcroBASIC keywords.

• CRIMSON for text strings.

• GREEN for comments.

AcroBASIC programming is covered in detail in Programming Basics.

The Defines editor provides a central location for defined aliases, referred to hereafter as defines. Programmers

can use defines to refer to bits and parameters by name in their programs. Any bit or parameter can be assigned a

define. Using a define instead of a bit or parameter number can make a program more readable and easier to

maintain. Defines are global and are recognized across all programs as well as the system prompt in the Terminal

Emulator.

Programmers can also define constants in the Defines editor. The only permissible values are positive integers and

zero.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 57

Terminal Emulator

The Terminal Emulator allows programmers to send AcroBASIC commands directly to the controller. The

Terminal Emulator is frequently used to:

• List programs so that their contents can be reviewed without having to do an entire project upload.

• Listen to a program’s PRINT statements, which are useful for debugging.

• Change settings, like move dynamics or the IP address.

• Set and clear bits.

• Interrogate bits and parameters for their values.

• Issue motion commands for testing, troubleshooting or prototyping.

Prompts
The short sequence of characters that is printed by the controller at the start of every line is called the prompt.

The prompt displayed represents the context of the Terminal Emulator and where any typed commands will be

routed in the controller.

SYS> is the system prompt. Here, the programmer can use commands like ATTACH and DIM to query system-

level information like axis attachments and global memory allocation.

P00> is the prompt for Program 0. There is a prompt for every program. Each program prompt gives the

programmer access to the data within that program. For instance, issuing the DIM command from the P03>

prompt displays local memory allocation for variables and arrays in Program 3. Certain motion command,

specifically the ones requiring the use of an axis alias, will only work from the program prompt to which their

master is assigned (Program 0 by default).

Use the pull-down menu in the top left to switch prompts. Users can also change the prompt by typing SYS,

PROG0, PROG1, etc.

Basic Terminal Operations
Most operations in the Terminal Emulator are accomplished by typing a valid AcroBASIC command. After typing

the command, the programmer must press Enter for the command to be accepted by the controller. Commands

PARKER MOTION MANAGER

58 ACR Programmer’s Guide

are case-insensitive, but axis aliases (e.g. X or Y) and defines are not. While it is typical for one line to have one

command, multiple commands can be put on the same line by separating them with a space, a colon and another

space (“ : ”). This is helpful when trying to get two commands to process in rapid succession when issuing them

manually.

Programmers can save time by using the up and down arrow keys (↑ and ↓) to scroll through commands that have

already been used in the session. This is an easy way to repeat commands.

To list a program, switch to that program prompt and click the LIST button or LIST LINE NUMBER.

Every AcroBASIC program has a line number for each line. Line numbers proceed in increments of 10. These line

numbers are shown in the Motion Status Panel when a program is running. When troubleshooting, the line

number can be used to find out which command is causing a program to stall or abort.

Programmers can use the Terminal Emulator to temporarily add extra lines of code between the existing ones.

This is done by typing a line number followed by a command, for example, “21 AXIS 0 DRIVE ON”. Lines can

also be overwritten using this method. Lines can be deleted by simply typing the line number and pressing Enter.

These changes remain in effect until power is cycled or a REBOOT command is issued. If desired, the changes can

be permanently saved to flash using the FLASH IMAGE command.

For very large programs, users can partially list a program up to a specific line number.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 59

The LIST command can also display a part of the program between a range of line numbers.

To start two programs and the same time and listen to one, separate RUN PROGx and LRUN with a “space :

space” command delimiter.

The LRUN command runs a program and enters listen mode (LISTEN + RUN) and allows users to see output

from PRINT statements while the program is running. To exit LISTEN mode, press Escape.

In the above sample, bit 82 is a system bit that toggles every second. INH is an inhibit command waiting for bit 82

to turn on and INH -82 waits for it to turn off. Hence, global parameter P10 is incremented every second and is

printed as the program loops through _MAIN.

The status of a bit or parameter can be checked in the Terminal Emulator using the PRINT command. When

checking bits, the bit is “clear” (“off” or “false”) if it returns 0 and “set” (“on” or “true”) if it returns -1. The

example below checks the status of the PROG0 Running bit and indicates Program 0 is indeed running.

PARKER MOTION MANAGER

60 ACR Programmer’s Guide

The “?” operator can be used as shorthand for PRINT, saving time when querying bits and parameters.

Write to a bit with SET and CLR.

Bit 32 is the controller’s first onboard output. If it is not connected to an indicator, its status can be viewed on

the Bit Status panel or queried by issuing “? BIT32” in the Terminal Emulator.

Parameter values can be checked with PRINT or “?”. Parameters can be assigned values with “=”.

Programs marked with the PBOOT command are automatically started on power-up. To start running all PBOOT

programs without having to cycle power, issue the PBOOT command in the Terminal Emulator.

To cycle power on a controller, issue the REBOOT command. Note that the connection will be lost when the

controller reboots. PMM will reconnect automatically after a few seconds. The message window will show the

connection timeout and reconnection.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 61

User Buttons
User Buttons have been improved. Users can now name these buttons and insert commands or multiple lines of

code. This can save time and prevent typos while debugging. The code is sent with a mouse click.

In the example above, the RUN ALL command starts all programs. P10 is a global user parameter and

P12290/P12375 is the actual position for Axis 0, scaled in engineering units. These commands can be added to

a button to automate tedious and repetitive command sequences.

New for

PMM!

PARKER MOTION MANAGER

62 ACR Programmer’s Guide

There are 60 User Buttons (5 groups of 12) with common commands preloaded in the last two.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 63

Tools

The Tools section in the Explorer includes the Servo Tuner, Jog/Home/Limits screen and OS Update panel.

Servo Tuner

The Servo Tuner is a fast and easy way to tune servo axes. The axis can be selected from the pulldown in the

upper left-hand corner of the Servo Tuner. Servo gains are listed on the left-hand side.

This section is intended to provide an overview of the Servo Tuner itself. For a procedure on tuning a servo axis

see Servo PID Tuning.

The Servo Tuner is broken into several panels:

• Channels

• Position Loop Gains

• Timebase

• Display

• Move Configuration

• Status Axis(0)

• The Graph

Channels

By default, the four channels are set up as follows:

PARKER MOTION MANAGER

64 ACR Programmer’s Guide

• Channel 1 shows Following Error in yellow. Units are encoder counts.

• Channel 2 shows Current Jog Velocity in green. Units are encoder counts per second.

• Channel 3 shows Final Output Signal in orange. Units are ±10 and represent the torque command in

volts.

• Channel 4 shows Secondary Setpoint in purple. Units are encoder counts.

In addition to controls specific to each channel, there is a global

setting for all position-related parameters to be graphed in

encoder counts (default) or in user units.

Each channel has several controls:

• The parameter field (top) displays the parameter being

graphed. This can be changed to any parameter desired

using the “…” button to the right of the field (details

below).

• The time field (second from top) displays the horizontal

and vertical shift for this channel. The vertical shift can

be altered using the vertical slider at the right. See

Timebase for details on the horizontal shift.

• The unit field (bottom) field displays the vertical scale

(default 1 unit/div). This can be altered using the up and down arrow buttons to the right. Check Auto

Scale Y-Axis (checked by default) to make the graph fit the available vertical space. This option is usually

preferred as it makes the data easy to read.

When the user clicks the “…” button to select a new

parameter, the Parameter Picker dialog appears. This

dialog helps the user drill down to a parameter of interest

by using three pull-down menus. The top menu selects the

parameter group, the second menu selects the subgroup

and the third selects the individual parameter type. The list

at the bottom breaks a specific parameter type (Following

Error in this case) down into enumerated options, often

based on axis number (otherwise encoder number, stream

number, ADC number, etc.).

The Parameter Picker dialog is consistent across PMM and

is also used in the Oscilloscope and Strip Chart tools. It is

conceptually very similar to the Pick A Bit dialog that

serves the same purpose for bits. The same pull-down

menus used in the Parameter Picker are also used in the

Numeric Status panel.

When a flag parameter is selected (P4096-4375), the bottom pull-down makes it

possible to select a specific bit (or bits) to watch in the scope.

New for

PMM!

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 65

Position Loop Gains

Servo gains can be changed using the fields on the left-hand side of

the Servo Tuner. There is a pull-down at the top of the panel to

select which axis to modify.

The gains are broken into three groups:

• Basic gains are used on every application.

• Integral gains are used on applications requiring very

precise settling.

• Advanced gains are used on applications requiring

precision tracking or high acceleration.

There is also a Torque Limit field near the bottom. Scaled 0-10,

this allows users to limit output torque on an axis. On an

ACR7xC standalone controller, the value in this field represents

the physical voltage limit of the torque command analog output.

After changing a value, press Enter to send that value to the

controller. Otherwise, the text will turn blue to indicate that the

value has not been sent. The Send To Controller button can be used

to send multiple values at once.

This panel comes with several buttons:

• Save To Project saves the values in the panel to the project

file on the hard drive.

• Get From Project loads values from the project file into the

panel, but does not send them to the controller.

• Send To Controller sends the values from the panel to the

controller.

• Save To Controller issues an ESAVE command to the

controller, which tells the controller to save its current

values to flash memory.

• Get From Controller uploads values from the controller to

the panel.

After getting the gains dialed in, it is a good idea to press Save To Controller and Save To Project to make sure the

gains are preserved and will not be lost when power is cycled.

Move Configuration

The Move Configuration panel has three buttons:

PARKER MOTION MANAGER

66 ACR Programmer’s Guide

• Move Settings

• Single Run

• Repeat Run

The Move Settings dialog allows users to input a distance and time for a test move

that will be executed by the Servo Tuner. It automatically calculates the velocity

and acceleration ramps required and allows the user to specify several levels of S-

curve profiling (jerk limiting). Users can check Return Move to return to the starting

position after the end of the move. Users can also select a triangular motion profile

or their own user-defined profile. It is best to start testing with a small move, tune

the axis with a basic move and then tune to a move typical for the application.

Users can execute the move once by clicking Single Run or multiple times by clicking Repeat Run. This provides the

ability to change tuning gains while doing the same move over and over to see the effect of the changes (rather

than having to click to start the move repeatedly). Note that Repeat Run requires onboard sampling, covered

under Timebase.

Timebase

The Timebase panel controls the graph’s time (horizontal) axis. It consists of several tools:

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 67

• The time/division indicator shows the length of time represented by

one division on the horizontal axis. This can be changed using the up

and down buttons to its left.

• The slider beneath the time/division indicator can be used to scroll

data in the graph back and forth horizontally.

• Clicking Zero resets the time slider as well as the vertical slider for

each channel, an effect only noticeable if Auto Scale is disabled.

• Clicking Erase erases all data from the graph.

Clicking Sampling opens the sampling dialog. Here, the user can select PC-based Sampling (default) or Onboard

Sampling.

PC-based sampling means that PMM will request the parameter value over Ethernet at the specified rate. The

sample data is transmitted as needed without buffering. This is convenient and does not impose a memory burden

on the controller, meaning the graph can store very large data samples. However, PMM does not permit sampling

faster than 20 ms with this option to avoid taxing network and processor resources on the controller and the

user’s PC.

Onboard sampling means that the controller will allocate a memory buffer for the data it needs to take in advance.

When the user clicks Single Run or Repeat Run, the controller will store the data it acquires in the buffer and

transmit it all at once after the test is finished. The main advantage of this option is that it allows the user to

acquire data at a faster interval (all the way down to the servo period). However, ACR controllers have limited

memory and large data samples are not always possible. If there is not enough memory available to run the test

with onboard sampling, PMM will log the error message “failed to allocate program memory for sampling buffer”

to the Messages window.

NOTE: The Repeat Run button requires onboard sampling.

The approximate amount of memory in bytes required to run a test move with onboard sampling can be calculated

using the following formula:

Mbytes = 4Nchannels (
ttest
tsample

)

PARKER MOTION MANAGER

68 ACR Programmer’s Guide

Nchannels is the number of channels in use, ttest is the length of time visible on the horizontal axis in seconds and tsample

is the sample time in seconds. If the sample time is set to Servo Period, the actual sample time depends on the

controller in use. For ACR7000 controllers, the default servo period is 500 µs. For the IPA, it is 250 µs.

Display

The Display panel has four checkboxes that allow the user to show or hide each channel on the graph. Users can

click Display Data to display all of the captured data in a textual format, which makes it easy to copy the data to

other applications like Microsoft Excel. Users can click Export Data to directly save the data to a text or CSV file.

Status Axis(0)

This panel has indicators to show whether PMM is connected to the controller, whether

this axis is enabled and whether a Kill All Motion Request is active for this axis. A Kill All

Motion Request prevents all motion on an axis.

Users can click Enable Drive to enable this axis. Kill All Motion issues a Kill All Motion

Request to the current axis. Clear All Kills removes the Kill All Motion Request to allow

motion again.

The Scope

The scope is the central feature of the Servo Tuner and shows data captured from the

controller during a test. This helps users visually understand what their axis is doing

during the test. It is common to graph parameters like Following Error, Secondary Setpoint, Actual Torque and

other control loop parameters.

Data channels display their current values when sweeping the cursor over the scope. This makes it easy to

correlate specific channel values with specific times. One of the biggest new features to the Servo Tuner in PMM

is Auto Scale (on by default), which makes the scope much easier to read.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 69

PARKER MOTION MANAGER

70 ACR Programmer’s Guide

Jog/Home/Limits

The Jog/Home/Limits screen gives users the ability to enable the drive and jog the motor in either direction and

provides additional dialogs for users to fine-tune their limit and home settings. The screen is divided into several

subpanels that either display status or allow the user to perform an operation with the axis. Each subpanel is

discussed in detail here.

Communications

The Communications subpanel has a single indicator that shows whether PMM is connected to the ACR. PMM

must be connected for most of the tools on this screen to function.

Drive

This subpanel has an indicator to show whether the drive is enabled and another to indicate whether it is faulted.

It has buttons to enable or disable the drive. Click Drive Reset to recover from drive-related faults, such as

encoder loss or overtemperature. Click Zero Positions (equivalent of RES command) to reset the commanded and

actual position to zero for this axis.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 71

Below the Drive subpanel is the control panel for jogging. When the drive is enabled, click Jog Positive or Jog

Negative to jog the axis. Clicking Kill All Motion & Disable All Drives will stop all motion on all axes and disable

torque on all drives.

NOTE: The Kill All Motion & Disable All Drives button is a software feature. It is not designed or

tested for fault tolerance and is not a replacement for an Emergency Stop and machine

safety plan.

There are also several useful indicators on this panel:

• Jog Lockout. When this bit is on, jog motion is inhibited.

• Jog Limit Check. On when the jog limits (JLIM command) are in effect.

• Jog Active. On when the axis is jogging.

• Jogging Positive. On when the axis is jogging in the positive direction.

• Jogging Negative. On when the axis is jogging in the negative direction.

• Jog At Speed. On when the Jog Profiler has finished ramping up to the user-set JOG VEL speed.

• Jog Stopping. On when the Jog Profiler is ramping speed to zero in preparation to stop.

The jog velocity, acceleration and deceleration can also be altered here. Click Jog Setup and a dialog will appear

where new dynamics can be entered.

PARKER MOTION MANAGER

72 ACR Programmer’s Guide

NOTE: Remember that in the ACR architecture, setting acceleration, deceleration or jerk

parameters to 0 is interpreted as setting them to infinity. In the example above, zero jerk

will result in a trapezoidal or triangular move profile.

Select the Home tab to view indicators and controls for homing the axis. Click Home Positive to start searching for

home in the positive direction or click Home Negative to start searching for home in the negative direction.

This panel has several indicators:

• Homing Not Active. Indicates whether the axis is homing.

• Not Homing Positive. Indicates whether the axis is homing with an initial positive direction.

• Not Homing Negative. Indicates whether the axis is homing with an initial negative direction.

• Homing Not Stopping. Indicates whether the axis is stopping its homing move.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 73

• Home Input Not Tripped. Indicates whether the home input has turned on.

Homing dynamics can be altered on this screen. Click Home Setup to change them.

NOTE: These options are not saved with the project configuration. However, the code to set

these options can be copied out of the Terminal Emulator as long as it is open when

clicking OK. Copy the code into a program for easy homing setup.

Hardware Limits

The Hardware Limits subpanel has indicators to display whether either of the limits have been tripped.

Click Setup to make adjustments to the limit switch configuration. Most of the options in this dialog should be

familiar since they are also found on the Fault screen of the Configuration Wizard. Click Send to apply the new

settings to the controller. To make the changes permanent, check the Save changes to Configuration box and click

OK. This will apply the changes to the project configuration.

PARKER MOTION MANAGER

74 ACR Programmer’s Guide

Software Limits

The Software Limits subpanel shows the status of the position soft limits for the axis.

Click Setup to make changes. The options presented in this dialog work the same way as the ones on the Fault

screen in the Configuration Wizard. Click Send to apply the new settings to the controller. To make the changes

permanent, check the Save changes to Configuration box and click OK. This will apply the changes to the project

configuration.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 75

Position Error

The Position Error subpanel shows whether this axis has exceeded its maximum allowable position error.

Click Setup to make changes. The options presented in this dialog work the same way as the ones on the Fault

screen in the Configuration Wizard. Click Send to apply the new settings to the controller. To make the changes

permanent, check the Save changes to Configuration box and click OK. This will apply the changes to the project

configuration.

LED Legend

This subpanel just displays four sample LEDs with information about what their color codes mean.

PARKER MOTION MANAGER

76 ACR Programmer’s Guide

OS Update
The OS Update screen is used to install a newer version of firmware into an existing controller. This may be

required to take advantage of a previously unavailable feature or improvement. Some users prefer to standardize

on one OS version and “back-rev” new units. This screen can be used to revert a controller to an older firmware

revision as well.

Basic controller information, including the model family, firmware revision and bootloader revision is shown under

Controller Information.

It is required that the controller’s memory be wiped before downloading a new OS. To do this, click Return to

Factory Settings (same as issuing the FLASH RES command). This will also set the IP address back to the factory

default. For the ACR7000, this is 192.168.100.1. For the IPA, the default address is 192.168.100.x, where “x” is

determined by the rotary switches.

NOTE: Make sure the program is backed up and saved on a PC prior to clicking Return to Factory

Settings. All application data will be deleted from the controller by clicking this button.

To install a new OS, click Update OS. This will halt any running programs and disable all drives (buttons and

indicators are also provided to do this manually). A dialog will appear permitting the user to select a “.ops”

operating system file and download it. Operating system packages for the ACR7000 or IPA can be downloaded

from the link on this screen.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 77

Click Open to start the download.

NOTE: Do not interrupt the OS download process. Cycling power on the controller or

disconnecting during an OS download can “brick” the unit and leave it in an unbootable

state. If this happens, the unit may need to be returned to the factory for repair.

Another dialog will then indicate the status of the download and confirm success.

After the OS update is complete, make sure to download the application to the controller again.

PARKER MOTION MANAGER

78 ACR Programmer’s Guide

Status Panels

The status panels are designed to aide in commissioning and troubleshooting a machine. When problems arise, it

usually helps to find a status panel that displays the data you need and pin it somewhere convenient.

The available status panels are:

• Motion Status Panel (ACR7000 family).

• Drive Status Panel (ACR7xT and ACR7xV only).

• Common Status Panel (IPA only).

• Numeric Status.

• Bit Status.

• EtherNet/IP Status Panel.

• Servo Loop Status.

Motion Status Panel (ACR7000 Family)
The Motion Status Panel, available for all ACR7000 models, displays basic status and fault data about all the axes at

once. It also shows basic status information on programs, communications and the Enable Input.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 79

Axis Status Bits

The upper left-hand subpanel displays status bits for

each axis. The bits are each labeled with easy-to-

understand descriptions on the left.

For more information on a particular status light,

hover the mouse over the light in question. A

tooltip with appear with the bit number for that

indicator. The bit number can be searched in the

help file for full documentation. If you want to add

that bit to a Watch List, simply right-click it and

click Watch → Watch 1 (or any other Watch List

number).

Programs

This subpanel shows which programs are currently running. It also shows their

current state and line number. Line numbers typically go by 10s in ACR

programs. To see a program listed with its line numbers, go into the Terminal

Emulator and click List Line Number. Programs can have the following status

codes:

• Idle. Program is not running or has stopped running. This is common

if the program has not been commanded to run, in which case the line

number should be zero. In the case of a program crash, the line

number will show the line on which the crash occurred.

• Running. Program is executing code. The line number should be

constantly changing. This is normal when the RUN command is given

to a program. Programs can also go int run mode if they use the

PBOOT command or if their Run Request flag has been set.

• Dwelling. The program has encountered a DWL command and will stay on that line until the programmed

dwell time has elapsed.

• Inhibited. The program has stopped on a line and will stay there until a certain condition is met. This is

caused by the INH and IHPOS commands.

Axis Position

This subpanel shows the Commanded

Position, Actual Position and Actual Velocity

for each axis. The position values are in

user units and the velocity is in user units/s.

It is important to remember that

Commanded Position is the sum of four

PARKER MOTION MANAGER

80 ACR Programmer’s Guide

different move profilers—more on that later.

Master

This subpanel just displays the status of the Moving and Kill All Moves flags for each

master. When a Kill All Moves Flag is turned on, all master moves (e.g. X12 Y/5)

will be prohibited until it is cleared. Click Kill All Motion, located in the bottom left-

hand side of the Motion Status Panel, to issue a Kill All Motion request to each axis

and a Kill All Moves request to each master. Click Clear All Kills to reverse that

action and ready the system for motion again.

Online Status

This subpanel just indicates whether PMM is currently connected to the controller.

Motion Enable Input

This subpanel indicates whether the Motion Enable Input is closed. If this input is open, none of the drives will be

permitted to enable.

Drive Status Panel (ACR7xV and ACR7xT)
The Drive Status Panel, available for ACR7xV and ACR7xT models, shows fault-related data for each of the built-in

servo or stepper drives. Some of the information displayed is duplicated from the Motion Status Panel to provide

the user with a complete interface for fault-finding.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 81

Control Status

The Control Status subpanel shows information

also available on the Motion Status Panel. Anything

not related to fault conditions has been omitted.

These “controller level” faults are not specific to

any particular model of ACR and are also found on

the IPA and older ACR9000 series.

PARKER MOTION MANAGER

82 ACR Programmer’s Guide

Drive Faults

The Drive Faults subpanel varies depending on

whether the axis is a stepper or servo axis. The

image here shows the servo version. Some of

these bits are faults and others are warnings. All of

them are related to a hardware problem on the

axis. If a drive fault is present, it can be cleared by

issuing a DRIVE RES command followed by a

DRIVE ON command. If that does not succeed,

the fault condition is still present and will need to

be addressed by a hardware or configuration

change (e.g. reconnect encoder cable, increase

available power, etc.).

The Drive Faults subpanel for stepper axes is more

limited as there are fewer possible fault causes.

Controller Information

The Controller Information subpanel, available for

the ACR7xV, shows the Current Operating Time

and Current Power-On Time. The Current

Operating Time shows the total powered-on time

for this controller since the last factory reset

(FLASH RES). The Current Power-On Time

shows how long the controller has been powered

on since the last power cycle or REBOOT command. These values are useful for maintenance purposes.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 83

Common Status Panel (IPA)
The Common Status Panel, available for the IPA, combines the Motion Status Panel and Drive Status Panel into a

single interface to show the user all relevant status and fault data at once. This is feasible because the IPA only has

a single axis.

Status

The Status subpanel displays several types of information. The left-hand side shows motion status bits, the center

shows I/O and the right-hand side shows various status parameters.

Most of the fields and indicators here are self-explanatory, but a few deserve special mention:

• The Moving indicator references bit 516, the In Motion bit. This bit only reflects the status of master

moves (e.g. X15). In other words, motion can occur without this bit turning on. For instance, the

command JOG FWD X is a jog move and would not turn on the In Motion bit.

• The Home Found indicator will turn on if the homing move succeeds. However, it will turn off again as

soon as a new move is commanded.

• The Analog Input fields show the ADC input values after the offset and gain are applied. The default

range is ±10 VDC, but this can be changed using the ADC OFFSET and ADC GAIN commands.

• Actual Position, Commanded Position and Following Error are shown in user units. Commanded Velocity

is shown in user units/s.

• The Velocity % and Torque % fields show actual values. These fields take into account physical limits

imposed by the motor, drive and available bus voltage. For instance, if the motor is designed for 340

VDC but is being run on 48 VDC, the Velocity % field will display the actual speed relative to the motor’s

estimated performance at the lower voltage. The Torque % field makes similar adjustments in cases

where the drive has a lower rated current than the motor.

• The RMS Max field shows root mean square current usage, useful for making sure the application is not

exceeding the continuous current limits of the motor or drive.

Buttons

The Common Status Panel comes with four buttons to make basic troubleshooting tasks easier:

PARKER MOTION MANAGER

84 ACR Programmer’s Guide

• Kill All Motion. Issues a Kill All Motion Request, which will bring the axis to a stop and prevent further

motion.

• Clear All Kills. Clears any previously initiated Kill All Motion Request, allowing motion again.

• Drive Enable. Issues a DRIVE ON command, enabling the drive. If the drive is already enabled, this

button will instead be labeled Drive Disable and can be used to disable the drive.

• Drive Reset. Issues a DRIVE RES command, necessary for clearing drive level faults (e.g. undervoltage).

Control Status and Drive Faults

The Common Status Panel has a simplified fault reporting interface that relies on text descriptions rather than

labeled indicators. If there are no problems, both panels will display “Ready” in green text.

When a fault occurs, a red message will appear in the appropriate subpanel. Controller level faults like excess

position error or hard limit trips are displayed under Control Status. Hardware-related faults like undervoltage or

feedback faults are displayed under Drive Faults.

Controller Information

The Controller Information subpanel shows the

Current Operating Time and Current Power-On Time.

The Current Operating Time shows the total powered-

on time for this controller since the last factory reset

(FLASH RES). The Current Power-On Time shows

how long the controller has been powered on since the

last power cycle or REBOOT command. These values

are useful for maintenance purposes.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 85

Programs

This subpanel shows which programs are currently running. It also shows their

current state and line number. Line numbers typically go by 10s in ACR

programs. To see a program listed with its line numbers, go into the Terminal

Emulator and click List Line Number. Programs can have the following status

codes:

• Idle. Program is not running or has stopped running. This is common

if the program has not been commanded to run, in which case the line

number should be zero. In the case of a program crash, the line

number will show the line on which the crash occurred.

• Running. Program is executing code. The line number should be

constantly changing. This is normal when the RUN command is given

to a program. Programs can also go int run mode if they use the

PBOOT command or if their Run Request flag has been set.

• Dwelling. The program has encountered a DWL command and will

stay on that line until the programmed dwell time has elapsed.

• Inhibited. The program has stopped on a line and will stay there until a certain condition is met. This is

caused by the INH and IHPOS commands.

Numeric Status
The Numeric Status provides users with access to view any parameter in the ACR. Parameters are grouped based

on function. In many cases, the parameters shown related to an enumerated resource, such as an axis, an

encoder, a master, an ADC or a program. The pull-down menus can be used to select a parameter group.

Right-click a parameter to create a define for it or add it to a Watch List. New for

PMM!

PARKER MOTION MANAGER

86 ACR Programmer’s Guide

Axis parameter indices are separated by 256 (12290 + 256 = 12546). For example, Axis 0 Current Position is

P12288 and Axis 1 Current Position is P12544. This pattern can be seen with other resources (like encoders), but

the offset is not always 256. For more information on specific parameters, click Help → Parker Motion Manager

User’s Guide. Click the Search tab and enter the parameter number.

Numeric Status has hundreds of system parameters, such as the program line numbers.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 87

Or an axis’ drive settings.

NOTE: Not all parameters are used in all products. For example, the ACR7xC controller does

not have integrated steppers and thus the stepper drive parameters would all be 0.

User parameters are now in the Numeric Status. This includes User Doubles (P0-P4095), User Non-Volatile

Longs (P38912-P39167) and User Non-Volatile Floats (P39168-P39423).

New for

PMM!

PARKER MOTION MANAGER

88 ACR Programmer’s Guide

Bit Status
The Bit Status shows the status of every bit in the ACR. It works much like the Numeric Status. Indicators show

green for on (a.k.a. set or non-zero) and red for off (a.k.a. clear or zero).

The parameter for all 32 bits is also shown. For example, P4120 is the 32-bit integer containing the Axis 0 Primary

Axis Flags. Bit 768 is bit 0 of P4120’s 32 bits. Bit 799 is bit 31 of P4120.

Axis bit indices are separated by 32, so if the Not In Position bit for Axis 0 is bit 768, the Not In Position bit for

Axis 1 is bit 800.

Users can quickly add specific bits to their Defines list or Watch Lists by right-clicking from this panel.

Similar to parameters, if needing a better description of a specific bit, search the online help file with the bit

number and scroll down past the bit table.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 89

Ethernet/IP Status Panel
The EtherNet/IP Status Panel shows detailed status information for the controller’s EtherNet/IP adapter, master

and peer-to-peer connections.

The EtherNet/IP Status subpanel houses fields and indicators pertaining to overall network status. The Network

Operational indicator at the top shows whether the EtherNet/IP network is running and exchanging data. Note

that this does not mean the network is free of errors. It is possible for the network to start even if not all of the

nodes are found.

Failure Status

This subpanel displays indicators that address specific failure

conditions:

• Network Start Failed. Errors occurred during startup that

prevented operation.

• I/O Node Failure. Network failure occurred on a specific I/O

node.

• Peer Node Failure. Network failure occurred on a specific

peer (another ACR).

• Peer Configuration Data Error. Configuration data invalid for peer connection (e.g. parameter range

exception).

• Node Reset Failure. Node was unable to reset connection.

PARKER MOTION MANAGER

90 ACR Programmer’s Guide

Scanner Parameters

This subpanel displays basic network status data:

• Number of I/O Nodes. This is the number of

connected PIO-363 (Wago 750-363)

EtherNet/IP bus couplers. Up to four

connections are supported.

• Number of Peer Nodes. This is the number

of connected ACR controllers. Up to four

connections are supported.

• Network State Code. Represents overall

network status. Typical states are:

o 0—Reset or Not Active.

o 5—Operational.

o 6—Stopped.

• Non-Operating Nodes Bit Reports. Each non-operating I/O Node or Peer Node will trigger a bit to turn

on in this parameter. I/O Nodes start at bit 0 and Peer Nodes start at bit 16.

• Operation Error Code. Network error code (0 indicates no error). Full listing below.

• Operation Duration Time in Seconds. Time elapsed since network was started.

Operation Error Code Descriptions

Value Description Value Description

0 No errors 11 I/O Node Online, but no response

1 Invalid user supplied I/O Node count 12 I/O Node error response

2 Invalid user supplied Peer Node count 13 UCMM data range

3 Error in user supplied external node data 14 Internal error in EtherNet/IP cycle start

4 Invalid IP address 15 Invalid number of Peer parameter groups

5 Error in UCMM transfer 16 Invalid Peer parameter direction

6 UCMM request timeout 17 Invalid number of parameters in a Peer group

7 Excess I/O on node or system 18 Invalid parameter number in a Peer group

8 Unknown I/O node vendor 19 Excess inputs or outputs within a single Peer

9 Unexpected I/O node device type 20 Excess inputs or outputs for total Peer collection

10 I/O Node offline

Scanner Parameter Status

This is a text summary of the network status, specifically the Network State Code and Operation Error Code.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 91

EtherNet/IP Node Data

This subpanel, located on the right-hand side, houses tables displaying node-specific status data. This is helpful

when troubleshooting node-specific problems.

The top table displays the status of the I/O

nodes:

• Node IP Address. IP address of

the node. Note that every IP

address on a network must be

unique—this address should not

be the same as the controller’s

address.

• Node Status Code. Typical codes

are 0 (not found), 1 (found) and 2

(found then lost).

• Node Status Description. Text description reflecting the Node Status Code.

• Operational Duration. Seconds since the node was connected.

• Operation Error Code. 0 means no error.

• Operation Error Description. Text description of Operation Error Code.

• Node Failure Count. Number of dropped packets recorded since the node connected.

The bottom table displays the status of the

peer nodes:

• Node Status Code. Typical codes

are 0 (not found), 1 (found) and 2

(found then lost).

• Node Status Description. Text

description reflecting the Node

Status Code.

• Operational Duration. Seconds since the node was connected.

• Operation Error Code. 0 means no error.

• Operation Error Description. Text description of Operation Error Code.

• Node Failure Count. Number of dropped packets recorded since the node connected.

Controls

There are also four buttons on this panel to provide basic control over the network:

• Start Network. Attempt to start the network. This will connect to any configured nodes and begin

exchanging data.

• Stop Network. Stops data updates and disconnects from all nodes.

PARKER MOTION MANAGER

92 ACR Programmer’s Guide

• Discover Network. Checks to verify the availability of all nodes. Good for verifying network integrity

before starting the network.

• Reset Network Nodes. Reset connections to all nodes and restart the network.

Other useful data related to EtherNet/IP can be found in the Numeric Status and Bit Status. In particular, the

values of actual I/O data and peer-to-peer data can be found there.

Servo Loop Status
The Servo Loop Status panel gives users immediate visibility as to the different types of motion being commanded

for an axis. Interpolated, Gear, Jog and Cam together are the Primary Setpoint. Backlash and Ballscrew

compensation are added to generate the Secondary Setpoint. Current Position is the commanded position from

interpolated MOV commands.

Actual Position is based on the servo feedback, typically a rotary or linear encoder. Following error is generated

by subtracting the Secondary Setpoint from Actual Position. This is provided to the servo loop, which processes

the error and multiplies it by gains to generate the Proportional Term, Integral Term and Derivative Term. The

Velocity Term and Acceleration Term are feed-forward values. The Summation Point is the just the sum of all of

these terms.

The output from the Summation Point is processed by a lowpass and a notch filter. The result is clamped to ±10

VDC or a lower limit if configured by the user. The ±10 VDC range represents the full range from peak positive

torque to peak negative torque (force in the case of linear motors). This value is proportional to the current that

will be delivered to the motor.

The Servo Loop Status can display position and velocity data in encoder counts, but can also display it in user units,

saving the effort of translating counts into meaningful information.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 93

Scopes

There are four independent scopes in PMM:

• Oscilloscope 1.

• Oscilloscope 2.

• Strip Chart.

• XY Plot.

These scopes are not tied to any specific purpose and can be used for general troubleshooting. Most of the tools

will be familiar to anyone who has already used the Servo Tuner.

Common Tools
The Scopes are all built on a common interface with variations for each use case. Those common tools are

covered here. The scopes themselves are covered afterward.

Channels

By default, the four channels are set up as follows:

• Channel 1 shows Following Error in yellow. Units are encoder counts.

• Channel 2 shows Current Jog Velocity in green. Units are encoder counts per second.

• Channel 3 shows Final Output Signal in orange. Units are ±10 and represent the torque command in

volts.

• Channel 4 shows Secondary Setpoint in purple. Units are encoder counts.

In addition to controls specific to each channel, there is a global

setting for all position-related parameters to be graphed in

encoder counts (default) or in user units.

Each channel has several controls:

• The top field displays the parameter being graphed. This

can be changed to any parameter desired using the “…”

button to the right of the field (details below).

• The middle field displays the horizontal and vertical shift

for this channel. The vertical shift can be altered using

the vertical slider at the right. See Timebase for details

on the horizontal shift.

• The bottom field displays the vertical scale (default 1

unit/div). This can be altered using the up and down

arrow buttons to the right. Check Auto Scale Y-Axis (checked by default) to make the graph fit the

available vertical space. This option is usually preferred as it makes the data easy to read.

New for

PMM!

PARKER MOTION MANAGER

94 ACR Programmer’s Guide

When the user clicks the “…” button to select a new

parameter, the Parameter Picker dialog appears. This

dialog helps the user drill down to a parameter of interest

by using three pull-down menus. The top menu selects the

parameter group, the second menu selects the subgroup

and the third selects the individual parameter type. The list

at the bottom breaks a specific parameter type (Following

Error in this case) down into enumerated options, often

based on axis number (otherwise encoder number, stream

number, ADC number, etc.).

The Parameter Picker dialog is consistent across PMM and

is also used in the Servo Tuner. It is conceptually very

similar to the Pick A Bit dialog that serves the same

purpose for bits. The same pull-down menus used in the

Parameter Picker are also used in the Numeric Status

panel.

When a flag parameter is selected (P4096-4375), the bottom pull-down makes it

possible to select a specific bit (or bits) to watch in the scope.

Timebase

The Timebase panel controls the graph’s time (horizontal) axis. It consists of several

tools:

• The time/division indicator shows the length of time represented by

one division on the horizontal axis. This can be changed using the up

and down buttons to its left.

• The slider beneath the time/division indicator can be used to scroll

data in the graph back and forth horizontally.

Controls

Most scopes have two rows of buttons near the bottom left-hand corner that perform major functions, although

there will be variations on exactly which buttons are present.

Clicking Motion provides a dialog where the user can write a small snippet of code. This code will be sent down

the controller and executed during a test. The default code just does an incremental jog move on an axis defined

by the user. To turn off the motion code, simply uncheck the Download Commands box. Some users may find it

useful to alter the program to which the commands are sent (particularly if interpolated motion is required), which

can be done with the program pull-down at the bottom of the dialog.

New for

PMM!

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 95

Clicking Sampling opens the sampling dialog. Here, the user can select PC-based Sampling (default) or Onboard

Sampling.

PC-based sampling means that PMM will request the parameter value over Ethernet at the specified rate. The

sample data is transmitted as needed without buffering. This is convenient and does not impose a memory burden

on the controller, meaning the graph can store very large data samples. However, PMM does not permit sampling

faster than 20 ms with this option to avoid taxing network and processor resources on the controller and the

user’s PC.

Onboard sampling means that the controller will allocate a memory buffer for the data it needs to take in advance.

When the user clicks Single or Run, the controller will store the data it acquires in the buffer and transmit it all at

once after the test is finished. The main advantage of this option is that it allows the user to acquire data at a

PARKER MOTION MANAGER

96 ACR Programmer’s Guide

faster interval (all the way down to the servo period). However, ACR controllers have limited memory and large

data samples are not always possible. If there is not enough memory available to run the test with onboard

sampling, PMM will log the error message “failed to allocate program memory for sampling buffer” to the Messages

window.

NOTE: The Run button requires onboard sampling.

The approximate amount of memory in bytes required to run a test move with onboard sampling can be calculated

using the following formula:

Mbytes = 4Nchannels (
ttest
tsample

)

Nchannels is the number of channels in use, ttest is the length of time visible on the horizontal axis in seconds and tsample

is the sample time in seconds. If the sample time is set to Servo Period, the actual sample time depends on the

controller in use. For ACR7000 controllers, the default servo period is 500 µs. For the IPA, it is 250 µs.

The other buttons have simpler functions and are explained below:

• Clicking Display Data displays all of

the captured data in a textual

format, which makes it easy to

copy the data to other

applications like Microsoft Excel.

• Clicking Export Data directly saves

the data to a text or CSV file.

• Clicking Run will run the Motion

code over and over, producing

graphs over and over. This is

useful for viewing how an issue

reacts over many cycles. It is

helpful in troubleshooting

intermittent problems.

• Clicking Single will run the Motion

code exactly once and produce

one graph. This is the most

common way to use the oscilloscope.

• Clicking Zero resets the time slider as well as the vertical slider for each channel, an effect only noticeable

if Auto Scale is disabled.

• Clicking Erase erases all data from the graph.

Display

The Display panel has four checkboxes that allow the user to show or hide each channel on the graph.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 97

The Scope

The graphical scope is the central feature of each scope tool and shows data captured from the controller during a

test. This helps users visually understand what their axis is doing during the test. It is common to graph

parameters like Following Error, Secondary Setpoint, Actual Torque and other control loop parameters.

Data channels display their current values when sweeping the cursor over the scope. This makes it easy to

correlate specific channel values with specific times. One of the biggest new features to the Servo Tuner in PMM

is Auto Scale (on by default), which makes the scope much easier to read.

New for

PMM!

PARKER MOTION MANAGER

98 ACR Programmer’s Guide

Oscilloscope

The Oscilloscope is the most flexible scope tool in PMM. For convenience, there are two of them. This allows

users to monitor or troubleshoot two entirely different issues without needing to constantly reconfigure their

scope. The Oscilloscope is very similar to the Servo Tuner and has access to all of the tools mentioned

previously. It can be considered the basic form of all the scopes.

 PARKER MOTION MANAGER

 ACR Programmer’s Guide 99

Strip Chart

The Strip Chart is like the Oscilloscope, but is designed to monitor signals for longer periods. Because it is meant

for monitoring slower signals, onboard sampling is not an option. The Strip Chart only uses PC-based sampling.

The scope for the Strip Chart comes with an extra slider at the bottom. This slider can be used to select a subset

of the total elapsed time for viewing. If the user changes the position of the slider, the scope will pause at the

desired section, but will keep collecting data. Clicking Resume will put the Strip Chart back in “scrolling” mode.

PARKER MOTION MANAGER

100 ACR Programmer’s Guide

XY Plot

The XY Plot replaces the time axis with another value axis. It is designed to compare two signals that have a

relationship, like the positions of an X and a Y axis.

The XY Plot only has two channels instead of the usual four. Each channel maps one parameter to the horizontal

axis (top parameter) and another to the vertical axis (bottom parameter). The rest of the tools work normally.

 ACR BASICS

 ACR Programmer’s Guide 101

CHAPTER 2

ACR Basics

ACR BASICS

102 ACR Programmer’s Guide

ACR Basics

The AcroBASIC programming language accommodates a wide range of needs by providing basic motion control

building blocks, as well as sophisticated motion and program flow constructs.

The language comprises simple ASCII mnemonic commands each on its own line or separated by a delimiter.

Let us start by taking a look at a basic program and what each line does:

PROGRAM Starts program definition. First line of any program. Valid AcroBasic

commands appear in blue, but that is not shown here for formatting

reasons.

DRIVE ON X Enable the X axis motor.

RES X Reset the X position to 0.

ACC 10 DEC 10 STP 10 VEL 1 Sets acceleration/deceleration/stop/velocity.

X10 Go to 10 position on X. Units based on config wizard scaling.

X0 Return to starting position of 0 on X axis. Controller waits until X is at

10 before returning.

ENDP End of program. Must always be last line of a program.

Note most commands are on their own lines but ACC, DEC, STP and VEL are all used by the motion calculator

simultaneously and thus can be on one line, saving vertical programming space.

The AcroBASIC programming language uses a parent child approach. A parent can have child statements. A child

statement is considered a sub-statement of the parent.

Parent Command DRIVE ON X Child Command

You can issue many parent statements alone—some provide the current status related to that particular

command, others perform an action. For example, issuing the VEL command online with the controller in the

terminal emulator at the Program 0 prompt provides the velocity setting. Conversely, issuing the PROGRAM

command initiates defining a program.

Delimiter
Commands can be on their own line; a carriage return or line feed at the end of a line separates one command

from the next. Or, you can put multiple commands on the same line separated with a “space-colon-space” (“ : ”).

This can be used to separate two commands on the same line to save vertical space.

DRIVE ON X : REM Enable the X axis motor.

X0 : PRINT "MOVING TO 0 POSITION"

 ACR BASICS

 ACR Programmer’s Guide 103

The multiple spaces between X and : are extra and okay; the minimum is one space, followed by a colon, followed

by one space. This allows programmers to align their program notes for readability. REM is a remark for

programmer’s notes but is technically a command and thus needs to be separated from DRIVE ON X with the

delimiter. Though commands are on the same line, they are executed sequentially left to right.

JOG REV Y Z : JOG FWD X : PRINT "RETRACTING YZ, ADVANCING X"

More than two commands can be on the same line, but this can be harder to read in larger programs.

Remarks
Remarks are for programmers to add notes on the purpose of different sections or lines of code. They can be on

their own line or at the end of line with space-colon-space.

REM Remarks are stored within the controller. Remarks in PMM automatically change to green in the program

editors.

By using an apostrophe (') in place of REM, the controller strips comments on downloading the program. This

can help minimize program space within the controller. This originated from memory limitation of controllers

many years ago and is not a limitation for new controllers such as the ACR7000 or IPA controllers. Apostrophe

comments must appear on their own line.

Remarks cannot be on PROGRAM or ENDP lines or on program labels.

No commands can be at the end of a remark. Programmer comments must be on their own line or at the end of

line. Let us take the first program and add remarks.

PROGRAM

' My first program. This would not be stored in the controller

DRIVE ON X : REM Enable the X axis motor.

RES X : REM Resets current X position to 0.

REM Each comment line must have REM or ' at the beginning.

REM These would be stored within the controller.

REM Sets accel, decel, stop and velocity.

ACC 10 DEC 10 STP 10 VEL 1

X10 : REM Move to 10 on X axis.

X0 : REM Return to start on X axis.

ENDP

This program could be inserted into Program 0 and downloaded as is. The program could be run several ways:

• Use the Start button in the Toolbar.

• From the Terminal Emulator, type RUN PROG0.

• Set the program run request flag, bit 1032.

ACR BASICS

104 ACR Programmer’s Guide

Program Labels
Labels are program pointers which provide a method of branching to specific locations, including subroutines,

within the same program. Labels can only be defined within a program and executed with a GOTO or GOSUB from

within the same program.

Observe the following rules when creating and using labels:

• Precede the label with an underscore (_) character.

• Use letters (case-sensitive) and numbers, but not spaces or symbols.

• Use the RETURN command to indicate the end of the subroutine.

• Do not put a REM command on the same line as a label.

Example:

PROGRAM

GOSUB STARTUP : REM Go subroutine to STARTUP label.

ACC 10 DEC 10 STP 10 VEL 1

_MAIN

X10 : REM Move to 10 on X axis.

X0 : REM Return to start on X axis.

GOTO MAIN : REM continue program at MAIN label.

_STARTUP

DRIVE ON X : REM Enable the X axis motor.

RES X : REM Resets current X position to 0.

RETURN : REM Go back to GOSUB STARTUP and continue.

ENDP

This program adds two labels: STARTUP and MAIN. The program first does a GOSUB (subroutine) to

_STARTUP, where it enables the X axis motor and resets the position. With the RETURN it goes back from

where it was called and continues to line of ACC 10 DEC 10… It then enters a section of code with label of

_MAIN and with the GOTO MAIN would repeatedly move the motor back and forth between position of 10 and

0. The Halt Program button (stop sign icon on the Toolbar) can be used to stop the program. Even though ENDP

is never reached, it is still needed as part of the download to define the end of the program.

Move—Default Motion
The ACR controllers are programmable motor controllers. The default move type is MOV, which is a coordinated

move in a straight line for all axes involved.

An axis with a number would imply moving to that position. The ACR will interpret these as coordinated moves

by default and hence the MOV command is optional. These lines are the same:

X10 : REM Move to 10 on X axis.

MOV X10 : REM Move to 10 on X axis.

This saves typing and thus the MOV doesn’t need explicitly typed but is the parent to the child axis X.

X/10 : REM Increment X +10 /is an incremental move

 ACR BASICS

 ACR Programmer’s Guide 105

X0 : REM Move 0 position. This is an absolute move

X-5 Y5 : REM Linearly interpolated move to X-5 Y5

With a linearly interpolated move, all axes start and stop at the same time. The velocity, accel and decel are for

the path of all commanded axes.

For MOV commands, the program starts the move and then continues the program. If there is a new MOV

command, it will wait until the first MOV is done before starting the new MOV.

All MOV interpolated moves must be commanded from the program to which their master is attached. The master

is the motion calculator and ACR controllers have eight masters available. The above commands need to be in

Program 0 because, by default, X and Y are attached to Master 0, which is attached to Program 0.

More motion types are available and further explanation is provided in Making Motion.

Axis Names
In ACR Series example code, Axis 0 is the X axis and Axis 1 is the Y axis, unless otherwise specified. Axis names

(aliases) are only recognized within the program to which their master is attached!

PMM’s Configuration Wizard allows users to assign axis names on Axes within the Alias column. This adds the

alias to the axis in the System Code with the ATTACH command. Or, programmers could also assign an axis name

to an axis through the ATTACH SLAVE command. The name can be 1-4 alpha character string (no numbers or

special characters).

By default, ACR74 will have four axes, ACR78 will have eight axes and IPA will have one axis:

ATTACH SLAVE0 AXIS0 "X"

ATTACH SLAVE1 AXIS1 "Y"

ATTACH SLAVE2 AXIS2 "Z"

ATTACH SLAVE3 AXIS3 "A"

ATTACH SLAVE4 AXIS4 "B"

ATTACH SLAVE5 AXIS5 "C"

ATTACH SLAVE6 AXIS6 "U"

ATTACH SLAVE7 AXIS7 "V"

The axis name is valid at the program prompt in the Terminal Emulator:

P00>DRIVE ON X

P00>DRIVE ON X Y

It is also valid from within the program to which it is attached—Program 0 by default.

Outside of the program to which the axis is attached, users can set axis parameters using AXIS syntax:

AXIS0 DRIVE ON

…Or…

DRIVE ON AXIS0

ACR BASICS

106 ACR Programmer’s Guide

Or, for multiple axes:

DRIVE ON AXIS0 AXIS1

Programmers will get an Unknown command error message if trying to use the axis name outside the program to

which it is attached:

To see a controller’s attachments, type ATTACH in PMM’s Terminal Emulator and press Enter. Here is an example

for an ACR74T four-axis stepper:

These attachments are already set by PMM’s Configuration Wizard after download. As the sample programs

command motion with X, the sample programs must be used within Program 0. Syntax errors occur within other

programs as X is not recognized outside of Program 0:

 ACR BASICS

 ACR Programmer’s Guide 107

Stopping Motion
When running and testing a program, users should be ready to kill motion—there is a button on the Motion Status

Panel for this purpose.

ACR BASICS

108 ACR Programmer’s Guide

With the Kill All Motion button, all programs are halted and the Master Kill is set as well as each axis’ Kill All Motion

Request (KAMR) bit. The axes will not be disabled. To run the program again, click Clear All Kills. This will clear

the Kill for the Master(s) as well as the KAMR for the axes. Then the program can be run again.

There are several ways to kill motion from Parker Motion Manager:

• Ctrl+X in terminal window – Kill All Motion.

• Ctrl+Z in terminal window – Kill All Motion and Disable drives.

• Kill All Motion button in Motion Status panel (shown above), sends Ctrl+X.

• Kill All Motion & Disable All Drives button in Jog/Home/Limits, sends Ctrl+Z.

• Kill All Motion button in Servo Tuner, sends Ctrl+X.

• Disabling the drives is the same as sending the DRIVE OFF command.

Motion can be stopped programmatically from an AcroBASIC program, external HMI or PLC by setting the Kill All

Motion Request (KAMR) flag.

Killing/stopping motion this way relies on being connected to the controller. If you lose the connection, users will

need to stop motion on the machine either with a switch or by removing power. Use an E-stop switch into the

IPA’s Torque Enable inputs to remove power from the motor or for ACR7000 to cut the enable input. See the

 ACR BASICS

 ACR Programmer’s Guide 109

controller’s hardware installation manuals for details. Local safety standards may require removing power from

the controllers. Note that when the motors are disabled, the drive’s brake outputs (for servo drives) will turn off,

engaging brakes on the motor. Parker servo motors have standard fail-safe brakes as an option, where the brake

needs to be powered to disengage.

Killing or stopping motion is stopping commanded motion. If a servo system is unstable or position error is very

high, a servo system can still be moving. If position maintenance is on it can also still be moving though position

maintenance velocity is typically set low for slow end-of-move corrections.

Clicking a Kill button in PMM or doing a Ctrl+X or Ctrl+Z will set the Kill All Motion Request flag on all axes.

Any motion command issued while this flag is set will result in an error message Associated Slave Kill Motion Request

Active in the terminal emulator. This is true if any axis assigned to the same master is commanded to move.

The Kill All Motion Request will also be set if an axis trips a limit sensor or if a servo or closed-loop stepper faults

on a tracking error. To restart the controller, click the Clear All Kills before running the program or starting

motion again.

NOTE: Enabling drives using DRIVE ON command will clear the Kill All Motion Request (KAMR)

and Kill All Moves bits if the drive is not currently enabled.

We will discuss more about stopping in Stopping Moves and Motion.

PMM’s Toolbar allows the user to start and halt programs.

This presumes the controller has been setup with the Configuration Wizard, with the motor selected, end of

travel sensors connected and the program downloaded.

We recommend having the Motion Status Panel open to Kill All Motion when first running the program in case

unexpected motion occurs.

Program Flow
Code is executed sequentially, following the order in which it is written. But based on some input, you can stop

and wait, or shift code execution elsewhere in a program using conditional statements. Using conditional

statements, you can create code that tests for specific conditions and repeats code statements.

The conditional statement provides a logical test—a truth statement—allowing decisions based on whether the

conditions are met. In the code, you create an expression and test whether the result is true.

The selection structure controls the direction of program flow. Think of it as a branch in your program. You can

divide conditional statements into three sub-categories: wait, selection and repetition.

ACR BASICS

110 ACR Programmer’s Guide

Wait for Bit or Parameter
There are two commands that pause program execution waiting for a condition: INH and IHPOS. The INH

command lets you inhibit (pause) program execution until the state of a selected bit occurs. Similarly, the IHPOS

command lets you inhibit program execution until a parameter value is reached.

Either can pause the program execution forever until the bit/parameter condition is met and thus both have an

optional timeout.

INH 0 : REM Wait until bit 0 is on or true.

INH-0 : REM Wait until bit 0 is off or false.

IHPOS P12290 (40000,0) : REM Wait until Axis0 actual position > 40000 cts.

IHPOS -P12290 (40000,5) : REM Wait until Axis0 act. pos. < 40000 or 5 sec.

IHPOS P12290 (40000,5) : REM Wait until Axis0 act. pos. > 40000 or 5 sec.

NOTE: Position parameters in ACR are in counts. To convert from user units, multiply by axis

PPU. This can be done inside parentheses.

IHPOS P12290 ((5*P12375),0) : REM Wait until X reaches 5 user units.

Modifying our previous example, we can use INH and IHPOS to wait until X is past 1 unit to turn on an output.

After reaching a position of 10, it turns the output off and returns to 0.

PROGRAM

GOSUB STARTUP : REM Go subroutine to STARTUP label

ACC 10 DEC 10 STP 10 VEL 1 : REM Set move parameters

_MAIN

X10 : REM Move to 10 on X axis

IHPOS P12295 ((1*P12375),0) : REM Wait until X axis is past 1 unit

SET 32 : REM Turn on output bit32

INH-516 : ? "AT X10" : REM Wait until move is done, print

CLR 32 : REM Turn off output bit32

X0 : REM Return to start on X axis

INH-516 : ? "AT X0" : REM Wait until move is done, print

GOTO MAIN : REM continue program at MAIN label

_STARTUP

DRIVE ON X : REM Enable the X axis motor

INH 8465 (3) : REM Wait until Axis0 is enabled or 3seconds

IF (NOT BIT8465) THEN ? "DRIVE DIDN'T ENABLE" : END

RES X : REM Reset current X position to 0

RETURN : REM Go back to GOSUB STARTUP and continue

ENDP

Because ACR controllers buffer MOV moves, AcroBASIC programs will continue to process command lines. If

another MOV move is encountered, the program will wait there until the first move is done.

For interpolated MOV moves, an inhibit command using the In Motion flag can be used to make the program wait

until the move is complete before proceeding.

 ACR BASICS

 ACR Programmer’s Guide 111

The Jog Active bit can be used for Jog moves. Jog moves are not buffered and a second Jog move will interrupt the

first one.

INH -516 This will inhibit the program until Master 0’s In Motion flag is off. This can be used for any MOV,

such as a single-axis X10 or a multiaxis MOV such as X5 Y5.

INH -792 This will inhibit the program until Axis 0's Jog Active bit is off. This would be for a single-axis Jog

move such as JOG ABS X10.

From the program above:

X10 : REM Move to 10 on X axis

IHPOS P12295 ((1*P12375),0) : REM Wait until X axis is past 1 unit

SET 32 : REM Turn on output bit32

INH-516 : ? "AT X10" : REM Wait until move is done, print

Without the IHPOS and INH-516, the move would start, then output 32 would immediately turn on and the

message would print even though the axis is still moving.

NOTE: Do not use INH or DWL in programs 8-15. If you have multiple non-motion programs, an

inhibit or dwell in one non-motion program affects all non-motion programs.

With a timeout, the condition would need to be checked to see if the program continued because the condition

was true or because the timeout elapsed. From the program above:

DRIVE ON X : REM Enable the X axis motor

INH 8465 (3) : REM Wait til Axis0 is enabled or 3seconds

IF (NOT BIT8465) THEN ? "DRIVE DIDN'T ENABLE" : END

This second line will print a message and end (stop) program execution if the drive did not enable.

Selection
The selection structure controls the direction of program flow. Think of it as a branch in your program. When

the conditions are met, the program moves to a different block of code. AcroBASIC provides the following

conditional statements:

• IF/THEN

• IF/ELSE/ENDIF

• GOSUB/RETURN

• GOTO

IF/THEN

Programs need to run code based on specific conditions. The IF/THEN statement lets a program test for a

specific condition and respond accordingly.

ACR BASICS

112 ACR Programmer’s Guide

The IF portion is the condition to test; if the condition proves true, the THEN portion of the statement executes.

If instead the condition proves false, the THEN statement is ignored and program execution moves on to the next

statement.

NOTE: Enclose the condition being tested in parentheses.

Though the IF/THEN statement provides a single-line test, it can execute multiple statements when the condition

proves true. All the statements must appear on a single line and be separated by a delimiter (space, colon, and

another space).

When using an IF/THEN statement, users can nest GOTO and GOSUB statements.

IF (BIT 24) THEN P0 = P0+1

IF (P0 < 2) THEN GOSUB LoadParts : P0 = 100

Or, from the previous program sample, check if the drive did not enable. If it did not enable, print a message and

end the program:

IF (NOT BIT8465) THEN ? "DRIVE DIDN'T ENABLE" : END

IF/ELSE/ENDIF

The IF/ELSE statement provides a powerful tool for program branching and program flow control. The

IF/ELSE statement allows you to run one set of code if the condition is true, and another set of code if the

condition is false. The IF/ELSE statement must end with ENDIF.

When using an IF/ELSE statement, observe the following:

• You can nest GOSUB statements in an IF/ELSE statement. The GOSUB provides a return into the

IF/ELSE statement.

• Do not nest GOTO statements in IF/ELSE statements. The GOTO statement exits the IF/ELSE

statements and does not provide any link back inside.

• Do not nest IF/THEN statements in IF/ELSE statements—the logic may not provide the results you

expect.

Tip: When troubleshooting programs, use the LIST command to view the program stored on the controller. In

recognizing IF/ELSE statements, the controller indents the statements under the IF including the ENDIF. If any

statements in the IF/ELSE are not indented but should be, check the code in the program editor and re-

download.

The following demonstrates different actions based on conditions being true or false. If the input (bit 24) is true,

the long array increments and axis X moves an incremental distance of 25 units. If false, the long array decrements

and axis Y moves to an absolute position of 5.

IF (BIT 24)

 LA0(1) = LA0(1)+ 1

 X/25

ELSE

 LA0(1) = LA0(1)- 1

 Y5

 ACR BASICS

 ACR Programmer’s Guide 113

ENDIF

ELSE IF Condition

The IF/ELSE statement can include the ELSE IF condition. The ELSE IF condition lets you create a series

of circumstances to test. There is no practical limit to the number of ELSE IF conditions you can include.

However, they must come before the ELSE condition.

Here is how it works. When the IF condition is true, the subsequent statements are executed. When the IF

condition is false, each ELSE IF statement is tested in order. When an ELSE IF condition tests true, the

subsequent statements are executed. When the ELSE IF condition test false, the statements following the

ELSE condition execute. After executing the statements following an IF, ELSE IF or ELSE, the program

moves past the ENDIF to continue program execution.

When using the ELSE IF condition, you can omit the ELSE condition. When the IF and ELSE IF conditions

test false, statement execution after the ENDIF continues. Think of it as creating a series of IF/THEN

statements.

IF (P0>0)

 X/25

ELSE IF (P0=0)

 X0

ELSE

 X-10

ENDIF

GOSUB/RETURN

The GOSUB branches to a subroutine and returns when complete. You can use GOSUB and RETURN anywhere in

a program, but both must be in the same program. A procedure can contain multiple RETURN statements.

However, on encountering the first RETURN statement, the program execution branches to the statement directly

following the most recently executed GOSUB statement.

Example

The following example demonstrates a simple GOSUB routine.

GOSUB Label1

…

_Label1

PRINT "Inside Label1 subroutine"

RETURN

GOTO

The GOTO statement provides an unconditional branch within a procedure. You can only use the GOTO in the

procedure in which it appears.

You can nest GOTO statements in an IF/THEN statement.

NOTE: The GOTO statement makes code difficult to read and maintain. Use it wisely.

ACR BASICS

114 ACR Programmer’s Guide

The following demonstrates a simple GOTO statement. The program sets output bit 32, then moves axis X one

incremental unit in the positive direction. The program pauses until Axis 0’s Not In Position bit (bit 768) turns off

(meaning it is in position), then clears the output, waits 2 second, and goes to LOOP1.

ACC10 DEC10 STP10 VEL1

_LOOP1

 SET 32

 X/1

 INH -768

 CLR 32

 DWL 2

GOTO LOOP1

This would loop continuously until the program was halted by another program (HALT PROG0), by the user using

PMM (Halt button on Toolbar or via the Terminal Emulator) or by setting bit 1033 (Program 0 Halt Request bit).

GOTO and GOSUB Sample Program
Runs on Auto mode or Jog mode based on inputs.

PROGRAM

GOSUB STARTUP : REM Go subroutine to STARTUP label

ACC 10 DEC 10 STP 10 VEL 1 : REM Set move parameters

_MAIN

'AUTO MODE

IF (BIT 0) : REM Input0 Auto Switch on

X10 : REM Move to 10 on X axis

SET 32 : REM Turn on output bit32

DWL 0.5 : REM Dwell 0.5 sec

CLR 32 : REM Turn off output bit32

X0 : REM Return to start on X axis

P0=P0+1 : REM increment a part counter

'JOG MODE

ELSE IF (BIT1) : REM If Jog+ switch

 JOG FWD X

ELSE IF (BIT2) : REM If Jog- switch

 JOG REV X

ELSE

 JOG OFF X : REM If Auto and Jog are off, Stop Jog

ENDIF

IF (P0>=3) THEN END : REM end program after 3 cycles

GOTO MAIN : REM continue program at MAIN label

_STARTUP

DRIVE ON X : REM Enable the X axis motor

INH 8465 (3) : REM Wait until Axis0 is enabled or 3seconds

REM If drive does not enable, end program

IF (NOT8465) THEN ? “DRIVE NOT ENABLED” : END

RES X : REM Reset current X position to 0

 ACR BASICS

 ACR Programmer’s Guide 115

RETURN : REM Go back to GOSUB STARTUP and continue

ENDP

Repetition
The repetition structure—known as a loop—controls the repeated execution of a statement or block of

statements.

While the conditions remain true, the program loops (or iterates) through the specific code. Typically, the

repetition structure includes a variable that changes with each iteration. And a test of the value determines when

the conditions of the expression are satisfied. The program then moves to the next statement past the repetition

structure.

If the condition is not met, the loop does not execute. In many cases that is acceptable behavior. Conversely, if

the condition is always met, then the loop does not end. An endless loop is probably not a desired result, so be

mindful when writing the loop conditions.

AcroBASIC provides the following conditional looping commands:

• FOR/TO/STEP/NEXT

• WHILE/WEND

FOR/TO/STEP/NEXT

When you expect to loop through a block of code for a number of times, the FOR/NEXT loop is a good choice.

It contains a counter, to which you assign starting and ending values. You also assign a STEP value (positive

direction only), the value by which the counter increments.

When the FOR/NEXT loop executes the first time, the end value and the counter are compared. If the current

value is past the end value, the FOR/NEXT loop ends and the statement immediately following executes.

Otherwise, the statement block within the FOR/NEXT loop executes.

On each encounter of the NEXT statement, the counter increments and loops back to the FOR statement. The

counter is compared to the end value with each loop. When the counter exceeds the end value, the loop skips

the statement within, and proceeds to execute the statement immediately following the FOR/NEXT statement.

You can exit a FOR/NEXT loop before the counter is complete using a BREAK statement. When the condition is

met, the statement immediately following the FOR/NEXT loop executes.

FOR LV0 = 0 TO 499 STEP 1

 PRINT LA0(LV0), SA0(LV0)

 DWL 0.01

 IF (BIT 24)

 BREAK

 ENDIF

NEXT

WHILE/WEND

The WHILE/WEND loop executes as long as its condition remains true. You can use the WHLE/WEND anywhere

in a program.

ACR BASICS

116 ACR Programmer’s Guide

The WHILE sets the condition and is followed by statements you want executed when the condition is true.

When the condition is false, the statement immediately following WEND executes. The condition is evaluated only

at the beginning of the loop.

When using a WHILE/WEND statement, observe the following:

• Do not nest GOTO statements in a WHILE/WEND statement.

• At the start of each loop through the WHILE condition, the validity of the condition is tested.

The following demonstrates a WHILE/WEND loop. While the encoder position for Axis 2 is less than 1500 units,

the WHILE statement evaluates as true. As the loop runs, the array acts as a counter, incrementing with each

loop; axis X move an incremental 25 units; the program pauses for 1.5 seconds, then prints the current value of

the array; if the input (bit 24) is set, the loop breaks. When the encoder count exceeds 1500, the condition is

false and execution moves past the WEND statement.

WHILE (P6176 < 1500)

 LA0(1) = LA0(1) + 1

 X/25

 DWL 1.5

 PRINT LA0(1)

 IF (BIT 24)

 BREAK

 ENDIF

WEND

Bits, Parameters and Variables
The ACR uses parameters (registers) and flags (bits) to store information and define the behavior of the

controller. Users have almost unlimited access to the parameters and flags for use in programs or a user interface.

Most applications only need to utilize a small set of the thousands of registers available. The more complex the

application, the more parameters are likely to be used.

Parameters are registers of numeric data that are either 32-bit integers (LONGs) or 32-bit decimal values

(FLOATs). Flags (bits) are binary and are either TRUE (high or -1) or FALSE (low or 0).

There are two types of bits: request and non-request.

Request Bits: The bit is self-clearing when processed by the main processor. All request bits include “request” in

the name. In most cases, there are complimentary flags that perform the opposite action. For example, the Run

Request bit and the Halt Request bit control the running and halting of programs.

Non-Request Bits: The bit requires clearing through a program or manually through a terminal.

There are separate parameter and bit tables within PMM’s online help and also the separate ACR Parameter and

Bit Reference. Following each is a table providing descriptions of the parameters or bits and the read/write

attributes.

 ACR BASICS

 ACR Programmer’s Guide 117

NOTE: The values for some parameters and bits change automatically through operation of the

ACR controller. Changing (writing) a value does not ensure the parameter or bit retains

the value over the course of operations. Use caution—forcing a value to change can cause

unpredictable results.

Following is a list of the most commonly used parameter and bit tables:

• Master Parameters

• Master Flags

• Axis Parameters

• Axis Flags

• Object Parameters (includes analog inputs)

• Program Parameters

• Program Flags

In addition to the system bits and parameters, you have your own user bits and parameters that can be used within

the controller and to interface to other devices like an HMI or PLC.

User Bits and Parameters

Five groups of global parameters are available as user defined parameters.

Parameter Range Data type
Retained

Notes
ACR7xx0 IPA

P0-P4095 64-Bit Float Flash Flash

Must be dimensioned prior to use.

Dimensioning included in PMM Configuration

Wizard. FLASH IMAGE to save

P4100-P4103 32-Bit Long No No
Each parameter contains 32 user flags

(BIT128-255)

P4156-P4159 32-Bit Long No No
Each parameter contains 32 user flags

(BIT1920-2047)

P38912-P39167 32-Bit Long Yes Yes Retained in Non-Volatile USER RAM

P39168-P39423 32-Bit Float Yes Yes Retained in Non-Volatile USER RAM

BIT128-255 Bit No No Also accessible as P4100-P4103

BIT256-511 Bit No No Also accessible as P4104-P4111

BIT1920-2047 Bit No No Also accessible as P4156-P4159

Note that P4100 is 32 bits long, which are bits 128-159.

Each bit can be cleared individually, or more easily P4100 = 0 would do the same thing and save a lot more

programming space. P4100 = -1 would set all the bits.

The range of a 32-bit Long is -2147483648 to 2147483647.

ACR BASICS

118 ACR Programmer’s Guide

PMM’s Bit Status now includes the User Flags. Note the P4100 in the top-right indicating that parameter is made

of bits 128-159.

Using Parameters and Bits
You can specify parameters and bits in your programs or in the Terminal Emulator. Use the format Px or BITx,

where x represents the parameter or bit number.

The following demonstrates how to format parameters and bits. Suppose your program refers to the current

position for Axis 0 (see table P12288-P14199 Axis Parameters) and input 24 (see table Bit0-Bit31 Opto-Isolated

Inputs).

P12288

BIT24

Setting Binary Bits

You can use the SET command, or fix the bit value equal to 1. The following demonstrates how to set at bit. All

methods are valid.

SET 32

Bit32=1

SET Bit32

SET BIT 32

SET is always used with a bit. Thus, the BIT in the line is redundant and optional. Note the space between BIT

and the number is optional and both are valid syntax.

Clearing Binary Bits

You can use the CLR command or fix the bit value equal to 0. The following demonstrates how to set at bit. All

methods are valid.

CLR 32

Bit32=0

 ACR BASICS

 ACR Programmer’s Guide 119

CLR Bit32

CLR BIT 32

CLR is also always used with a bit. Thus, the BIT in the line is redundant and optional. Note the space between

BIT and the number is optional and both are valid syntax.

Printing the Current Value

You can send the PRINT command followed by a parameter or bit whose value you want to see. Bits return the

following values:

• -1 when set.

• 0 when clear.

You can use a question mark in place of the PRINT command. The question mark is a shortcut in the Terminal

Emulator.

NOTE: When printing a system parameter, the value returned is either an integer or a 32-bit

floating point.

When printing a user parameter (P0-P4095), the value returned is either an integer or a 64-bit floating point.

The following demonstrates how to view values stored in parameters and bits. Parameter 6144 provides the

current position of Encoder 0; bit 24 provides the current state of input 24.

PRINT P6144

PRINT Bit24

? P6144

? Bit24

Note a PRINT statement can be used for parameters, bits or strings and thus querying a bit status will require

"BIT" in the line.

A Word on Aliases

Parameters and bits can use aliases. You only need to assign the alias once, and then can use it throughout user

programs. The alias lets you provide a name that makes sense for programs and makes programs easier to read.

For more information, see Defines.

Programming Example
The following program uses two orthogonal axes, X and Y, to draw a square. You can use PMM to set up the

controller. Then, enter the program into Program 0 and download it to the controller.

RES X Y : REM Reset encoder registers to 0 at startup.

_LOOP

ACC 50 : REM Set trajectory generator acceleration.

DEC 50 : REM Set trajectory generator deceleration.

STP 50 : REM Set trajectory generator stop ramp.

ACR BASICS

120 ACR Programmer’s Guide

VEL 5 : REM Set target velocity.

X5 : REM Move axis to position.

Y5 : REM Move axis to position.

X0 : REM Move axis to position.

Y0 : REM Move axis to position.

GOTO LOOP

ENDP

Before running the program, make sure you are at the Program 0 prompt in the Terminal Emulator. The LRUN

command lets you listen through a terminal to the PRINT statements and error messages. This is the only way to

view program errors.

To run the program, type LRUN. When ready to exit the listening mode, press Escape (ASCII 27, top-left on most

keyboards).

As the program runs, you can pause the program by setting the Feedhold Request bit or sending the PAUSE

command. The Feedhold Request bit stops the axes using the deceleration value. To set the Feedhold Request

bit, issue the command SET 520.

You can resume the program by setting Cycle Start Request bit or sending the RESUME command. The Cycle

Start Request bit starts the axes using the acceleration value. To set the Cycle Start bit, issue the command SET

521.

While the program is in a feedhold, you can check the encoder position of each axis. To view the axis X encoder

position, issue PRINT P6144. To view the axis Y encoder position, issue ?P6160.

Note the space between "?" and "P6160" is optional.

Local Variables
Users can also dimension and use different types of variables local in each program:

Identifier Type Description Initialization

LV Long (32 bit integer) DIM LV(count)

SV Single (32 bit floating point) DIM SV(count)

DV Double (64 bit floating point) DIM DV(count)

$V String (8 bit characters) DIM $V(count)

LA Long Array DIM LAn(count)

SA Single Array DIM SAn(count)

DA Double Array DIM DAn(count)

$A String Array DIM $An(count)

 ACR BASICS

 ACR Programmer’s Guide 121

Local variables need to be dimensioned within program. Place a CLEAR command prior to a DIM statement to

clear out any previously dimensioned variables.

Below is a sample program that extends and retracts and actuator to feed out material, printing the number of

cycles, the length and the motor position.

PROGRAM

CLEAR : REM Clear any dimensioned variables.

DIM LV(1) : REM Dimension 1 long variable.

DIM DV(2) : REM Dimension 2 double variables.

LV0=0 : REM Initialize cycle counter.

DV0=3.1412 : REM Set material feed distance.

_LABEL1

PRINT "Cycles=",LV0 : REM Comma inserts a tab character between.

PRINT "Length=";DV1 : REM Semicolon indicates there is no space.

PRINT "X",(P12290/P12375)

X(DV0) : REM Feed out material.

X0 : REM Retract actuator.

LV0=LV0+1 : REM Increment the cycle count.

DV1=DV0*LV0 : REM Update the total length fed out.

GOTO LABEL1

ENDP

Use LRUN to execute the program in the Terminal Emulator and listen to PRINT commands. A PRINT

statement that does not end with either a comma or a semicolon produces a carriage return and linefeed

combination.

Defines
From examples up to this point, AcroBASIC extensively uses bits, parameters and variables. These bits and

parameters can be for controller status or the programmer’s user data in programs. Alternative names, called

defines, can be assigned to parameters, bits, constants and variables to make program code more readable.

Defines are recognized globally (across user programs).

Observe the following rules when creating and using defines:

• Use a maximum of 23 letters.

• Defines are case sensitive.

• The first character must be a letter, but numbers can be used after that.

• Do not use spaces or special characters (such as _ and @).

• Use caution when using defines with local variables.

A define is recognized across programs, while local variables are limited to the program in which they are created.

This can cause problems if you have created similar local variables in different programs. For example, if long

variables are dimensioned in three programs, then the define “counter” is assigned to LV1 (long variable 1), the

controller recognizes “counter” as a define in all three programs, though it represents a counter in only one

program.

ACR BASICS

122 ACR Programmer’s Guide

To assign defines, use the Defines editor in the Program Editor tree. This is a central location for defines that are

global across all programs.

The #DEFINE command can be used within a program editor, at the top, before the PROGRAM line.

NOTE: Aliases are reserved in memory. If changing an existing bit or parameter alias,

redownload the configuration with the defines in PMM.

Updated sample program to either run in Auto mode or Jog mode with defines:

PROGRAM

GOSUB STARTUP : REM Go subroutine to STARTUP label.

ACC 10 DEC 10 STP 10 VEL 1 : REM Set move parameters.

_MAIN

'AUTO MODE

IF (bAutoRun) : REM Input0 Auto Switch on.

X10 : REM Move to 10 on X axis.

SET (bExtending) : REM Turn on output bit32.

DWL 0.5 : REM Dwell 0.5 sec.

CLR (bExtending) : REM Turn off output bit 32.

X0 : REM Return to start on X axis.

bCounter=bCounter+1 : REM Increment a part counter.

'JOG MODE

ELSE IF (bJogRight) : REM If Jog+ switch.

 JOG FWD X

ELSE IF (bJogLeft) : REM If Jog- switch.

 JOG REV X

ELSE

 JOG OFF X : REM If Auto and Jog are off, Stop Jog.

ENDIF

IF (bCounter>=3) THEN END : REM end program after 3 cycles.

GOTO MAIN : REM continue program at MAIN label.

_STARTUP

DRIVE ON X : REM Enable the X axis motor.

INH bXenabled(3) : REM Wait until Axis0 is enabled or 3seconds.

REM If drive does not enable, end program.

IF (NOT bXenabled) THEN ? "DRIVE NOT ENABLED" : END

RES X : REM Reset current X position to 0.

RETURN : REM Go back to GOSUB STARTUP and continue.

 ACR BASICS

 ACR Programmer’s Guide 123

ENDP

Aliases thus make programs easier to read by allowing programmers to name bits and parameters.

Starting, Pausing, and Halting Programs
PMM’s Toolbar allows you to start and halt programs using buttons.

From the Terminal Emulator, you can also control programs from the SYS prompt, as well as any PROG prompt.

You must include the program number when issuing the command from outside its program—for example, RUN

PROG0. The commands described in this section provide immediate program control from PMM's Terminal

Emulator.

Running a Program

When the program starts, the controller returns to the SYS or PROG prompt. You can then enter immediate

commands as the program runs.

To start a program, send the RUN command from the program prompt. Use PMM’s buttons to change to the

PROG0 prompt or type PROG0 and press Enter. P00> is the PROG0 prompt. If the program does not run, issue

the LIST command to see the program.

After a download, the terminal will be at the P15 prompt. You could start Program 0 from here with RUN

PROG0. This could also be done from the SYS prompt or any other program prompt such as PROG1 (P01> in

the terminal).

Running a Program at Power Up

You can set a specific program to automatically start after powering up or rebooting the controller. In the

program editor, enter the PBOOT command as the first line in a program.

NOTE: PBOOT must be the first line of the program. Any or all programs can be PBOOT.

Listening to a Program

While a program is running, you can “listen” to it. The listen mode displays data from the program PRINT

statements and error messages.

To enable the listening mode on a running program, issue the LISTEN command. To exit the listening mode,

press the Escape key (ASCII 27).

Viewing a Running Program

You can also start and listen to a program using a single command. This is best used for development

troubleshooting purposes. It is the only time you can view program syntax errors.

To start a program with the listening mode enabled, issue the LRUN command. To exit the listening mode, press

the Escape key (ASCII 27).

ACR BASICS

124 ACR Programmer’s Guide

Halting a Program

You can stop program execution from the SYS or PROG prompts using the HALT command. This will not

interrupt a move in progress.

NOTE: HALT cannot be used inside a program. To terminate a program in the middle of

execution inside a program, use the END command.

Pausing a Program

Pausing a program places a feed hold on the current move and suspends the program at the current command line.

To suspend a currently running program, send the PAUSE command.

Resuming a Paused Program

Once paused, you can resume the program—motion and code execution continue from the places at which they

paused.

To continue program operation, issue the RESUME command.

Affecting Multiple Programs

You can control all programs simultaneously using the ALL argument. For example: RUN ALL, HALT ALL,

PAUSE ALL, or RESUME ALL.

To control all programs, use the ALL argument in a command.

Restart Controller

To test starting the controller, users could cycle power on the controller. Note this will cause the computer to

lose connection to the controller temporarily. The REBOOT command is the same as cycling power.

To restart a controller, issue the REBOOT command.

Running Startup Programs

You can run all startup programs without having to send individual RUN PROG commands.

To start all PBOOT programs, send the PBOOT command.

Parametric Evaluation
Most commands take arguments. Often, those command-line arguments are literals—values that are interpreted

as they are written. For example, axis numbers, bit index numbers, acceleration/deceleration speeds or positional

values.

In addition to literals, you can use expressions (also called formulas). The ACR controller can solve complex

integer or floating-point math. To use expressions, you must enclose them in parentheses. Expressions can use

the following data sources:

• Constants

• Literals

 ACR BASICS

 ACR Programmer’s Guide 125

• Variables

• Parameters

• Bits

• Aliases

An expression is comprised of at least one operand and one or more operators. Operands are values, whether

literals or variables. Operators are symbols that represent specific actions. For example, the plus sign (+)

represents addition, and the forward slash (/) represents division. In the expression:

A + 7

A and 7 are operands, and + is an operator.

NOTE: For a complete list of operators available, see the Expression Reference section of the

ACR Command Language Reference.

Operations are performed in the following order:

• Powers

• Multiplication and division

• Addition and subtraction

• Relational operations (such as greater than, less than, not equal to)

The trigonometric (sine, cosine, tangent, etc.) and miscellaneous operators (absolute value, natural log, square

root, etc.) require parentheses around their own expressions. The order of operations with such operators

begins with the deepest nested parentheses.

Parentheses and Operational Order

Using parentheses, you can group operations in an expression to change the order in which they are performed.

For example, the expression:

4 + 6 / 2

Provides the answer 7, and not 5, because division performs before addition. When a mathematical expression

contains operators that have the same rank, operations are performed left to right. For another:

2 + 6 / 3 * 5 - 9

Division and multiplication perform before addition and subtraction. The first operation is 6 / 3; the second

operation multiplies the result 2 by 5, which results as 10. In the third operation, add 2 to 10, which results as 12.

In the fourth operation, subtract 9 from 12 to produce the final answer of 3.

By using parentheses, you can change the order of operations in an expression. That is, operations in parentheses

are performed first, then operations outside the parentheses. For example, the expression:

(2 + 6 / 3) * 5 - 9

Results in an answer of 11, while the expression:

(2 + 6 / 3) * (5 - 9)

ACR BASICS

126 ACR Programmer’s Guide

Results in -16 as the answer.

Nested Parentheses

You can also embed parentheses, where operations in the deepest parentheses are performed first. For example,

the expression:

((7 + 3) / 2) * 3

Contains embedded parentheses. From the example, the first operation is 7 + 3, the second operation is 10 /

2, and the third operation is 5 * 3, which results in 15 as the answer.

Examples

The following demonstrate some simple uses of expressions. The examples assume memory space is allocated for

the variables.

Example 1

The following causes axis X to move position to the resulting value of the expression.

X(P0 + P2 * P30)

Example 2

When the following IF statement proves true, the message “OK” prints.

IF(P0=1234) THEN PRINT “OK”

Example 3

The following concatenates strings $V1 and $V2 and sets string $V0 equal to the result.

$V0 = $V1 + $V2

Example 4

The following program generates a random number from 0 to 999. As the program loops, it counts each loop.

When the number equals 123, the program exits the loop and prints the count.

PROGRAM

DIM LV(2) : REM dimension 2 long variables

LV0=0 : REM set LV0 equal to 0

_LOOP1

LV1=RND(1000) : REM set LV1 equal to random number

LV0=LV0+1 : REM increment LV0 with each loop

IF (LV1<>123) THEN GOTO LOOP1

PRINT "Done in";lv0;"tries"

ENDP

To view the print statements and run this program, do LRUN from program prompt in the Terminal Emulator.

Example 5

The following flashes the first 30 outputs in a random sequence.

PROGRAM

DIM DV(1) : REM dimension 1 floating point variable

_LOOP2

 ACR BASICS

 ACR Programmer’s Guide 127

DV0=RND(4294967295) : REM set DV0 equal to random number

P4097= DV0 : REM set onboard outputs equal to DV0

GOTO LOOP2

ENDP

Example Code Conventions
Examples that include code are provided throughout most of the ACR Series documentation to illustrate a

concept, supply model code samples or to show multiple ways to employ the commands.

The example code may include the terminal prompt or configuration code if it is necessary for clarity. Example

code is complete only as far as conveying information about the discussion, and configuration and other

information may need to be added in order for the code to be of use in an actual application.

NOTE: In ACR Series example code, Axis 0 is the X axis and Axis 1 is the Y axis unless otherwise

specified.

ACR BASICS

128 ACR Programmer’s Guide

ACR System

This section details the architectural layout of the ACR. Knowing the system architecture can help a developer

better understand the product's strengths and limitations, allowing them to take full advantage of it.

ACR Architecture
The ACR7000 uses a high-speed multitasking System on Module (SOM) processor for program and motion

control. FPGAs are sent the position updates and output analog command signals or step and direction signals.

The ACR7xV multiaxis servo platform uses one dedicated processor per axis to control current and close the

position loop. The ACR7xT multiaxis stepper platform uses stepper ASICs to control current. The ACR7xV and

ACR7xT use cutting edge high-power MOSFETs to drive current to the motors. For the ACR7xC controller, the

FPGAs output the drive control signals for external drives.

The SOM processor is a pre-emptive multi-tasker. Users can use up to 15 programs, 8 high priority tasks (Motion

programs Prog 0-Prog 7) and 7 low priority tasks (Non-Motion programs Prog 8-Prog 14). On the ACR7xV, the

individual axis processors run a 500 µs (default) position loop and 31.25 µs current loop. On the ACR7xC, the

position loop for all axes is run on the main SOM processor on a 500 µs (default) interval. Inputs and outputs are

updated every 0.5 ms.

Prog 0-Prog 7 each have a 1 ms time slice and are used for Motion Programs. Each program has its own

coordinated group of axes for motion and can run independently of the other programs. Each program has its

own set of local variables (longs, floats, strings, arrays).

Prog 8-Prog 15 all share a 1 ms time slice and are used for non-motion programs. These programs are to be used

for monitoring conditions, error recovery and handling communications to external devices.

Program Execution Timing

 ACR BASICS

 ACR Programmer’s Guide 129

ACR7xV/ACR7xT/IPA Hardware Architecture

ACR7xC Hardware Architecture

ACR BASICS

130 ACR Programmer’s Guide

Ethernet
The ACR7000 and IPA’s Ethernet implementation has 5 communication streams available, allowing 5 different

connections to the controller. In addition to TCP/IP communications, both the ACR7000 and IPA controllers can

be used in EtherNet/IP systems.

Ethernet TCP/IP

You would first use the Ethernet port to configure and program the controller using Parker Motion Manager

(PMM). PCs, HMIs and other machine components can also connect using Ethernet TCP/IP. The ACR7000 and

IPA allow both ASCII communications through port 5002 and binary communication through port 5006.

For Windows PC communications, ComACRServer6 is a 32 bit OLE automation server providing communications

between ACR controllers and compatible PC software applications such as LabVIEW, Visual Basic.NET, Visual

C++, C#, etc. Samples are available here.

ComACRserver6 is installed and used with Parker Motion Manager (PMM), running in the background. It is based

on the Microsoft Component Object Model (COM) and allows for reading/writing bits and parameters, initiating

motion and uploading/downloading programs. It is a wrapper for the Binary Host Interface. For further details see

ComACRServer6 User’s Guide.

For PC-based applications for OEM machinery using a non-Windows PC for control, or for users wanting faster

communications, the Binary Host Interface can be used to connect to and control ACR or IPA controllers,

explained here. This option is not recommended for most users.

EtherNet/IP Scanner

For applications needing more I/O than the controller’s onboard inputs and outputs, the ACR7000 and IPA can be

configured as a scanner for up to 16 Wago 750 series EtherNet/IP bus couplers. This allows for larger numbers of

inputs and outputs, analog I/O and other types of I/O (higher current relay modules, temperature/thermistor

modules, etc.) and distributed I/O on the machine. Each node can have max of 512 bits of inputs and 512 bits of

outputs, 32 analog inputs and 32 analog outputs. For further information, see IPA Ethernet I/O User Guide (same

applies to ACR7000). A sample ENIP Scanner program is available in Application Examples.

https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/2273/pc-to-acr-program-samples-excel-labview-vb-net-c-c

 ACR BASICS

 ACR Programmer’s Guide 131

EtherNet/IP Node

The ACR7000/IPA can also be a node on an EtherNet/IP network for use with Allen Bradley and Omron PLCs

(others too). Both support class 1 and class 3 messaging. Further information can be found in IPA Ethernet/IP

Programmer’s Guide.

Add-On Instructions (AOIs) are available for the IPA for control from Allen-Bradley ControlLogix and

CompactLogix PLCs. Further details can be found here.

PLC with multiple IPAs. IPA is a node on EtherNet/IP

and can simultaneously be a scanner.

PLC with a multiaxis ACR. ACR is a node on

EtherNet/IP and can simultaneously be a scanner.

Ethernet/IP Peer-to-Peer

The ACR7000 and IPA’s EtherNet/IP implementation can be a scanner for Peer-to-Peer communications with up

to four other ACR7000 or IPA controllers. Though not for expansion of interpolated motion, this can be used to

coordinate between controllers using only an Ethernet cable. Users can have systematic exchange up to 128 longs

or floats in both directions. For further information, see IPA Ethernet I/O User Guide (ACR7000 is the same). A

sample Peer-to-Peer program is available in Application Examples.

An ACR7000 or IPA can only be a scanner (client) for one type of device; it can be a scanner for a Wago 750 or

another ACR7000/IPA, but not both. The peer ACR7000/IPA however can be a server to the first ACR7000/IPA

and a scanner for a Wago 750 series.

ACR BASICS

132 ACR Programmer’s Guide

ACR EtherNet/IP Architecture Examples

PC control via TCP/IP and two ACRs with Peer-to-

Peer.

ACR standalone Peer-to-Peer (up to 4).

PLC control via EtherNet/IP with two ACRs Peer-to-

Peer.

ACR cannot be an EtherNet/IP slave to both a PLC and

another ACR.

 ACR BASICS

 ACR Programmer’s Guide 133

Command Syntax

The AcroBASIC programming language accommodates a wide range of needs by providing basic motion control

building blocks, as well as sophisticated motion and program flow constructs.

The language comprises simple ASCII mnemonic commands, with each command separated by a command

delimiter (carriage return, colon, or line feed). The command delimiter indicates that a command is ready for

processing.

The AcroBASIC programming language uses a parent-daughter approach. A parent can have daughter statements;

a daughter statement is considered a sub-statement of the parent.

You can issue many parent statements alone—some provide the current status related to that particular

command, others perform an action. For example, issuing the ATTACH command at the program level provides

you with a report of the axis attachments to the master. Conversely, issuing the CLEAR command at the system

level frees the memory allocated to all programs.

You can only issue some parent commands in conjunction with a daughter statement. For example, the DRIVE

command has the ON, OFF, and RES daughter statements. Therefore, you can issue the DRIVE ON (axis),

DRIVE OFF (axis) and DRIVE RES (axis) commands, but not DRIVE by itself.

Description of Format

1. Mnemonic Code: The ASCII command.

2. Name: A short description of the command.

3. Format: Indicates the proper syntax and arguments for the command.

4. Group: The functional group to which the command belongs.

5. Units: Indicates the units of measurement required by the argument(s) in the command syntax.

6. Data Type: Indicates the class of data required by the argument(s).

7. Default: Indicates the setting or value automatically selected unless you specify a substitute.

8. Prompt Level: Indicates the communication level at which you can use the command. For more

information, see Communication Levels.

9. See Also: Indicates commands related or similar to the command you are reviewing.

10. Related Topics: Indicates parameter and bit tables related to the command you are reviewing.

ACR BASICS

134 ACR Programmer’s Guide

11. Product Revision: To determine whether the command applies to your specific ACR series controller

and firmware revision, see the Command and Firmware Release table.

Arguments and Syntax
The syntax of an AcroBASIC command shows you all the components necessary to use it. Commands can contain

required and optional arguments. They also contain a number of symbols:

• Braces { }—arguments that are optional. Do not type the braces in your code.

• Parentheses ()—arguments that are optional, and must appear within the parentheses in your code. Also

used to indicate variables and expressions. If replacing a constant with a variable or parametric equation,

use parentheses to “contain” the variable/equation. Signed (-) or (+) constants must be in parentheses.

• Commas (,)—delimiters between arguments in specific commands. In addition, select commands use

commas to control spacing and line feeds. To understand the separator’s specific use in a command, refer

to the command’s format and description.

• Semicolons (;)—delimiters between arguments in specific commands. In addition, select commands use

semicolons to control spacing and line feeds. To understand the separator’s specific use in a command,

refer to the command’s format and description.

• Slash mark (/)—signifies an incremental move in select commands.

• Quotes (“ ”)—arguments within the quotes must appear within quotes in your code.

• Number sign (#)—device arguments following number signs must include the number sign in your code.

• Ellipsis (…)—arguments can be given for multiple axes.

The following examples illustrate how to interpret common syntax:

Example 1

ACC {rate}

In the ACC command, the lower-case word rate is an argument. Arguments act as placeholders for data you

provide. If an argument appears in braces or parentheses, the argument is optional.

For example, the following sets the acceleration ramp to 10,000 units per second2.

ACC 10000

When you issue a command without an optional argument, the controller reports back the current setting. Not

all commands report back, and some require you to specify an axis. For example, the following reports the

current acceleration rate in Program 0.

P00>ACC

10000

Example 2

PGAIN {AXIS {value}} {AXIS {value}} ...

Optional arguments can nest. This provides the flexibility to set data for or receive reports on multiple axes. For

example, the following sets the proportional gain for axes X and Y to 0.0001 and 0.0002 respectively.

PGAIN X 0.0001 Y 0.0002

 ACR BASICS

 ACR Programmer’s Guide 135

Because the PGAIN command can report on multiple axes, you specify at least one axis on which the controller is

to report back.

P00>PGAIN X

0.0001

P00>PGAIN X Y

0.0001

0.0002

Example 3

IPB {AXIS {value}} {AXIS {(value1, value2)}} …

The AcroBASIC language provides programming shortcuts. You can set positive and negative values for

commands using one argument. If the values differ, you can use two arguments. The command format illustrates

when this is possible. For example, the following sets the in-position band for axis X to ±0.05 and for axis y to 3

and –1.

IPB X 0.05 Y(3, -1)

Or:

IPB AXIS0 0.05 AXIS1(3,-1)

Notice that the two values for axis Y are given inside parentheses and separated by a comma, as shown in the

format of the command.

Note the X and Y aliases are only valid within the program to which the axes are attached (see ATTACH). Using

AXIS0 or AXIS1 is valid in any program.

Example 4

HALT {PROGx | ALL}

The vertical bar indicates a choice between arguments. For example, the HALT command lets you stop a user

program or all programs.

HALT PROG0

HALT ALL

Variable Substitution Syntax
AcroBASIC commands can be used with parameters instead of numeric values. However, variable substitution

requires use of parentheses.

Example 5

Modifying Example 3 to do the same thing but with variable substitution:

P0 = 0.05

P1 = 3

P2 = -1

IPB X (P0) Y((P1),(P2))

ACR BASICS

136 ACR Programmer’s Guide

Or:

IPB AXIS0 (P0) AXIS1((P1),(P2))

Same if using Aliases with variable substitution:

#DEFINE ipbx P0

#DEFINE ipbypos P1

#DEFINE ipbyneg P2

IPB X (ipbx) Y((ipbypos),(ipbyneg))

Or:

IPB AXIS0 (ipbx) AXIS1((ipbypos, ipbyneg))

Note that NOT is not an operation and does not need to be in parentheses with a bit. This is valid syntax:

IF (BIT 0 AND NOT BIT 1) THEN P100=6

Example 6

Program sample using variables for move parameters:

PROGRAM

DIM SV10

SV2=100 : SV3=6

ACC (SV2) VEL (SV3) DEC (SV2) STP (SV2)

X/100

? SV2 : ? SV3 : INH 516

ENDP

Nested Commands Syntax
Parametric evaluation can be used within commands, but as it is a command within a command, it needs to be

within parentheses. This is a great way to condense program code.

JOG HOME X1 : REM Start homing X positive

REM Infinite WHILE statement while X is trying to HOME

WHILE ((NOT BIT 16134) AND (NOT BIT 16135))

WEND

REM Prints Information regarding "X" Axis homing

IF (BIT 16134) THEN PRINT "X HOMING SUCCESSFUL"

IF (BIT 16135) THEN PRINT "X HOMING UNSUCCESSFUL"

Axis X starts homing. The program continues into a WHILE loop. This is looping while axis X is homing, that is,

while it has not found home (bit 16134, Axis 0 Found Home) and not failed (bit 16135 Axis 0 Failed to Find

Home). We know either one or the other will happen. After homing, the WHILE loop is exited. This WHILE

loop shows how to evaluate multiple bits within a command.

 ACR BASICS

 ACR Programmer’s Guide 137

Commands Lists
The tables in this section list commands according to the following command groups:

Axis Limits Non-Volatile

Character I/O Operating System

Drive Control Program Control

Feedback Control Program Flow

Global Objects Servo Control

Interpolation Setpoint Control

Logic Function Transformation

Memory Control Velocity Profile

The ACR Command Reference and PMM online help gives full syntax and explanation of these commands with

example code. The more common commands are covered within this Programmer’s Guide. Many of the

commands are settings and are part of the System Code generated by PMM’s Configuration Wizard. See

Configuration.

Axis Limits

Command Description

ALM Set stroke limit ‘A’

BLM Set stroke limit ‘B’

EXC Set excess error band

HLBIT Set hardware limit/homing input

HLDEC Hardware limit deceleration

HLIM Hardware limit enable

IPB Set in-position band

ITB Set in-torque band

JLM Set jog limits

MAXVEL Set velocity limits

PM Position maintenance

ACR BASICS

138 ACR Programmer’s Guide

SLDEC Software limit deceleration

SLIM Software limit enable

SLM Software positive/negative travel range

TLM Set torque limits

Character I/O

Command Description

CLOSE Close a device

INPUT Receive data from a device

OPEN Open a device

PRINT Send data to a device

TALK TO Talk to device

Drive Control

Command Description

DRIVE Drive report-back

Feedback Control

Command Description

HSINT High speed interrupt

INTCAP Encoder capture

MSEEK Marker seek operation

MULT Set encoder multipliers

NORM Normalize current position

OOP High speed output

PPU Set axis pulse/unit ratio

REN Match position with encoder

RES Reset or preload encoder

 ACR BASICS

 ACR Programmer’s Guide 139

ROTARY Set rotary axis length

Global Objects

Command Description

ADC Analog input control

AXIS Direct axis access

CIP Ethernet/IP status

DAC Analog output control

ENC Quadrature input control

FSTAT Fast status setup

LIMIT Frequency limiter

MASTER Direct master access

PLS Programmable limit switch

RATCH Software ratchet

SAMP Data sampling control

Interpolation

Command Description

CIRCCW Counter clockwise circular move

CIRCW Clockwise circular move

INT Interruptible move

INVK Inverse kinematics

MOV Define a linear move

NURB NURBs interpolation mode

SINE Sinusoidal move

SPLINE Spline interpolation mode

TANG Tangential move mode

ACR BASICS

140 ACR Programmer’s Guide

TARC 3-D circular interpolation

TRJ Start new trajectory

Logic Function

Command Description

CLR Clear a bit flag

DWL Delay for a given period

IHPOS Inhibit on position

INH Inhibit on bit high or low

MASK Safe bit masking

SET Set a bit flag

TRG Start move on trigger

Memory Control

Command Description

CLEAR Clear memory allocation

DIM Allocate memory

MEM Display memory allocation

Non-Volatile

Command Description

ELOAD Load system parameters

ERASE Clear the EEPROM

ESAVE Save system parameters

FIRMWARE Firmware upgrade/backup

FLASH Create user image in flash

PARTNUMBER Displays controller part number

 ACR BASICS

 ACR Programmer’s Guide 141

PBOOT Auto-run program

Operating System

Command Description

ATTACH Define attachments

BOOTREV Displays boot revision

CONFIG Hardware configuration

CPU Display processor loading

DEF Display the defined variable

#DEFINE Define variable

DETACH Clear attachments

DIAG Display system diagnostics

ECHO Character echo control

HELP Display command list

IP IP address

MODE Binary data formatting

PASSWORD Block uploading programs

PERIOD Set base system timer period

PROG Switch to a program prompt

REBOOT Reboot controller

STREAM Display stream name

SYS Return to system prompt

VER Display firmware version

Program Control

Command Description

AUT Turn off block mode

ACR BASICS

142 ACR Programmer’s Guide

BLK Turn on block mode

HALT Halt an executing program

LIST List a stored program

LISTEN Listen to program output

LRUN Run and listen to a program

NEW Clear out a stored program

PAUSE Activate pause mode

REM Program comment

RESUME Release pause mode

RUN Run a stored program

STEP Step in block mode

TROFF Turn off trace mode

TRON Turn on trace mode

Program Flow

Command Description

BREAK Exit a program loop

END End of program execution

ENDP End program without line numbers

FOR / TO / STEP /

NEXT

Relative program path shift

GOSUB Branch to a subroutine

GOTO Branch to a new line number

IF/ELSE

IF/ELSE/ENDIF

Conditional execution

IF / THEN Conditional execution

PROGRAM Beginning of program definition

RETURN Return from a subroutine

 ACR BASICS

 ACR Programmer’s Guide 143

WHILE/WEND Loop execution conditional

Servo Control

Command Description

DGAIN Set derivative gain

DIN Dead zone integrator negative value

DIP Dead zone integrator positive value

DWIDTH Set derivative sample period

DZL Dead zone inner band

DZU Dead zone outer band

FBVEL Set feedback velocity

FFACC Set feedforward acceleration

FFVC Feedforward velocity cutoff region

FFVEL Set feedforward velocity

FLT Digital filter move

IDELAY Set integral time-out delay

IGAIN Set integral gain

ILIMIT Set integral anti-windup limit

KVF PV loop feedforward gain

KVI PV loop integral gain

KVP PV loop proportional gain

LOPASS Setup lopass filter

NOTCH Setup notch filter

PGAIN Set proportional gain

Setpoint Control

Command Description

ACR BASICS

144 ACR Programmer’s Guide

BKL Set backlash compensation

BSC Ballscrew compensation

CAM Electronic cam

GEAR Electronic gearing

HDW Hand wheel

JOG Single axis velocity profile

LOCK Lock gantry axis

UNLOCK Unlock gantry axis

Transformation

Command Description

FLZ Relative program path shift

OFFSET Absolute program path shift

ROTATE Rotate a programmed path

SCALE Scale a programmed path

Velocity Profile

Command Description

ACC Set acceleration ramp

DEC Set deceleration ramp

F Set velocity in units/minute

FOV Set feedrate override

FVEL Set final velocity

IVEL Set initial velocity

JRK Set jerk parameter (S-curve)

LOOK Lookahead mode

MBUF Multiple move buffer mode

 ACR BASICS

 ACR Programmer’s Guide 145

ROV Set rapid feedrate override

SRC Set external time base

STP Set stop ramp

SYNC Synchronization mode

TMOV Set time-based move

TOV Time override

VECDEF Define automatic vector

VECTOR Set manual vector

VEL Set target velocity for a move

Startup Programs
You can set a program to automatically run on powering up or rebooting the controller. The PBOOT command

provides that ability.

The PBOOT command must appear as the first statement in a program. From a terminal, sending the PBOOT

command starts all PBOOT programs. Every program can use PBOOT.

Example

The following program runs on power-up, flashing output 32.

PROGRAM

PBOOT : REM PBOOT must appear as first line

REM Beginning of loop

_LOOP1

BIT 32 = NOT BIT 32

DWL 0.25

GOTO LOOP1

ENDP

Resetting the Controller
When you reset the controller, it shuts down communications, turns off outputs, and kills all programs. For

controllers with non-volatile memory, the controller stores all conditions.

There are three ways to reset the ACR series controller:

• Cycle power.

• Send the REBOOT command from the Terminal Emulator.

• Send a binary reboot request, typically done via ComACRServer.

ACR BASICS

146 ACR Programmer’s Guide

Memory
Memory allocation is completely customizable on the ACR series controllers. The DIM commands allocate

memory to program, global and local variables, and communication streams.

Once you have allocated memory, you cannot change it without first clearing the memory space. Otherwise, you

receive a “re-dimensioned block” error.

To change memory allocations, use PMM’s Configuration Wizard and download to the controller.

Return to Factory Default
To erase the controller’s programs and settings and reset back to factory default:

1. Open Parker Motion Manager

2. Connect to the controller.

3. Open the Terminal Emulator.

4. Type FLASH RES and press Enter.

Or, from PMM’s OS Update screen, click Return to Factory Settings.

Before starting a new project on any ACR controller, ensure the controller is set to factory default settings and up

to date with the latest operating system.

This will reset the IP address to the default of 192.168.100.1 for the ACR7000 or, for the IPA, to 192.168.100.x

where “x” is the rotary dial value on the front of the IPA.

New controllers will always ship with the latest OS.

 ACR BASICS

 ACR Programmer’s Guide 147

Configuration
Because the ACR series controller is powerful and flexible, it requires configuration for your particular application.

There are two methods: you can manually write the configuration code or use the Configuration Wizard in the

Parker Motion Manager (PMM) software.

As the number of axes increase, the code required to configure a controller can be extensive. The Configuration

Wizard helps ensure all constituent devices are configured quickly and correctly.

The configuration code for different models of ACR series controllers varies—dependent on each model’s distinct

feature set and options, as well as various drives, motors and encoders connected to it. In addition, the firmware

revision you have for a controller can affect which features and AcroBASIC commands are available to you.

The wizard makes some choices for you behind the scenes. The ACR7000 controllers are available as an

integrated multi-axis stepper drive and controller ACR7xT, integrated multi-axis servo drive and controller

ACR7xV, and multi-axis controller ACR7xC. The Configuration Wizard is slightly different for each, showing

stepper motors for the ACR7xT, servo motors for the ACR7xV and asking for the drive info for the controller.

PMM generates the system code when Finish is selected at the end of the Configuration Wizard. The project is

also saved.

NOTE: The wizard does not collect data in the same order in which code is written.

What is Configuration Code?
To get a sense of what configuration code looks like—the requirements and order of items, as well as information

that goes into the program space—the following example looks at the code resulting from the PMM Quick Start.

NOTE: The application is controlled by a 4-axis ACR74T integrated stepper controller.

The Code

The wizard generates the Primary System Settings automatically and does not collect data for this. If you are

writing your own configuration code, it is good coding practice to include the following at the beginning. The

controller is switched to the SYS prompt. From there, all program execution is halted (HALT ALL), all user

programs and PLC programs are deleted (NEW ALL), all memory allocations are cleared (CLEAR), and all slaves

are detached from their respective masters (DETACH ALL).

REM -------------------------------

REM --- Primary System Settings

REM -------------------------------

SYS

HALT ALL

NEW ALL

CLEAR

DETACH ALL

ACR BASICS

148 ACR Programmer’s Guide

If you do not make any changes to the Memory defaults, the wizard allocates memory to all programs with a large

size for Program 0, 10 kB for motion programs Prog 1-Prog 7 and 1 kB for non-motion programs Prog 8-Prog 13.

Program 14 is used for PMM’s graphing tools (Servo Tuner and Oscilloscope) and thus has a large memory set for

onboard data collection. In addition, the wizard allocates memory to Program 15, which stores wizard data. User

global parameters P0-P4095 are dimensioned and 100 defines are allocated by default.

REM -----Allocate system memory-----

DIM PROG0(100000)

DIM PROG1(10000)

DIM PROG2(10000)

DIM PROG3(10000)

DIM PROG4(10000)

DIM PROG5(10000)

DIM PROG6(10000)

DIM PROG7(10000)

DIM PROG8(1000)

DIM PROG9(1000)

DIM PROG10(1000)

DIM PROG11(1000)

DIM PROG12(1000)

DIM PROG13(1000)

DIM PROG14(200000)

DIM PROG15(100000)

DIM P(4096)

DIM DEF(100)

Then begins axis-specific configuration. The axis feedback and signal output information comes from the Axes and

Feedback dialogs. The PPU (pulses per programming unit) is computed from data provided through the Feedback

and Scaling dialogs and units selected. The excess error band data comes from the Fault dialogs. PM SCALE is

set when a stepper motor with an encoder is used.

REM -------------------------------

REM AXIS 0

REM -------------------------------

ATTACH AXIS0 ENC0 STEPPER0

AXIS0 MULT 4

AXIS0 PPU 30720.000000

AXIS0 EXC (1,-1)

AXIS0 PM SCALE 12.8

SET BIT8469 : REM Enable EXC Response

SET BIT17163 : REM Enable step motor to encoder scaling

The Extended I/O section sets and clears bits related to enabling the axis control, drive enable output (DEO)

polarity, fault input polarity.

REM ACR Extended IO Settings

SET BIT8468 : REM Enable Drive I/O

CLR BIT8464 : REM Enable CW CCW vs StepDir

CLR BIT8470 : REM DEO Serves Shutdown Function

CLR BIT8453 : REM Invert Drive Fault Input Level

 ACR BASICS

 ACR Programmer’s Guide 149

The next section is the Axis Gains values. Servo Gains for a stepper axis are set by default and used internally by

the controller. Default tuning gains are set for the IPA, ACR7xV and ACR7xC servo axes and can be tuned with

the Servo Tuner.

REM Axis Gains values

AXIS0 PGAIN 0.00244141

AXIS0 IGAIN 0

AXIS0 ILIMIT 0

AXIS0 IDELAY 0

AXIS0 DGAIN 0

AXIS0 DWIDTH 0

AXIS0 FFVEL 0

AXIS0 FFACC 0

AXIS0 TLM 10

AXIS0 FBVEL 0

The Axis Limits section sets the homing, hardware and software limits based on user input on the Fault screen in

the Configuration Wizard.

REM Axis Limits

AXIS0 HLBIT (0,1,10)

AXIS0 HLDEC 500.000000

SET BIT16144 : REM Positive EOT Limit Level Invert

SET BIT16145 : REM Negative EOT Limit Level Invert

CLR BIT16146 : REM Home Limit Level Invert

SET BIT16148 : REM Positive EOT Limit Enable

SET BIT16149 : REM Negative EOT Limit Enable

AXIS0 SLM (10,0)

AXIS0 SLDEC 500.000000

SET BIT16150 : REM Positive Soft Limit Enable

SET BIT16151 : REM Negative Soft Limit Enable

The ACR7xT has step motor parameters and are set based on the motor

selection.

REM Axis Stepper Motor Settings

P7938=2.38 : REM Max amps peak (user)

P7946=256 : REM Micro Steps (Power 2)

BIT15618=1 : REM Standby Enable flag

P7944=50 : REM Standby Percentage

P7945=0 : REM Standby Delay

BIT8455=0 : REM Invert Motor and Encoder direction

BIT15616=1 : REM Assert Config flag

AXIS0 ON

Axis 1 is set the same but note Axis 1 has different addresses for the bits and parameters.

REM -------------------------------

REM AXIS 1

REM -------------------------------

ATTACH AXIS1 ENC1 STEPPER1

AXIS1 MULT -4

ACR BASICS

150 ACR Programmer’s Guide

AXIS1 PPU 30720.000000

AXIS1 EXC (1,-1)

AXIS1 PM SCALE 12.8

SET BIT8501 : REM Enable EXC Response

SET BIT17195 : REM Enable step motor to encoder scaling

REM ACR Extended IO Settings

SET BIT8500 : REM Enable Drive I/O

CLR BIT8496 : REM Enable CW CCW vs StepDir

CLR BIT8502 : REM DEO Serves Shutdown Function

CLR BIT8485 : REM Invert Drive Fault Input Level

REM Axis Gains values

AXIS1 PGAIN 0.00244141

AXIS1 IGAIN 0

AXIS1 ILIMIT 0

AXIS1 IDELAY 0

AXIS1 DGAIN 0

AXIS1 DWIDTH 0

AXIS1 FFVEL 0

AXIS1 FFACC 0

AXIS1 TLM 10

AXIS1 FBVEL 0

REM Axis Limits

AXIS1 HLBIT (0,1,10)

AXIS1 HLDEC 500.000000

SET BIT16176 : REM Positive EOT Limit Level Invert

SET BIT16177 : REM Negative EOT Limit Level Invert

CLR BIT16178 : REM Home Limit Level Invert

SET BIT16180 : REM Positive EOT Limit Enable

SET BIT16181 : REM Negative EOT Limit Enable

AXIS1 SLM (10,0)

AXIS1 SLDEC 500.000000

SET BIT16182 : REM Positive Soft Limit Enable

SET BIT16183 : REM Negative Soft Limit Enable

REM Axis Stepper Motor Settings

P7954=2.38 : REM Max amps peak (user)

P7962=256 : REM Micro Steps (Power 2)

BIT15650=1 : REM Standby Enable flag

P7960=50 : REM Standby Percentage

P7961=0 : REM Standby Delay

BIT8487=0 : REM Invert Motor and Encoder direction

BIT15648=1 : REM Assert Config flag

AXIS1 ON

Axis 2 and Axis 3 are not shown for length but have similar settings to Axis 0 and Axis 1. The firmware is

structured for multiaxis though the hardware defines the number of axis possible, so we turn off unused axes.

REM Turn off any unused Axes

AXIS4 OFF

AXIS5 OFF

AXIS6 OFF

 ACR BASICS

 ACR Programmer’s Guide 151

AXIS7 OFF

AXIS8 OFF

AXIS9 OFF

AXIS10 OFF

AXIS11 OFF

AXIS12 OFF

AXIS13 OFF

AXIS14 OFF

AXIS15 OFF

Program 0, a motion program, is attached to Master 0 which is the multiaxis motion trajectory calculator. Axes 0-

3 are attached based on the Axes settings in the Config Wizard and the default profiles values are also set.

REM -------------------------------

REM --- Program Level setup

REM -------------------------------

 PROG0

DETACH

ATTACH MASTER0

ATTACH SLAVE0 AXIS0 "X"

ATTACH SLAVE1 AXIS1 "Y"

ATTACH SLAVE2 AXIS2 "Z"

ATTACH SLAVE3 AXIS3 "A"

 REM the desired master acceleration

ACC 10

REM the desired master deceleration ramp

DEC 10

REM the desired master stop ramp (deceleration at end of move)

STP 10

REM the desired master velocity

VEL 1

REM the desired acceleration versus time profile.

JRK 0

Resources Reserved for Generated Code
When you click Finish, the Configuration Wizard generates the System Code. On download it is saved as XML in

Program 15. This allows the Configuration Wizard to be populated when uploading. No changes from the user

need to be made.

NOTE: Do not edit the source files generated by the Configuration Wizard.

The PMM project file (.pprj) includes the Configuration Wizard settings, the AcroBASIC programs and defines, the

servo tuning settings, scope settings, terminal user button settings, oscilloscope motion test code and watch

window settings. The project file can have multiple controllers and subsequent controller programs and settings

that are also saved within the one project file.

ACR BASICS

152 ACR Programmer’s Guide

Flash Memory
The table below describes an overview of the Flash Memory for the ACR Controllers.

 MAKING MOTION

 ACR Programmer’s Guide 153

CHAPTER 3

Making Motion

MAKING MOTION

154 ACR Programmer’s Guide

Making Motion

Now that the controller is configured, it is ready to make motion. The ACR controller can perform linear,

circular, or more complex motion with a single axis or multiple axes.

Four Basic Categories of Motion
There are four basic categories of motion used in motion control: coordinated, jog, gear, and cam.

• Coordinated Moves Profiler (Multi-Axis Profile): Use the MOV command for linear-interpolated

incremental and absolute moves. It also allows circular interpolation (CIRCW, CIRCCW, SINE, and

TARC). The trajectory values are “path” values.

• Jog Profiler (Single-Axis Profile): Use the JOG commands for incremental, absolute, or continuous

moves. The Jog Profiler is axis-independent, meaning that each axis uses its own trajectory values

independent of other axes.

• Gear Profiler (Electronic Gear): Use the GEAR commands to control motion based on an external

source—such as a linespeed encoder for feed-to-length, electronic gearbox, trackball, follower axis, or

changes of ratio related to position.

• Cam Profiler (Electronic Cam): Use the CAM commands to control irregular motion using data

tables. The Cam Profiler provides control of complex motion and is best used in situations where the

desired motion is non-linear using an external source.

Regardless of the type of motion or number of axes used, the controller must always be set up for coordinated

motion. This may be done by using the Configuration Wizard or by writing custom configuration code, and

including master, slave, and axis attachment statements. The attachment statements make the basic connections to

a coordinated motion profiler. For more information, see Attachments.

After making the necessary attachments, a motion profile can be defined. The following sections examine the

different move types and motion profilers.

Move Types
To command motion, use a command appropriate to the desired type of motion, such as JOG (single-axis profile),

CIRCW (two-dimensional clockwise circle), CIRCCW (two-dimensional counter clockwise circle), SINE (sinusoidal

move), or TARC (3-D arc). The MOV (define a linear move) command activates linear-interpolated motion.

When the user includes several axes in a single statement, the controller coordinates the moves, meaning the axes

complete their respective moves at the same time. Whereas, if each axis is written as an independent statement,

the controller treats them as independent moves and they are performed one at a time.

The MOV command is not necessary for coordinated motion because the controller recognizes an axis name and a

value as commanded motion, such as X500. When multiple axes are written in a single statement, such as X500

Y100, the motion is coordinated.

 MAKING MOTION

 ACR Programmer’s Guide 155

NOTE: When commanding motion, you must use the axis name; the axis number is not a valid

way to indicate an axis. For more information on axis names, see Slaves and Axis Names.

Absolute Motion
Absolute motion is commanded with respect to the established “home” or reference location.

To make a linear-interpolated move with the MOV command, use the arguments axis target, specifying the axis

name followed by the target position.

Example 1

The following moves the X axis to the absolute position of 10 units.

MOV X10

Example 2

To command linear-interpolated motion without MOV, the axis and position must be designated. The following

also moves the X axis to the absolute position of 10 units in an identical manner as Example 1.

X10

Example 3

If motion is commanded for multiple axes on a single line, the controller treats it as coordinated motion. The X

and Y axes complete their respective moves at the exact same time.

X20 Y-30

Incremental Motion
Incremental motion is commanded relative to the current position.

To move an incremental distance (a distance “relative” to the current position), use a slash mark (/) following the

axis.

NOTE: The slash mark is only applicable in linear-interpolated motion.

Example 1

In this example, the X axis moves an incremental distance of 20 units from its current position. Then, the Y axis

moves a decremental distance of 30 units from its current position.

X/20

Y/-30

Example 2

The X axis makes an incremental move, Y axis makes an absolute move and Z axis makes a decremental move.

Written on the same line, this is a coordinated move; all axes complete their moves at the same time.

MAKING MOTION

156 ACR Programmer’s Guide

X/2 Y2 Z/-2

Comparing Absolute and Incremental Motion
Different types of motion can be used to achieve the same result. The following examples show absolute and

incremental motion, and a combination of the two. All three examples end at the absolute position of 400 units.

Example—Absolute Motion

The X axis is commanded to the following absolute positions:

X0

X100

X200

X300

X400

Example—Incremental Motion

The X axis is commanded to the following relative positions:

X0

X/-400

X/500

X/200

X/100

Example—Absolute and Relative

The X axis is commanded to the following absolute and incremental positions.

x/-400

x200

 MAKING MOTION

 ACR Programmer’s Guide 157

x/50

x400

Combining Types of Motion
The user can command multiple types of motion (linear, circular or sinusoidal) in a single statement. The

controller coordinates the motion of all axes in the statement regardless of the type of motion.

Example

The following illustrates a coordinated move where the X axis performs linear interpolation and the Y axis

performs sinusoidal interpolation.

X2 SINE Y(0,90,90,100)

Immediate Mode
While a program is running, the path velocity can be changed for a master and all axes attached to it. The change

is instantaneous and takes effect even if the axis or axes are moving.

Use the FOV (set feedrate override) command to set a floating-point scaling factor to adjust the master velocity. If

a move is in progress, the master uses the established acceleration or deceleration ramp to adjust to the new

velocity.

NOTE: The FOV command does not change the master velocity permanently and the change is

not saved. To make a permanent change, adjust the master velocity in the program code

either manually or through the Configuration Wizard.

For more information about feedrate override, see the FOV command in the ACR Command Language Reference.

Example

The following is typed in at the prompt by the user. It reduces the master velocity for all attached axes to 75%,

then 50%, and then returns the velocity to 100%.

FOV 0.75

FOV 0.50

MAKING MOTION

158 ACR Programmer’s Guide

FOV 1.00

Differences Between FOV and VEL
While a program is running, both the FOV and VEL (set target velocity for a move) commands can be set, but each

affects motion differently:

• FOV immediately affects all axes attached to the master.

• VEL is buffered in memory. The newly commanded velocity does not take effect until current motion is

completed.

What are Motion Profiles?
To make motion, the user must define the motion profile. The acceleration, deceleration, stop ramps, velocity,

and distance (ACC, DEC, STP, VEL and MOV commands, respectively) set the motion profile values.

• Acceleration: The ACC (set acceleration ramp) command sets the master acceleration. The master

acceleration is used to ramp from lower to higher speeds. The value is in units per second2.

• Velocity: The VEL (set target velocity for a move) command sets the target velocity for subsequent

moves. The value is in units per second.

• Deceleration: The DEC (set deceleration ramp) command sets the deceleration used to ramp from

higher to lower speeds. The value is in units per second2. The deceleration ramp is only used when the

stop ramp is zero. Use the DEC ramp to blend moves.

• Stop: Use the STP (set stop ramp) command to set the master deceleration ramp used at the end of the

next move. The value is in units per second2. When the stop ramp is set to zero, the move ends without

ramping down. This allows you to merge back-to-back moves. The final velocity of the first move

becomes the initial velocity of the second move.

Motion profiles can be graphically represented. The following illustrates the ACC, DEC, and STP values as a typical

trapezoidal motion profile.

All motion profile values are entered in user-based units (inches, millimeters, degrees, revolutions or other units).

Use the PPU (set axis pulse-per-unit ratio) command to relate the feedback pulse to the unit of measure. The

PPU command sets the ratio of pulses per programming unit. The controller computes the motion trajectory

from the motion profile data.

Motion profile values for each master can be set in two ways:

 MAKING MOTION

 ACR Programmer’s Guide 159

• Through the Configuration Wizard.

• In a program using the appropriate motion profile statements (ACC, DEC, STP or VEL).

In either case, the program continues to use those motion profile values until new values are commanded.

NOTE: Motion profile values in a specific program can be changed from within a different program

using the MASTER (Direct Master Access) command. A master must be attached to each

program and is usually the same number as the program number. For more information

about masters, see Master/Slave Attachments. For example, to change the velocity in

program zero to 500, send the following: MASTER0 VEL500.

Example

The following example assumes a 1000 line encoder attached to a motor. The MULT (set encoder multiplier)

command brings the value to 4000. Then, PPU X4000 sets the programming units to revolutions (4000

pulses/rev) for the rest of the program. The X axis moves 200 revolutions at 20 revs/second using 10

revs/second² ramps.

MULT X4

PPU X4000

ACC 10

DEC 10

STP 10

VEL 20

MOV X200

Interaction Between Motion Profilers
Any combination of motion profilers can be used to carry out motion for an application. As stated previously, the

controller must be set up for coordinated motion. Once this is done, the other motion profilers can be accessed

through the JOG, GEAR, and CAM commands.

Before writing code, it is important to understand how the motion profilers interrelate:

1. Each motion profiler calculates its own commanded position—the absolute and relative moves for an axis

or axes.

2. No motion profiler supersedes another—there is no hierarchy among the profilers.

Primary Setpoint
All profilers feed their commanded positions to a summation point, and the result is the Primary Setpoint for each

axis.

MAKING MOTION

160 ACR Programmer’s Guide

In effect, the Jog, Gear and Cam profilers act as offsets to the Coordinated Motion Profiler. The example below

demonstrates the offset concept.

Example

Suppose an application cuts four diamond shapes from sheets of stock. The program commands motion of axes X,

Y, and Z. For simplicity, this example focuses only on the X and Y axes.

Rather than plotting the cutting motion by providing the coordinates for each diamond, the code in this example

provides the coordinates for one diamond and uses the Jog Profiler to offset the coordinates for the remaining

diamonds.

The axes are attached to a Coordinated Moves Profiler (see Master/Slave Attachments). The cutting tool starts at

coordinates (0, 0) in the lower left quadrant of the stock. Subsequent diamonds are cut in sequence from upper

left, upper right, and lower right quadrants. The first shape is cut based on the following moves:

X-2 Y1

X0 Y2

X2 Y1

X0 Y0

For the second shape, instead of providing a new set of X and Y coordinates, a jog statement is used to shift the Y

axis 3 units. You can then provide the same coordinates used to cut the first shape. The new starting position

becomes coordinates (0, 3).

JOG ABS Y3

X-2 Y1

X0 Y2

X2 Y1

X0 Y0

 MAKING MOTION

 ACR Programmer’s Guide 161

To cut the third and fourth diamond shapes, jog statements again shift the starting positions for axes X and Y.

After each jog statement, the coordinates of the first shape are reused.

JOG ABS X5

X-2 Y1

X0 Y2

X2 Y1

X0 Y0

JOG ABS Y0

X-2 Y1

X0 Y2

X2 Y1

X0 Y0

So what is happening? Each motion profiler calculates its own commanded position, which is sent to a summation

point. The coordinated move, jog, gear, and cam data is combined for each axis to create a setpoint.

The Coordinated Moves Profiler always starts and ends at coordinates (0, 0). With the first shape, there are no

JOG, GEAR or CAM commands, so the setpoint for the X and Y axes is (0,0):

For the second shape, the jog statement tells the Jog Profiler to start the Y axis at 3 units. At the summation

point, this data is added to the values from the other profilers to yield a Y-axis setpoint of +3:

MAKING MOTION

162 ACR Programmer’s Guide

For the third shape, the jog statement adjusts the starting point again, this time changing the X axis to 5. The Y

axis has not been jogged so it stays at its previous value of +3:

For the fourth shape, the jog statement adjusts the starting point for the Y axis back to 0. The X axis has not been

jogged so it stays at its previous value of +5:

Without offsets, coordinates for each shape would have to be calculated (and debugged). Instead, one set of

coordinates can be reused and the starting point shifted through an offset.

Velocity Profile Commands
A basic motion profile for coordinated motion, controlled by an attached master, consists of acceleration,

deceleration, stop ramps and a velocity. You can further control coordinated motion using additional velocity

profile commands.

Axis motion with gear, cam or jog offsets are controlled solely by their associated commands—for example, CAM

OFFSET, CAM SCALE, GEAR ACC, GEAR RATIO, JOG DEC or JOG JRK.

NOTE: To check the setting of a specific motion profile command, enter the command without

any arguments.

NOTE: To disable a command, set its value to zero.

Use the ESAVE command to save coordinated motion and feedback control values in the controller. Otherwise,

the system parameters, motion profiles, and master and axis attachments are retained by the controller only until

the controller is rebooted or its power cycled. Then all data reverts to its default values.

Velocity Profile Setup
The following commands further shape and refine the coordinated motion profile. For more information about

each command, see the ACR Command Language Reference.

 MAKING MOTION

 ACR Programmer’s Guide 163

F (set velocity in units per minute)—sets a move velocity in units/minute. The F command otherwise functions

the same as the VEL command.

FOV (set federate override)—sets the move velocity manually, without changing the current VEL value. Use FOV

to superimpose an additional move onto existing motion. Typically, the FOV provides a manual way to change

velocity from a terminal. You can also assign the FOV to an input, providing users a manual way to initiate the

superimposed move. For more information, see Immediate Mode.

FVEL (set final velocity)—sets a final velocity value. When a STP value has been set, FVEL can be used to set a

target final velocity value. The value is used to slow down between moves, but not stop. Moreover, a move only

ramps down to the FVEL value, never up to the value.

JRK (set jerk parameter)—sets the slope of acceleration versus time profile. An S-curve profile provides a

smoother motion control by reducing the jerk (rate of change) in acceleration and deceleration portions of the

move profile. Because S-curve profiling reduces jerk, it improves position tracking performance.

ROTARY (set rotary axis length)—sets a rotary axis length used in a shortest-distance calculation. The resulting

move is never longer than half the rotary axis length.

TMOV (time-based move)—sets the time (in seconds) in which the move is completed. The controller calculates a

new master motion profile to complete the move in the specified time. The new motion profile values for

acceleration, deceleration, stop ramps and velocity are no greater than the user-specified values.

VECDEF (define automatic vector)—controls how the Coordinated Moves Profiler calculates the master move

vector. The VECDEF command defines the weight each axis receives in the vector calculation. The default value

is 1 for every axis.

In some applications, it is not desirable to include an axis in the motion profile calculation. Suppose there is an

application with coordinated motion for axes X, Y, and Z and rotary axis A. Setting the axis A value to zero

removes it from the vector calculation. Axis A makes its move within the defined motion profile, but is not part of

the calculation itself.

VECTOR (set manual vector)—sets an independent vector value for an axis removed from the motion profile

calculation through the VECDEF command. Because the axis is no longer part of the motion profile calculation, it

has no master velocity with which it can make independent moves. The VECTOR command provides that value so

the axis can make independent moves.

Feedback Control Commands
The feedback control commands affect the velocity profiles and define the encoder feedback used by axes in the

current program. Values must be set for each axis.

MULT (set encoder multipliers)—sets the count direction and the hardware multiplication for the encoder of a

given axis. This command affects tuning gains, directions, distances, velocities and accelerations.

MAKING MOTION

164 ACR Programmer’s Guide

Caution: Damage to equipment and/or serious injury to personnel may result if

MULT is changed to a value inappropriate to the application. Carefully

consider the effects throughout the application before applying a new

value and perform a test without the load or mechanics attached.

PPU (set axis pulse per unit ratio)—sets the pulses per programming unit for an axis, allowing convenient units for

motion profiles such as inches, millimeters or degrees. The PPU for each axis is independent of that of other axes.

Caution: Damage to equipment and/or serious injury to personnel may result if

MULT is changed to a value inappropriate to the application. Carefully

consider the effects throughout the application before applying a new

value and perform a test without the load or mechanics attached.

REN (match position with encoder)—sets the commanded position equal to the actual position for a given axis,

thus removing the following error.

RES (reset or preload encoders)—sets the commanded position and actual encoder position to zero for a given

axis. It also allows the user to preload an axis with a position.

REN Details

The REN command copies the actual position from the encoder into the Secondary Setpoint of the servo loop.

The values for the Primary Setpoint register and for the Coordinated Moves Profiler’s offset are then calculated

backwards from the Secondary Setpoint. This action removes the following error.

In the example below, the actual position is 11. That number is copied into the register for the Secondary

Setpoint, and the Primary Setpoint is then calculated (11).

The Jog, Gear and Cam profilers’ offsets do not change. The values in their registers are subtracted from the

Primary Setpoint to get the offset for the Coordinated Moves Profiler:

11 – (2 + 3 + 4) = 2

 MAKING MOTION

 ACR Programmer’s Guide 165

Calculations for the REN Command

RES Details

The RES command is used to zero out the primary setpoint (RES) or to preload positions into the Coordinated

Moves Profiler and Actual Position registers (example: RES X10).

See below for a diagram of the profiler and summation registers for the command RES X10. The values of the

Coordinated Moves Profiler, Primary and Secondary Setpoints and Actual Position registers have been changed to

10. The remaining profilers have been changed to zero.

MAKING MOTION

166 ACR Programmer’s Guide

Register Values for RES X 10

If RES is used without an axis and preload value, all the registers shown in the above figure would be zero (0).

Coordinated Moves Profiler
The Coordinated Moves Profiler (formerly called the current position profiler) controls motion for multiple axes

using a single set of motion profile values. The MOV command (define a linear move) commands absolute and

incremental motion.

NOTE: The MOV command is not necessary for coordinated motion. The controller recognizes

the axis name and a value as commanded motion, such as X500. Multiple axes can be

commanded in a single code statement, such as X500 Y100; the motion is coordinated.

No matter what the designed application is, the controller must first be configured for coordinated (linear

interpolated) motion. This does not limit the user from simultaneously using the other motion profilers—jog, gear

or cam. Information regarding which elements are involved is provided to the Coordinated Moves Profiler by the

master, slave and axis attachment statements. The other motion profilers look to the Coordinated Moves Profiler

for the configuration data. For more information about making attachments, see Attachments.

 MAKING MOTION

 ACR Programmer’s Guide 167

When multiple axes are moving, the Coordinated Moves Profiler computes the vector based on all the axes’ target

points. The vector moves at the values set through the motion profile (ACC, DEC, STP, and VEL) and is scaled

for each axis. Therefore, all axes start, accelerate, decelerate and stop at the same time.

When only one axis is moving, the ACC, VEL and STP are the same as the master.

NOTE: The Coordinated Moves Profiler typically uses the clock as its timebase.

Example 1

Two axes are attached to the same master and instructed to move to absolute positions: axis X to 25 millimeters

and axis Y to 15 millimeters. Both axes start, accelerate, decelerate and stop together.

ACC 750 DEC 750 VEL 75 STP 750

X25 Y15

Example 2

Two axes are attached to the same master and the program moves one axis to an absolute position: axis X to 25

millimeters. As only axis X is commanded to move, axis Y is not included in the motion trajectory calculation.

ACC 750 DEC 750 VEL 75 STP 750

X25

MAKING MOTION

168 ACR Programmer’s Guide

Jog Profiler
Each axis has a dedicated Jog Profiler which can, using a set of motion profile values, control absolute, incremental,

or continuous motion for that axis. It can do this independently or in conjunction with the other profilers (Cam,

Gear and Coordinated Moves).

NOTE: Multiple axes may be commanded in a single jog statement, such as JOG ABS X500 Y100.

The motion is not coordinated.

For any application, the controller is first configured for coordinated motion. This does not exclude

simultaneously using the other motion profilers.

The Jog Profiler looks to the Coordinated Moves Profiler for its configuration data (master, slave, and axis

attachment statements). For more information about making attachments, see Attachments.

The Jog Profiler computes motion based on axis target positions and on the motion profile values (JOG ACC, JOG

DEC, JOG JRK and JOG VEL). The motion profile is scaled by the PPU (pulses per programming unit) for each

axis. All axes may start, accelerate and decelerate at different times.

NOTE: The Jog Profiler typically uses the clock as its timebase.

 MAKING MOTION

 ACR Programmer’s Guide 169

NOTE: The ACR controller uses the Jog Profiler for jogging and homing routines. If the

acceleration, deceleration, velocity and jerk values are set for jogging, those values are

also used for homing. Therefore, it is a good programming practice to declare the motion

profile at the beginning of every jog subroutine. Doing so ensures the correct motion

values are used for a jogging or homing routine, regardless how the program branches to

a subroutine.

NOTE: The Configuration Wizard contains a Jog/Home Commissioning dialog. The dialog only

allows the user to test the setup of an axis—it does not produce jogging or homing code.

Example 1

Two axes are set to different acceleration, deceleration and velocities, and are moved the same distance.

JOG ACC X1000 Y500

JOG DEC X1000 Y500

JOG VEL X25 Y50

JOG INC X10 Y10

The figure below looks at the commanded motion of the X axis. In the upper graph (velocity motion profile), JOG

ACC and JOG DEC determine the acceleration and deceleration values, which always graph as ascending and

descending slopes, respectively. JOG VEL always graphs as a horizontal line once the axis is up to speed. The

area under the velocity profile graph is the distance traveled.

X Axis Velocity and Position Profiles

MAKING MOTION

170 ACR Programmer’s Guide

In the lower graph (position motion profile) of the previous figure, the curve between t0 and t1 shows the change

in position during the time it takes for the X axis to accelerate from zero to the target velocity. Likewise, the

curve between t2 and t3 shows the change in position during deceleration to zero. The actual acceleration and

deceleration curves shown are approximated due to the resolution of the graph. The straight line between points

P1 and P2 is where the X axis movement is a constant velocity.

The next figure looks at the movement for the Y axis, characterized by more gradual slopes for acceleration and

deceleration values of 500 in the velocity motion profile (as compared to the X axis’ values of 1000).

Y Axis Velocity and Position Profiles

Again, the straight line between points P1 and P2 on the position motion profile is where the Y axis movement is at

a constant velocity.

The figure below shows the velocity motion profiles for both the X and Y axes superimposed. The Y axis is

dashed. Due to a higher JOG VEL value, the Y axis finishes its commanded motion in less time than the X axis.

 MAKING MOTION

 ACR Programmer’s Guide 171

X and Y Velocity Motion Profiles

The following figure graphs the change in position for the X and Y axes. The Y axis is dashed. The overall slope of

the position curve for the Y axis is steeper, reflecting its higher JOG VEL value (JOG VEL X25 Y50).

Comparing the first curve after t0 for the axes show that a higher acceleration value presents as a more gradual

curve (JOG ACC X1000 Y500).

X and Y Position Motion Profiles

Example 2

The JOG VEL value is changed while a single axis is in motion (on the fly—OTF).

JOG ACC X20

JOG DEC X25

JOG VEL X10

JOG INC X10

DWL 1.0

JOG VEL X5

At one second (t0 + 1.0 s), the axis is commanded to decrease speed to the new velocity. See below for the

velocity profile. Motion ends at t1.

MAKING MOTION

172 ACR Programmer’s Guide

Change in JOG VEL Value “On the Fly”

Example 3

To illustrate sequential jog moves, two axes are attached to the same program. The program moves each axis an

incremental distance of 10 units using two separate moves. The program waits until the Jog Active Bit (bit 792) is

off, indicating that Axis X has finished its move, after which time the Y axis is commanded to move to its

incremental position. The figure below shows the velocity profile of this example.

JOG ACC X1000 Y500

JOG DEC X1000 Y500

JOG VEL X25 Y50

JOG INC X10

INH -792

JOG INC Y10

Velocity Profile of Sequential Jog Moves

JOG VEL Details
The next figure shows the bit profiles for the Jog Flags (bits 792 through 796) as a JOG VEL command is

executed.

 MAKING MOTION

 ACR Programmer’s Guide 173

JOG VEL Command and Bit Profiles

JOG Commands
See the ACR Command Language Reference for detailed information, including necessary arguments, on JOG

(single axis velocity profile) and its associated commands:

• JOG ABS (jog to absolute position)—uses the current jog settings to jog an axis to an absolute jog offset.

• JOG ACC (set jog acceleration)—sets the programmed jog acceleration for an axis.

• JOG DEC (set jog deceleration)—sets the programmed jog deceleration for an axis.

• JOG FWD (jog axis forward)—initiates a ramp to the velocity programmed by the JOG VEL command.

MAKING MOTION

174 ACR Programmer’s Guide

• JOG HOME (go home)—instructs the controller to search for the home position in the direction and on

the axes specified.

• JOG HOMVF (home final velocity)—specifies the velocity to use when the homing operation makes the

final approach.

• JOG INC (jog an incremental distance)—uses the current jog settings to jog an axis an incremental

distance from the current jog offset.

• JOG JRK (set jog jerk (S-curve))—controls the slope of the acceleration versus time profile.

• JOG OFF (stop jogging axis)—initiates a ramp down to zero speed.

• JOG REN (transfer current position into jog offset)—either clears or preloads the current position of a

given axis and adds the difference to the jog offset parameter.

• JOG RES (transfer jog offset into current position)—either clears or preloads the jog offset of a given

axis and adds the difference to the current position.

• JOG REV (jog axis backward)—initiates a ramp in the negative direction to the velocity programmed

with the JOG VEL command.

• JOG SRC (set external timebase)—specifies the timebase for jogging.

• JOG VEL (set jog velocity)—sets the programmed jog velocity for an axis.

JOG REN Details
The JOG REN command (transfer current position into jog offset) clears the Coordinated Moves Profiler of a

given axis and adds the difference to the Jog Profiler offset (example: JOG REN X). It can also be used to preload

a position into the Coordinated Moves Profiler, adjusting the Jog Profiler to make up the difference (example: JOG

REN X2). In either case, the Gear and Cam profilers and the Primary and Secondary setpoints do not change.

The drawing below illustrates JOG REN as it clears the Coordinated Moves Profiler.

JOG REN Clears Coordinated Moves Profiler (JOG REN X)

 MAKING MOTION

 ACR Programmer’s Guide 175

The drawing below illustrates JOG REN as it preloads the Coordinated Moves Profiler.

JOG REN Preloads the Coordinated Moves Profiler (JOG REN X2)

JOG RES Details
The JOG RES command (transfer jog offset into current position) clears the Jog Profiler offset of a given axis and

adds the difference to the Coordinated Moves Profiler (example: JOG RES X). It can also preload the Jog

Profiler offset, and, again, adjusts the Coordinated Moves Profiler to make up the difference (example: JOG RES

X2). In either case, the Gear and Cam profilers and the Primary and Secondary setpoints do not change.

The drawing below illustrates JOG RES as it clears the Jog Profiler.

MAKING MOTION

176 ACR Programmer’s Guide

JOG RES Clears the Jog Profiler (JOG RES X)

The drawing below illustrates JOG RES as it preloads the Jog Profiler.

JOG RES Preloads the Jog Profiler (JOG RES X2)

Gear Profiler
The Gear Profiler controls motion for axes needing to match their motion output to some form of input. The

input source is usually external, such as an electronic gearbox, trackball, follower axis or changes of ratio related

to position. In electronic gearing, pulses are fed from a selected source into the gear offset of a slave axis. These

 MAKING MOTION

 ACR Programmer’s Guide 177

pulses are scaled by a ratio that is equivalent to a gear ratio on a mechanical system. The rate at which the ratio

changes is controlled by a ramping mechanism similar to a clutch or a variable speed gearbox.

Simple Gear Example—Gearing to an Axis

GEAR SRC X P12546 : REM Gear X to Actual Position of Axis 1.

GEAR PPU X51200 : REM Master is 51200 pulses per rev.

GEAR RATIO X.25 : REM Set gear ratio at 1/4 master.

GEAR ON X : REM Turn electronic gearing on.

For each revolution of Y, X would move 0.25 inch. An external encoder could be used (Encoder 8 or, for IPA,

Encoder 1). The above PPU is for an ACR7xT stepper axis. The master’s axis PPU could be used as GEAR PPU

instead to set similar units.

The external encoder input can also be a gear source:

GEAR SRC X ENC1 : REM Gear X to Actual Position of Axis 1.

GEAR PPU X 4000 : REM Master is 4000 pulses per rev.

GEAR RATIO X-1.5 : REM Set gear ratio at -1.5 of master.

GEAR ON X : REM Turn electronic gearing on.

No external encoder wired to the controller? Use the global clock:

P6916=0 : REM Reset Global System Clock to 0.

GEAR SRC X P6916 : REM Tie slave gearbox to Global System Clock.

GEAR PPU X1000 : REM Master is 1000 counts (1 second).

GEAR RATIO X.25 : REM Set gear ratio at 1/4 (0.25 in/rev).

GEAR ON X : REM Turn electronic gearing on.

The above simple examples do not set GEAR ACC or GEAR DEC. As soon as gearing is enabled, X will use

infinite acceleration to match speed with its gear source. If the source to which you are gearing is already moving

at high speed or you have a high gear ratio, this can cause high jerk in the system or cause the axis to accelerate at

a very high rate; hence GEAR ACC and GEAR DEC can be used to limit the acceleration and deceleration ramps.

GEAR RATIO can be changed while gearing is active, but programmers should be careful; large changes in the

ratio can lead to abrupt changes in velocity.

MAKING MOTION

178 ACR Programmer’s Guide

Gearing Example—Start Gearing on High-Speed Input

GEAR ACC X10000

GEAR DEC Y10000

GEAR SRC Y0 : REM Gear Y axis to ENC0.

GEAR RATIO Y1 : REM Gear ratio of 1/1.

X/ 200000 : REM X axis move.

GEAR ON Y TRG(2, 0) OFFSET 3000

REM Mode 2, Rising Primary external.

REM Capture Register 0, gear source is ENC0.

REM Offset is positive, X-axis is moving

REM in positive direction.

INH 2344

REM Wait, capture register is shared by GEAR TRG ON

REM and GEAR TRG OFF.

GEAR OFF Y TRG(2,0) OFFSET 6500

REM The gear will turn off 6500 pulses after the

REM trigger is received.

INH 2348

For GEAR SRC see the SRC command (set external timebase) for available sources. Parameters can be used but

care should be taken that these do not change abruptly (mistakenly written to from another program, PLC or

HMI) or are subject to noise corruption.

NOTE: The Gear Profiler typically uses a source other than the clock as its timebase.

Gantry Lock is a special application as compared to gearing. See Lock.

Cam Profiler
An electronic cam is primarily used as a replacement for a mechanical cam. The Cam Profiler controls motion for

axes needing precise motion. It uses an array of target points in relation to an externally sourced timebase. By

breaking the motion into discrete target points, the cam arrives at the exact point needed. The source can be the

position of another axis, an external encoder or any parameter within the controller.

The Cam Profiler provides linear interpolation between points, regardless of how many points are necessary for

the move. All changes in motion are real time. The Cam Profiler does not compile motion.

Cam uses an arbitrary source to generate an index into a table of offset values. If this index falls between two

table entries, the cam offset is linearly interpolated between the entries. This offset is then scaled, shifted by the

output offset, and then multiplied by the PPU for the given axis.

A cam table can be composed of more than one segment with each segment having different distances between

table entries. The data for each segment of the table resides in separate long integer arrays, possibly of different

sizes. This allows some parts of the table to be defined coarsely and others to be defined in more detail. Each

point of the cam table is scaled by PPU of the cam axis.

 MAKING MOTION

 ACR Programmer’s Guide 179

You can only use long integer arrays in a cam table. The table index automatically tracks which segment it is in and

where it is within that segment. It also wraps around if it goes off either end of the table. The wraparound point

is determined by the total length of the table that is equal to the summation of the individual segment lengths.

NOTE: The Cam Profiler typically uses a source other than the clock as its timebase.

NOTE: The cam table is stored within an array of long integers, not real numbers. Thus, the

position data in the cam table would be in counts; convert real positions to counts by

multiplying by PPU.

For CAM SRC, see SRC command (set external timebase) for available sources. Parameters can be used but care

should be taken that these do not change abruptly (mistakenly written to from another program, PLC or HMI) or

are subject to noise corruption.

CAM RES (transfer cam offset)—this command either clears or preloads the cam offset of a given axis and adds

the difference to the current position. It also clears out any cam shift that may have been built up by an

incremental cam.

Cam Example Program—CAM X to Y Axis

DRIVE ON X Y

REM START CAM TABLE ARRAY***********

DIM LA(2) : REM Dimension 2 long arrays

DIM LA0(9) : REM LA0 has 9 elements

LA0(00)=0 : REM Start defining cam table segment1

LA0(01)=73

LA0(02)=250

LA0(03)=427

LA0(04)=500

LA0(05)=427

LA0(06)=250

LA0(07)=73

LA0(08)=0

DIM LA1(6)

LA1(00)=0 : REM Start defining cam table segment2

LA1(01)=0

LA1(02)=-500

LA1(03)=-500

LA1(04)=0

LA1(05)=0

REM END CAM TABLE ARRAY***********

CAM DIM X2 : REM Define 2 cam segments

CAM SEG X(0, (P12631*1/3),LA0)

REM Cam segment0, range (counts of src), data table

CAM SEG X(1, (P12631*2/3),LA1)

REM Cam segment1, range (counts of src), data table

CAM SRC X1 : REM Define cam source as ENC1

CAM SCALE X(1/P12375)

REM Set Cam Scaling

MAKING MOTION

180 ACR Programmer’s Guide

REM Set to 1/(PPU X) for 1/1 relation between cam scale and axis units

CAM SRC X RES : REM Reset cam source to 0

CAM RES X : REM Reset cam to 0

CAM ON X : REM Start camming

Y/2

DWL 1

Y0

For each unit of Y moved, X would progress through the cam table, repeating as it moved and reversing if Y is

reversed:

Outputs can be set to turn on position automatically with Programmable Limit Switch (PLS). See PLS sample.

Homing
The homing operation is a sequence of moves that position an axis using the Home Limit inputs. The goal of the

homing operation is to return the load to a repeatable starting location.

When the homing operation successfully completes, the controller sets the absolute position register to zero,

establishing a zero reference position. For servo axes using analog feedback, the controller sets the voltage

register to zero.

 MAKING MOTION

 ACR Programmer’s Guide 181

The Jog Profiler controls homing operations. If the acceleration, deceleration, velocity, and jerk values are set for

jogging, those values are also used for homing.

NOTE: It is a good programming practice to declare the motion profile at the beginning of every

jog subroutine. Doing so ensures the correct motion values are used for a jogging or

homing routine, regardless how the program branches to a subroutine.

NOTE: A homing routine cannot be started for an axis that is already in motion.

The relevance of positive and negative direction with respect to limit switches is shown below.

If an end-of-travel limit is encountered during the homing operation, motion is reversed and the home switch is

sought in the opposite direction. If a second limit is encountered, the homing operation is terminated, stopping

motion at the second limit.

NOTE: For homing operations, always use the clock as the source of the Jog Profiler.

The controller uses the following guidelines for all backup-enabled profiles:

• Search for the selected edge at the velocity set with the JOG VEL command (set jog velocity).

• Use the direction given in the JOG HOME command (go home). If the home input is already active, start

toward the selected edge. On finding the selected edge, decelerate.

• Return to the selected edge at the velocity set with the JOG HOMVF command (home final velocity). If

the returning direction is the same as the selected final direction, the profile is complete. Otherwise, find

the edge again in the selected final direction using the velocity set with the JOG HOMVF command.

Example

The homing routine sets the conditions for homing: a motion profile, the inputs related to homing and homing

velocity. In addition, specific bit conditions are set out. The JOG HOME command then starts the homing

process.

The WHILE/WEND statement (loop execution conditional) causes the program to wait until the homing conditions

it contains are met. In the first AND statement, Axis 0 cannot have found home and cannot have failed to find

home. The second AND statement does the same for Axis 1. Once conditions are met, the code within the

WHILE/WEND statement is executed.

MAKING MOTION

182 ACR Programmer’s Guide

Finally, the program prints that the Y axis homing is successful and initiates Z channel homing (MSEEK command—

marker seek operation) for axis X. When axis X has successfully completed the Z channel homing, the program

prints that X axis homing is successful.

PROGRAM

JOG VEL X10 Y10 : REM Set axes jog parameters used during homing

JOG ACC X100 Y100

JOG DEC X100 Y100

HLBIT X0 Y3 : REM X uses 1Home (input2), Y uses 2Home (input5)

HLIM X3 Y3 : REM enable EOT limit checking for box axes

JOG HOMVF X0.1 Y0.1 : REM Set backup to home velocity

SET 16144 SET 16145 : REM Invert axis0 level of limit inputs

SET 16176 SET 16177 : REM Invert axis1 level of limit inputs

CLR 16152 CLR 16184 : REM Disable backup to home

CLR 16153 CLR 16185 : REM Look for positive edge of sensor

CLR 16154 CLR 16186 : REM Final homing direction will be positive

JOG HOME X-1 Y1 : REM start homing x negative, y positive

REM The WHILE/WEND statement uses Boolean logic to define homing

REM conditions. Bits 16134 and 16166 are the Found Home bits for axes

WHILE (((NOT BIT 16134) AND (NOT BIT 16135)) OR ((NOT BIT 16166) AND (NOT BIT

16167)))

WEND

IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL"

IF (BIT 16134)

 MSEEK X(1,0)

 INH –516

 IF (BIT 777)

 PRINT "X HOMING SUCCESSFUL"

 ENDIF

ENDIF

ENDP

Homing Subroutines
Typically, the homing code is a subroutine in a program. The Jog commands define the motion (JOG ACC, JOG

DEC, JOG HOME, JOG HOMVF, JOG JRK and JOG VEL) and three bits in the Quinary Axis Flags (bit 16128-

16639) control other aspects of a homing routine:

• Home Backup Enable (bit index 24).

• Home Negative Edge Select (bit index 25).

• Home Final Direction (bit index 26).

The JOG HOME command simultaneously homes multiple axes. The arguments for this command, axis and

direction, allow the user to specify an axis and the direction in which it seeks the homing region. For example,

JOG HOME X1 Y-1 homes the X axis in the positive direction, and the Y axis in the negative direction.

The following diagrams illustrate the combinations and interactions of the three homing bits (above) and the JOG

HOME command.

 Line

Wraps

 MAKING MOTION

 ACR Programmer’s Guide 183

Basic Homing (Homing Backup Disabled)

When the Home Backup Enable bit (Bit 24) is clear, the controller ignores the Home Negative Edge Select bit (bit

25) and Home Negative Final Direction bit (bit 26). Consequently, when the controller finds any homing edge

(positive or negative), the move decelerates. The controller does not attempt to back up to the found edge.

Figures A and B show the homing operation when the Home Backup Enable, Home Negative Edge Select, and

Home Negative Final Direction bits are clear (Quinary Axis Flags, bit 16128-16639).

Figure A

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is clear.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is clear.

Figure B

Homing Profile Attributes:

JOG HOME X-1

Home Backup Enable (bit index 24) is clear.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is clear.

Positive Homing (Homing Backup Enabled)

Figures C through F show the homing operation when the Home Backup Enable bit is set (parameters 4600-4615).

The seven steps below describe a sample homing operation, as illustrated in Figure C. Figures D through F show

the homing operation for different values of the Home Negative Edge Select and Home Negative Final Direction

bits—the Home Backup Enable bit is set.

A positive home move is started with the JOG HOME X1 command at the JOG ACC and JOG JRK

accelerations. Default JOG ACC is 10 revs (or volts or inches) per sec2.

The JOG VEL velocity is reached (move continues at that velocity until home input goes active).

The negative edge of the home input is ignored and the move continues until the positive edge is detected. At this

time, the move is decelerated at the JOG DEC and JOG JRK command values.

After stopping, the direction is reversed and a second move with a peak velocity specified by the JOG HOMVF

value is started.

This move continues until the positive edge of the home input is reached.

MAKING MOTION

184 ACR Programmer’s Guide

Upon reaching the positive edge, the move is decelerated at the JOG DEC and JOG JRK command values, the

direction is reversed, and another move is started in the positive direction at the JOG HOMVF velocity.

As soon as the home input positive edge is reached, this last move is immediately terminated. The load is at home

and the absolute position register is reset to zero.

Figure C

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is clear.

Figure D

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is set.

Home Negative Final Direction (bit index 26) is clear.

Figure E

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is set.

Figure F

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is set.

Home Negative Final Direction (bit index 26) is set.

 MAKING MOTION

 ACR Programmer’s Guide 185

Negative Homing (Homing Backup Enabled)

Figures G through J show the homing operation for different values of the Home Negative Edge Select and Home

Negative Final Direction bits—the Home Backup Enable bit is set.

Figure G

Homing Profile Attributes:

JOG HOME X-1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is set.

Home Negative Final Direction (bit index 26) is set.

Figure H

Homing Profile Attributes:

JOG HOME X-1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is set.

Figure I

Homing Profile Attributes:

JOG HOME X-1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is set.

Home Negative Final Direction (bit index 26) is clear.

Figure J

Homing Profile Attributes:

JOG HOME X-1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is clear.

MAKING MOTION

186 ACR Programmer’s Guide

Limit Detection
The Configuration Wizard assists with setting up the Hardware and Software Limits Detection.

If limits are enabled, motion stops when the load encounters a limit. If the load hits a hardware limit, motion stops

at the rate set by the HLDEC; if the load hits a software limit, motion stops at the rate set by the SLDEC.

Dedicated I/O for Homing

For each axis, the user can assign which inputs are used for positive and negative hardware limits as well as the

input used for homing. The inputs can be assigned or changed using the HLBIT command (no corresponding

parameter exists). Use the HLBIT command to set the inputs for the positive hardware limit, negative hardware

limit and homing sensor input.

HLBIT X (0, 1, 2)

For legacy systems or upgrading from ACR9000:

When using HLBIT without the parentheses, the number specifies the first input and the controller sets the next

two contiguous inputs for the negative hardware limit and home limit.

HLBIT X0 : REM Input 0 is Pos. Limit, 1 is Neg. Limit and 2 is Home Limit.

For example, HLBIT X0 assigns input 0 as the positive hardware limit and then the next two inputs. Input 1

becomes the negative hardware limit and input 2 becomes the home limit.

 MAKING MOTION

 ACR Programmer’s Guide 187

This syntax is still supported in ACR7000 and IPA firmware. However, you need to exercise caution with that

syntax as the controller does not roll the assignment to the next block of 32 bits. For example, if HLBIT X31 is

issued, the negative hardware limit and homing input are not assigned and they become imaginary inputs with a

value of zero.

Stopping Motion and Moves
When an axis’ KAMR is activated (by the user or automatically by the controller) the controller will:

• Attempt to stop the axis using the current setting for hardware limit deceleration, HLDEC. This is set

within the Fault screen in the Configuration Wizard.

• Use the jog profiler to generate the setpoints necessary to bring the axis to a controlled stop. This may

result in a Jog Offset. Use the JOG RES command to transfer the Jog Offset to the Current

(coordinated) Position register. Or home the axis to re-establish the desired zero position.

• Stop jog, cam, gear or ballscrew motion on the axis by clearing those flags (gear activate, cam activate, jog

active, jog forward and jog reverse).

• Set the Kill All Moves flag for the master that is assigned to that axis. This will stop and prevent any

coordinated motion.

• Set the Kill All Motion Request flag for any other axes on that same master.

Any motion command issued while this flag is set will result in an error message “Associated Slave Kill Motion

Request Active” in the Terminal Emulator. This is true if any axis assigned to the same master is commanded to

move.

The user is responsible for clearing this flag.

Within a program, to resume motion, first clear the Kill All Motion Request flag for the axis (and any other axis on

the same Master) and then clear the Kill All Moves flag in the master.

Enabling a drive using the DRIVE ON command will clear the Kill All Motion Request (KAMR) and Kill All Moves

flag if the drive is not currently enabled.

Within the terminal emulator in PMM, the KAMR and Kill All Motion Request flags may be cleared for all axes by

issuing a CTRL-Y.

The KAMR flag does not halt any programs. However, if the program encounters a new command to move while

this bit is set, the program will halt. Non-motion programs can be running, monitoring motion program status for

error recovery.

Kill All Moves versus Kill All Motion Request

The Kill All Moves bits are for the interpolated motion moves. If you had an 3-axis X/Y/Z system, setting the Kill

All Moves flag would immediately kill any MOV (single axis X10 move, or interpolated X5 Y/3 for example).

Master 0 Kill All Moves bit 522 and Stop All Motion bit 523 would kill or stop all interpolated moves for the

Master 0.

Setting the master's Kill All Moves or Stop All Motion bits will have no effect on other types of single axis moves

like JOG, GEAR or CAM.

MAKING MOTION

188 ACR Programmer’s Guide

Setting the axis' Kill All Motion Request bit (bit 8467 for Axis 0) will kill all motion, including jogging for that axis

and all other axes that are associated to that master.

Example

Axis 0 and Axis 1 are attached to Master 0—Axis 2 and Axis 3 are attached to Master 1. When all axes are

jogging, setting bit 522 and bit 523 will have no effect on jogging. But when setting bit 8467, Kill All Motion

Request for Axis 0, Axis 0 and Axis 1 will stop but Axis 2 and Axis 3 will continue to jog.

Flag Comparison

The following table shows the bit numbers for Kill All Motion Request axis flags and the bit numbers for Kill All

Moves master flags.

Kill All Motion Request

Quaternary Axis Flags

Axis Number

0 1 2 3 4 5 6 7

8467 8499 8531 8563 8595 8627 8659 8691

Axis Number

8 9 10 11 12 13 14 15

8723 8755 8787 8819 8851 8883 8915 8947

Kill All Moves

Master Flags

Master Number

0 1 2 3 4 5 6 7

522 554 586 618 650 682 714 746

Master Number

8 9 10 11 12 13 14 15

7434 7466 7498 7530 7562 7594 7626 7658

Bit Status Window Comparison

Locate the Bit Status Panel by clicking on the plus sign (+) next to Status Panels on the Explorer in PMM and

clicking on Bit Status.

 MAKING MOTION

 ACR Programmer’s Guide 189

Select Axis Flags in the first pull-down menu, Quaternary Axis Flags in the second pull-down menu and Quaternary

Axis 0 Flags in the third pull-down menu to display the Kill All Motion Request bit for Axis 0. A green LED, as

circled in red below, indicates that the flag is set. All motion is stopped for this axis and all other axes on the same

master.

Select Master Flags in the first pull-down menu, Primary Master Flags in the second pull-down menu and Primary

Master 0 Flags in the third pull-down menu to display the Kill All Moves Request bit for Master 0. A green LED, as

circled in red below, indicates that the flag is set.

MAKING MOTION

190 ACR Programmer’s Guide

Example:

This example uses terminal commands.

P00>ATTACH

ATTACH MASTER0

ATTACH SLAVE0 AXIS0 "X"

ATTACH SLAVE1 AXIS1 "Y"

The ATTACH command will reply with information about which axes are part of the master group.

P00>JOG FWD X

JOG FWD X starts a continuous jog move on X axis.

P00>SET 8467

SET 8467 sets the KAMR for the X axis. It would decelerate at the HLDEC rate.

P00>JOG FWD Y

P00>Associated Slave Kill Motion Request is active

Y-axis motion is prevented due to the X-axis KAMR flag being active.

P00>CLR 8467 CLR8499

P00>JOG FWD Y

Y-axis motion is now allowed.

NOTE: Enabling drives using the DRIVE ON command will clear the Kill All Motion Request

(KAMR) and Kill All Moves bits if the drive is not currently enabled.

 MAKING MOTION

 ACR Programmer’s Guide 191

Contoured (Tiered) Profiles
Changes to jog velocity take effect immediately (velocity moves JOG FWD or JOG REV).

Terminal Emulator Sample:

DRIVE ON X

JOG VEL X5

JOG FWD X

JOG VEL X8

JOG OFF X

Or decelerating:

JOG VEL X5

JOG FWD X

JOG VEL X3

JOG OFF X

MAKING MOTION

192 ACR Programmer’s Guide

If a Jog move is in progress, another Jog move command (JOG INC or JOG ABS) will cause the current move to

abort and ramp to zero velocity before starting the next move.

Terminal Emulator Sample:

DRIVE ON X

JOG VEL X5

JOG INC X20

JOG INC X3

Or:

DRIVE ON X

JOG FWD X

JOG INC X3

 MAKING MOTION

 ACR Programmer’s Guide 193

Blended (Tiered) Interpolated Moves

With an interpolated move, it would be programmed as two moves but with the stop ramp STP set to 0 so it

would start the second move after completing the first move.

Example:

ACC 10 DEC 10 STP 0 VEL 3

Y/4 Z/4 : REM Start incremental move for Y and Z at speed of 3.

VEL 1 STP 10

Y/1 Z/1 : REM Toe-in with another move for Y Z at speed of 1.

INH-516 : REM Wait until move stops.

DWL 1 : REM Wait 1 second.

VEL 3 STP0

Y1 Z1 : REM Return move same but in absolute values.

VEL 1 STP10

Y0 Z0

High-speed Position Capture (INTCAP)
INTCAP allows you to capture an axis position when one of the controller’s high-speed trigger inputs or the

encoder reference (Z channel) turns on. The position is stored in the capture register. The ACR7000 stepper has

four capture registers, one for each stepper axis. The IPA has two, one for its servo axis and another for its

auxiliary encoder input (ENC 1). The ACR7000 servo has one for each servo axis. The ACR7000 controller has

one for each axis and any of the first four can also be used for the auxiliary encoder input (ENC 8).

PMM’s online help for INTCAP has charts for the different ACR controllers (ACR7xT stepper, IPA single axis

servo, ACR7xV servo and ACR7xC controller). Capture modes marked with (+) capture a rising edge while (-) is

a falling edge. INP is a trigger input and Z ENC is the encoder reference mark. These are necessary as they arm

the specific hardware at the chip level to capture the encoder position very precisely (1 µs latency). Multiple

captures can be armed at the same time. No motion is initiated by INTCAP—it is simply a mechanism to arm the

MAKING MOTION

194 ACR Programmer’s Guide

capture to take place when the source is triggered. INTCAP is also used in other AcroBASIC commands such as

HSINT (high speed interruptible move) and MSEEK (marker seek).

ACR7xV Capture Modes

Note for the stepper axis, PMM already attaches the encoder whether selected or not and the correct settings will

be applied to the ACR7000 stepper controller. If there is no encoder (open loop stepper), the current position

register value is used.

A Capture Complete Flag indicates when the capture is complete and then the Hardware Capture register will

have the position information:

Example Encoder Reference Trigger

REM Y axis use capture register 1, Mode0, rising edge of Encoder1

REM reference marker.

INTCAP Y0 : REM arms capture for Y Axis

JOG FWD Y : REM initiate jogging move on X axis

INH 809 : REM wait until Axis1 flag “Capture Complete” is set

JOG OFF Y : REM stop jogging

REM capture parameter was not specified in INTCAP command, defaults to

REM Axis1

 MAKING MOTION

 ACR Programmer’s Guide 195

PRINT P12548 : REM Print Axis1 hardware Capture position

RETURN

ACR7xC Example Capture—Two Axis Positions with One Trigger Input

AXIS0 INTCAP 10 CAP2 P12804

REM Mode10, CAP2 : Rising 3rd External, CAP2 uses Input24

AXIS1 INTCAP 11 CAP3 P13060

REM Mode11, CAP3 : Rising 4th External, CAP3 uses Input24

AXIS0 JOG FWD : AXIS1 JOG FWD

INH 841 : INH 873

PRINT "Axis0 Capture Position", P12804

PRINT "Axis1 Capture Position", P13060

Instead of a hardware capture, software capture is available with SET 113. It captures all encoder positions at the

next period for the controller and stores them within the software capture parameters (P12293 for Axis 0 and so

on).

Lock
The LOCK command redirects one axis to follow the primary setpoint of a second axis. This can be used to have

multiple axes receive the same setpoint in the same servo cycle rather than following another axis (one servo

period behind).

LOCK is essential for controlling a gantry system where two mechanical systems need to be coupled. Once the

two axes are locked, a special control loop will minimize the error between them assuring perfect coordination.

This is important for an XX’ (X/X prime) so that one axis is not fighting the other, leading to crabbing or having to

detune one of the axes.

MAKING MOTION

196 ACR Programmer’s Guide

When two axes are locked together using the LOCK command, their primary setpoints become the same. In

other words, the two axes will get exactly the same command signal. However, in the real world, the response of

the two physical motors/actuators will be slightly different. To compensate for this error, the user can turn on a

feedback loop by setting some gain values for the “Lock Feed Back Gain” parameters of the locked axes. Thus, if

one axis has a disturbance and corrects for the position error, the locked axes will also correct. The default value

is zero, which turns this feedback loop off.

With feedback gain:

Example

P12376 = 3.5 : REM Set lock gain axis 0.

P12632 = 3.5 : REM Set lock gain axis 1.

LOCK Y X : REM Lock axis Y to axis X's primary setpoint.

 MAKING MOTION

 ACR Programmer’s Guide 197

X/20 : REM Start motion axis X, axis Y also moves due to lock.

UNLOCK Y : REM Unlock axis Y.

When the UNLOCK command is issued, that axis’ position will be 0 and will need to be reset. The difference

between the two positions should be stored and the unlocked axis should be reset to the main axis position less

the offset.

Rotary Axis
The ROTARY command allows a rotary axis to take the shortest path to a position, whether for a precision rotary

stage, standalone motor or motor with gearhead. ROTARY sets the rotary axis length used for the shortest-

distance calculations.

If the rotary length of an axis is non-zero, a MOD function is performed on absolute moves and the result is run

through a shortest-distance calculation. The resulting move will never be longer than half the rotary axis length.

Incremental moves are not affected by the rotary axis length.

This command only affects MOV absolute moves. JOG moves are not affected. Before enabling the ROTARY

command, it may be useful clear the JOG offset register by issuing the JOG RES command, transferring the Jog

Offset to the Coordinated Position register.

The NORM command can be used to return the current position to within the bounds of the rotary length. Issuing

a ROTARY command without an argument will display the current setting. To disable, set ROTARY length to 0.

To increase the accuracy of the rotary motion, use degrees for the units. This can be selected within the

Configuration Wizard.

Example

The following example sets the rotary length of the A axis to 360 units:

ROTARY A360

A120 : REM Move to 120 units results in positive motion.

A0 : REM Go back to 0 position.

A275

REM Move to 275 units results in negative motion as this is the

MAKING MOTION

198 ACR Programmer’s Guide

REM shortest distance.

External Time Base
By default, motion’s time base is set to the servo clock. The SRC command can be used to change to an external

timebase, such as an encoder or parameter. This is done with the SRC (source) command. This is similar to CAM

SRC or GEAR SRC, but those are only for CAM motion or GEAR motion. During each servo interrupt, the

change in source pulses is multiplied by the servo period and the resulting delta time is fed into the velocity profile

mechanism. Redirecting the source allows the controller to use an external time base for coordinated motion.

Note when using P parameter, do not use a source that could be changed abruptly or have discontinuities. The

encoder inputs would be good choices, either with ENC1 syntax or the corresponding P parameter P6272 for

ENC8. Ratchets are also available as a source.

Example

SRC P6272

Servo Loop Fundamentals
Each of the profilers contains a register with a value of the current offset. These values are added together and the

summation is called the Primary Setpoint (PSP).

PSP = Coordinated Moves + Jog + Gear + Cam

See below for a diagram of the Primary Setpoint summation.

Primary Setpoint Summation

Setpoint Compensation
There are two mechanical characteristics that the controller takes into consideration and compensates for:

hysteresis losses and non-linear position error, which are processed by the Backlash Generator and Ballscrew

Profiler, respectively.

Backlash Generator: Used to compensate for error introduced by hysteresis in mechanical gearboxes. Backlash is

used in the Secondary Setpoint summation if the Primary Setpoint value is positive. Use the BKL command (set

 MAKING MOTION

 ACR Programmer’s Guide 199

backlash compensation) to set the compensation, or, without an argument, to display the current setting for an

axis.

Ballscrew Profiler: Used to compensate for non-linear position error introduced by mechanical ballscrews and

gearboxes. Use the BSC command (ballscrew compensation) to initialize and control ballscrew compensation for

an axis.

The values of the Backlash Generator and Ballscrew Profiler are added to the Primary Setpoint, and this

summation is called the Secondary Setpoint (SSP).

SSP = PSP + Backlash + Ballscrew

The information up to and including the SSP is the commanded position. See the figure below.

Secondary Setpoint Summation

Viewing the Setpoint Calculations
Servo loop calculations for the actual position of an axis can be observed in PMM. The Servo Loop Status panel

shows the motion offsets, primary and secondary setpoints, servo gains and other values, and how they result in

the final position output.

In the Explorer, click Status Panels, then click Servo Loop Status.

Note that PMM’s display will be slow due to the communications. The update of the servo loops is the PERIOD

of the controller (see PERIOD in ACR Command Reference or PMM’s online help file for further details).

Following Error

The Secondary Setpoint is compared with the value of the Actual Position received from a feedback device. See

the figure below. The difference between the Secondary Setpoint and Actual Position is called the Following Error:

Following Error = Secondary Setpoint - Actual Position

The controller makes adjustments to the motor position through a constant cycle of comparison and correction.

Following Error is used by the PID loop (servo control algorithm) to keep the Actual Position equal (or

approaching equal) to the Secondary Setpoint.

MAKING MOTION

200 ACR Programmer’s Guide

Following Error

Ballscrew Compensation
Ballscrew compensation is primarily used to compensate for nonlinear position error introduced by mechanical

ballscrews and linear encoders. Ballscrew commands are identical to cam commands. Both ballscrews and cams

can be active at the same time, each with different settings and offset tables.

The main difference between ballscrew and electronic cam is that the default source for a ballscrew points to the

primary setpoint, therefore the BSC SRC command is normally not required. The primary setpoint is used so

that the ballscrew offset is not fed into the calculation of the ballscrew index, causing an unstable condition.

NOTE: The primary setpoint is the summation of the coordinated position and the total cam, gear

and jog offsets. The secondary setpoint is the summation of the primary setpoint and the

total ballscrew and backlash offsets. The secondary setpoint is the one that is actually

used by the servo loop.

BSC with PPU

When PPU is set for an axis you must use a BSC SCALE equal to 1/PPU and enter all values in pulses.

PPU X 1000 : REM 1 micron linear encoder, user units 1 mm, BSC SCALE X 0.001.

 MAKING MOTION

 ACR Programmer’s Guide 201

All entries in the long array used to designate a BSC segment MUST be made in encoder pulses.

LA0(0)=100 : REM Array entry in encoder pulses, 100 micron.

When PPU is specified for the axis that is used as the ballscrew, axis segment lengths must still be entered in

encoder pulses.

BSC SEG X(0,100000,LA0) : REM Master encoder pulses 100000 microns or 100 mm.

Encoder Accuracy

The 406LXR Series makes use of an optical linear encoder for positional feedback. This device consists of a

readhead, which is connected to the carriage, and a steel tape scale, which is mounted inside the base of the

406LXR. The linearity of this scale is ±3 microns per meter, however the absolute accuracy can be many times

larger. To compensate for this error, an error plot of each 400LXR is done at the factory using a laser

interferometer. From this plot a linear slope correction factor is calculated (Figure 2). Then a second error plot

is run using the slope correction factor. These tests are conducted with the Point of Measurement (POM) in the

center of the carriage 35 mm above the carriage surface.

Slope Correction

Slope correction is simply removing the linear error of the table. The graphs below show an example of a non-

slope corrected error (Figure 2) plot and the same plot with slope correction (Figure 3). As can be seen, the

absolute accuracy has been greatly improved. The slope factor is marked on each unit. It is the slope of the line in

microns per meter. This factor may be positive or negative, depending on the direction of the error.

If the application requires absolute accuracy, the slope factor must be incorporated into the motion program. This

is a matter of either assigning variables for motion positions and using the slope correction in the variable equation

or, for ACR series controllers, using the ballscrew compensation feature, which simplifies error correction.

Accuracy can be improved even more by using the actual data points and incorporating these into a compensation

array used by the BSC command (Figure 4).

NOTE: The zero position (or starting point) of the error plots is at the extreme NEGATIVE end

of travel.

MAKING MOTION

202 ACR Programmer’s Guide

BSC Using Slope Correction Value

Slope value 34.3 µm/m. Value at 1450 mm: 34.3 [µm/m] * 1.45 [m] = 49.6 [µm]

DIM LA(1) : REM Dimensions one long array for correction values.

DIM LA0(2) : REM Dimension array zero with 2 data points.

LA0(0)=0 : REM Set first array value (negative end of travel) to zero.

LA0(1)=50 : REM Set last array value to inverse of slope correction value.

BSC DIM X1 : REM Dimension one segment for correction values.

BSC SEG X (0, 1450000, LA0) : REM Segment 0 is 1450000 microns(1450 mm).

BSC SCALE X 0.001 : REM Scale = 1/PPU.

BSC ON X : REM Activate ballscrew compensation.

BSC Using Error Data Points From Laser Report

DIM LA(1) : REM Dimensions one long array for correction values.

DIM LA0(59) : REM Dimension array 0 with 59 data points.

LA0(0)=0

LA0(1)=1

LA0(2)=3

LA0(3)=4

 MAKING MOTION

 ACR Programmer’s Guide 203

LA0(4)=5

LA0(5)=6

LA0(6)=7

LA0(7)=8

LA0(8)=8

LA0(9)=10

LA0(10)=10

LA0(11)=12

LA0(12)=11

LA0(13)=12

LA0(14)=13

LA0(15)=14

LA0(16)=16

LA0(17)=18

LA0(18)=20

LA0(19)=21

LA0(20)=21

LA0(21)=23

LA0(22)=24

LA0(23)=25

LA0(24)=24

LA0(25)=26

LA0(26)=26

LA0(27)=27

LA0(28)=29

LA0(29)=32

LA0(30)=35

LA0(31)=37

LA0(32)=38

LA0(33)=39

LA0(34)=38

LA0(35)=39

LA0(36)=38

LA0(37)=39

LA0(38)=41

LA0(39)=41

LA0(40)=40

LA0(41)=37

LA0(42)=36

LA0(43)=34

LA0(44)=35

LA0(45)=38

LA0(46)=38

LA0(47)=41

LA0(48)=39

LA0(49)=38

LA0(50)=38

LA0(51)=38

LA0(52)=41

MAKING MOTION

204 ACR Programmer’s Guide

LA0(53)=44

LA0(54)=48

LA0(55)=51

LA0(56)=54

LA0(57)=59

LA0(58)=61

BSC DIM X1 : REM Dimension one segment for correction values.

BSC SEG X (0, 1450000, LA0) : REM Segment 0 is 1450000 microns(1450 mm).

BSC SCALE X 0.001 : REM Scale = 1/PPU.

BSC ON X : REM Activate ballscrew compensation.

Figure 4

Corrected error plot using laser table

compensation points.

 MAKING MOTION

 ACR Programmer’s Guide 205

Inverse Kinematics

Kinematics is a branch of mechanics that provides a mathematical means of describing motion. Inverse kinematics

looks at a position and works backwards to determine the motions necessary to obtain that position.

Robotic applications frequently use inverse kinematics. Algorithms describe the mechanical system and translate

the rotational motion of robotics into Cartesian coordinates. Consequently, an end user provides simple

Cartesian coordinates for an application and the inverse kinematics calculates necessary movements to reach that

position.

Suppose an application has a cutting tool at the end of a four-axis robotic arm and an HMI. The controller, using

algorithms developed by the application builder, transforms the motion target points from Cartesian coordinates

to rotational coordinates to position the arm joints and cutting tool. Once transformed, the controller

interpolates the target points to generate a motion path. See the illustration below:

Programming the Inverse Kinematics
Each application is different. The algorithm for your application can consist of equations, logical expressions and

commands in the AcroBASIC language. You can do the following:

• Store algorithms in any of the programs 0 through 14 (be sure to dimension memory for the program).

• Save the program to Flash memory.

• Use the PASSWORD command to protect the program from uploading or listing.

• Include the INVK commands in a program, or in the setup before a program.

Example

The following program results in a circle instead of a straight line because of the transformation described in

program 7 (PROG7).

PROG7

PROGRAM

P12361= SIN(P12360) : REM Describe transformation in PROG7.

P12617= COS(P12360) : REM Describe transformation in PROG7.

ENDP

PROG0

ATTACH MASTER0

ATTACH SLAVE0 AXIS0 "X"

MAKING MOTION

206 ACR Programmer’s Guide

ATTACH SLAVE1 AXIS1 "Y"

PPU X 2000 Y 2000 : REM Scale commands to engineering units

ACC 100 DEC 100 STP 0 VEL 0

INVK PROG7 : REM Tell MASTER0 where the transformations are.

INVK ON : REM Turn on the Kinematics.

PROGRAM

_start

X / 0.2 : REM Incremental move in Cartesian space.

GOTO start

ENDP

RUN PROG0 : REM Run the program.

Note the following limitations with the ACR's inverse kinematics feature:

• It only applies to master moves, such as X4 Y/-8. Jogging, gearing and camming are unaffected.

• Only the end point of the move is modified—it is not guaranteed that the system will move along a

desired path.

The inverse kinematics feature is best suited to testing and prototyping.

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 207

CHAPTER 4

Writing AcroBASIC Programs

WRITING ACROBASIC PROGRAMS

208 ACR Programmer’s Guide

Writing AcroBasic Programs

AcroBASIC programming is text-based and top down. When writing programs, use subroutines from a main

routine. This makes it easier to add, read and test new sections of code rather than having to troubleshoot a large

multi-page program. Thus, removing a subroutine is easy by removing the GOSUB (or commenting it out by

placing a ‘ single apostrophe at the beginning of the line) and re-downloading.

Test your code as the program is developed. Use Save As to backup copies of the code before changes are made

so you always have a starting point to which you can go back. You are your own revision control.

Below is a sample structure we recommend using—note the Application Examples also use this structure.

Comments are helpful. If you need to revisit your code after some time, they can help describe what sections of

code are doing.

The error recovery program would be in another program, such as Program 1. This would spend its time

monitoring whether the motion program, Program 0, has stopped running, and handle the errors, reset the drive

and restart Program 0.

Parameters and bits are global. This makes it easier to use them across programs. However, be careful if two

programs can write and change the value of the same parameter or bit. If one program is using its value and the

other program changes the value, this can cause problems. If the first program needs to complete its sequence

before the value changes, consider using a local variable as a copy of the parameter or use a user bit to inhibit

changing the value until the first program is complete.

Non-motion programs, Program 8 through Program 14, share a 1 ms time slice. An inhibit or dwell in one

program will affect all the non-motion programs.

PROGRAM

PBOOT : REM Assigns program to run automatically.

REM Description of program

GOSUB SETUP : REM SETUP does this part.

_MAIN

REM This calls 3 subroutines sequentially.

GOSUB SubroutineA : REM SubroutineA does this.

GOSUB SubroutineB : REM SubroutineB does this.

GOSUB SubroutineC : REM SubroutineC does this.

GOTO MAIN : REM This goes to MAIN looping continuously.

END : REM Ends the program.

_SETUP

REM ONE TIME SETUP

<insert AcroBasic code>

RETURN

_SubroutineA

<insert AcroBasic code>

RETURN

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 209

_SubroutineB

<insert AcroBasic code>

RETURN

_SubroutineC

<insert AcroBasic code>

RETURN

ENDP

Application Examples
The sample programs in this section provides more in-depth program examples of the following topics:

• Sample Motion Program

• Enable Drives Subroutine

• Absolute Interpolated Motion Subroutine

• Incremental Interpolated Motion Subroutine

• Basic Absolute and Incremental Motion Subroutine

• Absolute Jog Moves Subroutine

• Incremental Jog Moves Subroutine

• Absolute and Incremental Jog Moves Subroutine

• Homing Subroutine

• Advanced Homing

• Homing for XYZ System

• Open Sample

• Teach Array

• Programmable Limit Switch

• EIP Scanner - Wago 750

• Joystick

• Capture Data

• Peer-to-Peer

• ACR7xT Status

• ACR7xT Home to Hard Stop

• Time Subroutine

• Add-On Instructions (AOIs) for IPA

• Xpress HMI with ACR7000

• Xpress HMI with IPA

Note that these samples and others are available for download and use from Parker Community Knowledge Base,

also linked from ACR7000 product page.

Sample Motion Program

Sample two-axis motion program with main program using subroutines for enable, home, interpolated motion and

jog moves with full comments. The subroutines are highlighted with headings. The program finishes after the

homing subroutine.

https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/2254/acr7000-program-samples

WRITING ACROBASIC PROGRAMS

210 ACR Programmer’s Guide

Similar samples for one-axis, three-axis and four-axis systems are available on the Knowledge Base.

PROGRAM

PBOOT

REM PBOOT assigns the program automatically on powerup or reboot.

REM PBOOT has to be the first command within the program.

REM This is a sample program showing enabling, homing and two types

REM of moves (MOV and JOG).

REM In terminal window, go to Prog0 prompt after downloading and type LRUN

REM to run and view PRINT (?) statements.

REM After running, you can view axis status and program line numbers

REM incrementing under Status Panels > Motion Status Panel.

REM This assumes default assignment that Axis0 is X and Axis1 is Y and

REM are attached to Prog0.

REM The X and Y are axis aliases and only recognized within Prog0, so use the

REM below sample code in Prog0.

REM This sets default values for MOV (default interpolated moves)

ACC 10

DEC 10

STP 10

VEL 1

REM This sets default values for JOG (single axis offset moves)

JOG ACC X 10

JOG DEC X 10

JOG VEL X 1

JOG ACC Y 10

JOG DEC Y 10

JOG VEL Y 2

GOSUB ENABLEDRIVE : REM GO TO SUBROUTINE "ENABLEDRIVE"

REM This will then go to _ENABLEDRIVE and run that subroutine until

REM the return and then come back to this point.

GOSUB HOMING : REM GO TO SUBROUTINE HOMING

REM This will then go to _HOMING and run that subroutine until the return

REM and then come back to this point.

REM Presumes limits/homes assigned per Configuration Wizard and wired.

REM If not used, change to 'GOSUB HOMING to comment this line out and

REM not execute that subroutine.

_MAIN

' This is a label used with GOTO MAIN below to run continuously.

' Comments can be made with ' on its own line. These are not downloaded to

' the controller.

REM Comments can be made with REM on its own line (short for remark).

' Comments can also be made at the end of line with a : REM.

' Comments with the REM are downloaded to the controller and thus retrieved

' on upload.

GOSUB BasicABSMotion : REM Subroutine for absolute moves.

GOSUB BasicINCMotion : REM Subroutine for incremental moves.

GOSUB BasicCOMBOMotion

REM Subroutine for combination of absolute and incremental moves.

GOSUB JogABSMotion : REM Subroutine for absolute jog moves.

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 211

GOSUB JogINCMotion : REM Subroutine for incremental jog moves.

GOSUB JogCOMBOMotion

'GOTO MAIN : REM Remove the ' to run this continuously.

END : REM Ends the program.

 Enable Drives Subroutine
_ENABLEDRIVE

DRIVE ON X Y : REM TURNS ON OUTPUT TO ENABLE DRIVE.

INH 8465(3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8465) THEN PRINT "Axis0 is enabled"

REM AXIS0 IS ENABLE, PRINT MESSAGE

IF (NOT BIT8465) THEN PRINT "Axis0 is not enabled. Ending program. Check

Motion and Drive Status Panels for errors" : END

REM AXIS0 IS NOT ENABLED, PRINT MESSAGE AND END PROGRAM.

INH 8497(3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8497) THEN PRINT "Axis1 is enabled"

REM AXIS1 IS ENABLED, PRINT MESSAGE

IF (NOT BIT8497) THEN PRINT "Axis1 is not enabled. Ending program. Check

Motion and Drive Status Panels for errors" : END

REM AXIS1 IS NOT ENABLED, PRINT MESSAGE AND END PROGRAM.

RETURN : REM RETURN BACK TO GOSUB

Absolute Interpolated Motion Subroutine
' Subroutine of Basic Absolute Moves

_BasicABSMotion

' Interpolated multi-axis moves cause all axes to start and stop at

' the same time.

' The ACC DEC VEL are the trajectory settings:

ACC 10

DEC 10

STP 10

VEL 1

' ABSOLUTE MOVES

' X0, X1, Y0, Y1 etc are MOV (The MOV is implied and not required).

' These are interpolated moves and the first move will complete before the

' next interpolated move is started.

' The program continues execution (commands are not blocking) but will wait

' on next move until current move is done.

X0

X1

Y1

X-1 Y-1

X1 Y2

X0 Y0

INH -516 : REM Inhibit(pause) program until absolute moves are done .

REM The minus in the INH -516 is NOT bit 516, so this is waiting until the

REM InMotion bit turns off.

REM INH is only used with BIT so the BIT is not necessary.

REM Bit 516 is In Motion bit for Master0 - the trajectory calculator

 Line

Wraps

 Line

Wraps

WRITING ACROBASIC PROGRAMS

212 ACR Programmer’s Guide

REM for Prog0.

RETURN

Incremental Interpolated Motion Subroutine
' Subroutine of Basic Incremental Moves

_BasicINCMotion

' The / is incremental, from wherever the motor currently is.

X/-8

Y/5

X/2 Y/-3

X/-2 Y/1

INH -516 : REM Inhibit program until incremental moves are done.

REM Bit 516 is In Motion bit for Master0 - the trajectory calculator

REM for Prog0.

RETURN

Basic Absolute and Incremental Motion Subroutine
' Subroutine Of Basic both Absolute and Incremental Moves

_BasicCOMBOMotion

X/-4 Y0

X2 Y/-4

X/5 Y/5

X4 Y0

INH -516 : REM inhibit program until combo moves are done

RETURN

Absolute Jog Moves Subroutine
' Subroutine of Jog Absolute Moves

' JOG ABS are single axis jog moves.

' Multiple jog moves from multiple axis are independent moves stopping

' at different times.

' They would use their own accel/decel/velocity settings

' (with axis in settings):

JOG VEL X1 : REM Note jog acc / dec / vel are per axis and thus the

 REM axis alias is necessary.

JOG ACC X10

JOG DEC X10

JOG VEL Y2

JOG ACC Y10

JOG DEC Y10

' JOG moves will interrupt the current move so for sequencing an INH

' is needed waiting for the JOG Active bit (bit 792 for axis0) is off.

' The jog offset moves has its own reference, independent of the coordinated

' motion. This allows offset of coordinated motion but can cause confusion.

_JogABSMotion

JOG ABS X-4

INH -792 : REM Inhibit program until jog move is done.

JOG ABS Y5

INH -824

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 213

JOG ABS X-2 Y-2

INH -792

INH -824

JOG ABS Y-1

INH -824

JOG ABS X0 Y0

INH -792

INH -824

RETURN

Incremental Jog Moves Subroutine
' Subroutine of Jog Incremental Moves

_JogINCMotion

JOG INC X-8

INH -792 : REM Inhibit program until jog move done.

JOG INC Y-8

INH -824

JOG INC X2 Y2

INH -792

INH -824

RETURN

Absolute and Incremental Jog Moves Subroutine
' Subroutine of Both Absolute and Incremental Moves

_JogCOMBOMotion

JOG INC X-4

INH -792 : REM Inhibit program until jog move done.

JOG ABS Y-2

INH -824

JOG INC X5

JOG ABS Y5 : REM This would start an absolute move on Y axis after starting

 REM incremental move on X axis.

INH -792

INH -824

JOG ABS X0 Y0

INH -792

INH -824

RETURN

Homing Subroutine
_HOMING

JOG VEL X1 : REM Set axes jog parameters used during homing.

JOG ACC X10

JOG DEC X10

' HLBIT X0

REM X uses PosEOT (input0), NegEOT (input1), Home (input2).

REM The HLBIT LIMIT/HOME assignments are normally set in Configuration

REM Wizard. Uncomment the ' to use.

JOG HOMVF X0.1 : REM Set backup to home velocity.

WRITING ACROBASIC PROGRAMS

214 ACR Programmer’s Guide

JOG HOME X1 : REM Start homing X positive .

REM Infinite WHILE statement while X is trying to HOME.

WHILE ((NOT BIT 16134) AND (NOT BIT 16135))

WEND

REM Prints Information regarding "X" Axis homing.

IF (BIT 16134) THEN PRINT "X HOMING SUCCESSFUL"

IF (BIT 16135) THEN PRINT "X HOMING UNSUCCESSFUL"

JOG VEL Y1 : REM Set axes jog parameters used during homing.

JOG ACC Y10

JOG DEC Y10

' HLBIT Y3

REM Y uses PosEOT (input3), NegEOT (input4), Home (input5)

REM The HLBIT LIMIT/HOME assignments are normally set in Configuration

REM Wizard. Uncomment the ' to use.

JOG HOMVF Y0.1 : REM Set backup to home velocity

JOG HOME Y1 : REM start homing Y positive

REM Infinite WHILE statement while Y is trying to HOME.

WHILE ((NOT BIT 16166) AND (NOT BIT 16167))

WEND

REM Prints Information regarding "Y" Axis homing.

IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL"

IF (BIT 16167) THEN PRINT "Y HOMING UNSUCCESSFUL"

RETURN

ENDP

Advanced Homing

This sample shows how to first home two axes to their respective home sensors, then perform an additional

marker search so that they find and settle on their encoders' Z channels. This is a very high-precision homing

strategy.

PROGRAM

DRIVE ON X Y

INH 8465 (3)

INH 8497 (3)

IF (NOT BIT 8465) THEN PRINT "X DIDN'T ENABLE" : END

IF (NOT BIT 8497) THEN PRINT "Y DIDN'T ENABLE" : END

 GOSUB HOMING : REM GO TO SUBROUTINE HOMING

END

' SUBROUTINE HOMING

_HOMING

JOG VEL X1 Y1 : REM Set axes jog parameters used during homing.

JOG ACC X10 Y10

JOG DEC X10 Y10

HLBIT X0 Y3 : REM If assigned in Config Wizard, remove this line.

' X uses PosEOT (input0), NegEOT (input1), Home (input2).

' Y uses PosEOT (input3), NegEOT (input4), Home (input5).

JOG HOMVF X0.1 Y0.1 : REM Set backup to home velocity.

JOG HOME X-1 Y1 : REM Start homing X negative, Y positive.

' Infinite WHILE statement while both are still trying to HOME.

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 215

WHILE (((NOT BIT 16134) AND (NOT BIT 16135)) AND ((NOT BIT 16166) AND (NOT

BIT 16167)))

WEND

' Prints Information regarding Y Axis homing.

IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL"

IF (BIT 16167) THEN PRINT "Y HOMING UNSUCCESSFUL"

' If X Axis homing successful, find X encoder ref marker.

ACC 10 : REM Set motion profile for MSEEK incremental move.

DEC 10 VEL 0.5 STP 10

IF (BIT 16134)

 MSEEK X(1,0) : REM Performs search for index marker in

 REM 1 incremental unit.

 INH -516 : REM Waits for Master to Not be "IN MOTION"

 IF (BIT 777) : REM If Capture of Index Marker was complete.

 PRINT "X HOMING SUCCESSFUL" : REM Prints information.

 ENDIF

ENDIF

IF (BIT 16135) THEN PRINT "X HOMING UNSUCCESSFUL"

RETURN

ENDP

Homing for XYZ System

This sample shows a sophisticated homing algorithm for a three-axis system. After homing each axis to a switch,

an additional move is performed to settle on the Z channel of each encoder, which is an extremely repeatable way

to home. Following that, the actual positions are preloaded. This allows the programmer to set the machine zero

to any place desired while respecting that the machine's design may require homing to occur at a specific location,

like at a Z pulse on a linear encoder.

The sample also makes use of a practice that should be sparingly used. There are two WHILE loops in the code

below that contain IF/THEN and GOTO statements. In many programs, these cause problems because they do

not return to the calling code. Here, however, the GOTO statements are used to bring the program to an error

handler and eventually terminate the program, making this problem irrelevant.

PROGRAM

GOSUB EnableDrives

GOSUB HomeAll

REM Insert application code here.

END : REM End program.

_EnableDrives

DRIVE ON X Y Z

DWL 0.15 : REM Wait 150ms for servos to enable before commanding moves.

RETURN

_HomeAll

HLIM X3 : REM Enable limits.

HLIM Y3 : REM Enable limits.

HLIM Z3 : REM Enable limits.

JOG ACC X500 : REM Set jog accel for homing.

 Line

Wraps

WRITING ACROBASIC PROGRAMS

216 ACR Programmer’s Guide

JOG DEC X500 : REM Set jog decel for homing.

JOG VEL X100 : REM Set jog velocity for homing.

JOG HOMVF X25 : REM Set jog final velocity for homing.

JOG ACC Y300 : REM Set jog accel for homing.

JOG DEC Y300 : REM Set jog decel for homing.

JOG VEL Y75 : REM Set jog velocity for homing.

JOG HOMVF Y15 : REM Set jog final velocity for homing.

JOG ACC Z100 : REM Set jog accel for homing.

JOG DEC Z100 : REM Set jog decel for homing.

JOG VEL Z25 : REM Set jog velocity for homing.

JOG HOMVF Z5 : REM Set jog final velocity for homing.

REM X Axis settings

SET 16152 : REM Backup to edge is enabled.

CLR 16153 : REM Backup to positive edge.

CLR 16154 : REM Set Final approach direction is positive.

REM Y Axis settings

SET 16184 : REM Backup to edge is enabled.

CLR 16185 : REM Backup to positive edge.

SET 16186 : REM Set Final approach direction is negative.

REM Z Axis settings

SET 16216 : REM Backup to edge is enabled.

SET 16217 : REM Backup to negative edge.

SET 16218 : REM Set Final approach direction is negative.

REM Home Z Axis first.

JOG HOME Z-1

REM Home Successful - BIT16198. Home Failed - BIT16199.

WHILE (NOT BIT 16198)

 IF (BIT 16199) THEN GOTO HomeFailed

WEND

REM Z is successful, home X and Y.

JOG HOME X1 Y-1

REM X Home Successful - BIT16134

REM X Home Failed - BIT16135

REM Y Home Successful - BIT16166

REM Y Home Failed - BIT16167

WHILE (NOT BIT 16134 OR NOT BIT16166)

 REM Jump to User error routine if home fails.

 IF (BIT 16135 OR BIT 16167) THEN GOTO HomeFailed

WEND

REM Find the Z markers for each axis encoder for more accurate positioning.

REM MSEEK uses master move profile settings.

ACC 250 VEL 50 DEC 250 STP 250 JRK 1250

REM X axis ballscrew is 10 mm per motor rev, so command a move of 10.5.

MSEEK X(10.5,0)

REM Rising First Marker - Z Mark, ENC0

REM Hardware Capture Parameter - P12292

REM Capture Complete Flag - BIT777

REM Y axis ballscrew is 10 mm per motor rev, so command a move of 10.5.

MSEEK Y(10.5,0)

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 217

REM Rising First Marker - Z Mark, ENC1

REM Hardware Capture Parameter - P12548

REM Capture Complete Flag - BIT809

REM Z axis ballscrew is 5 mm per motor rev, so command a move of 5.5.

MSEEK Z(5.5,0)

REM Rising First Marker - Z Mark, ENC2

REM Hardware Capture Parameter - P12804

REM Capture Complete Flag - BIT841

REM All position counters are now set to 0 by successful MSEEKs.

REM If home sensors/Z marks are not at the desired

REM machine zero location, move to "true zero"

REM or preload current location settings "RES X97 Y57.5 Z4.4".

X-97 Y-57.5 Z –4.4

INH –516 : REM Wait until moves are complete.

RES X Y Z : REM Reset all counters to 0.

REM Change master move profile back to normal operation settings.

ACC 750 VEL 250 DEC 750 STP 750 JRK 2250

REM Change jog profiles back to normal operation settings.

JOG ACC X1000 Y1000 Z200

JOG DEC X1000 Y1000 Z200

JOG VEL X300 Y300 Z100

RETURN : REM Go back to main program execution.

_HomeFailed

IF (BIT 16199) THEN PRINT "Z Homing Failed"

IF (BIT 16135) THEN PRINT "X Homing Failed"

IF (BIT 16167) THEN PRINT "Y Homing Failed"

END

ENDP

Open Sample
PROGRAM

' THIS PROGRAM IS INTENDED TO BE RUN FROM AN EXTERNAL TERMINAL

' SUCH AS HYPERTERMINAL. USE PORT 5002 TO CONNECT WINSOCK TO

' ACR7000 ETHERNET.

CLEAR : REM Clear any variables dimensioned in program.

DIM $V(1,10) : REM Dimensions one string variable of length 10.

GOSUB OPENPORT : REM Go to subroutine OPENPORT.

END

' SUBROUTINE OPENPORT

_OPENPORT

' Opens Ethernet Stream3 (PMM uses Stream1).

OPEN "STREAM2:" AS #1

' Continuous loop as long as "X" is not entered.

_LOOP1

' Set String Variable 0 to nothing.

$V0 = ""

PRINT #1, ""

PRINT #1, "What kind of fruit do you want?"

WRITING ACROBASIC PROGRAMS

218 ACR Programmer’s Guide

PRINT #1, "(A)pple, (B)anana, (C)oconut"

PRINT #1, "I would like to have a";

' Infinite WHILE loop if they do not enter anything.

WHILE ($V0 = "")

 $V0 = UCASE$(INKEY$(1))

 REM Stores Keyboard entry into String Variable 0

WEND

IF ($V0 = "A") THEN PRINT #1, "n Apple"

REM If "A" was entered, then print n Apple (reads as "an Apple").

IF ($V0 = "B") THEN PRINT #1, " Banana"

REM If "B" was entered, then print Banana.

IF ($V0 = "C") THEN PRINT #1, " Coconut"

REM If "C" was entered, then print Coconut.

IF ($V0 = "X") THEN GOTO LOOP2

REM If "X" was entered, then go to LOOP2 to terminate program.

IF ($V0 = CHR$(27)) THEN GOTO LOOP2

REM If "ESC key" was entered, then go to LOOP2 to terminate program.

GOTO LOOP1

_LOOP2

PRINT #1, "Program terminated"

CLOSE #1

RETURN

ENDP

Teach Array
PROGRAM

CLEAR : REM Clear out any variables dimensioned.

DIM LV(2) : REM Dimension 2 Long Variables.

DIM DA(1) : REM Dimension 1 Double Array.

DIM $V(1,10) : REM Dimension 1 String Variable of length 10.

' Go to subroutine Teach.

GOSUB Teach

END

_Teach

RES X : REM Reset position to zero.

DRIVE OFF X : REM Disable drive, teach points by manually moving motor.

' Start of InputPoints Routine

_InputPoints

' Print to the terminal "points to teach" and stores value into String

' Variable 0.

INPUT; "Enter number of points to teach (value must greater than 0) = "; $V0

' Stores the Value of String Variable 0 into Long Variable 1

LV1 = VAL($V0)

PRINT ""

PRINT LV1

' If statement to check if value entered is correct.

IF (LV1<=0)

 PRINT "ENTERED VALUE IS NOT VALID "; $V0

 PRINT "Value must be a number greater than 0"

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 219

 GOTO InputPoints

ENDIF

DIM DA0(LV1) : REM Dimension array - number of points to teach.

' Use input 24 to tell controller to collect a teach point.

' Use a FOR/TO/STEP/NEXT loop to teach points into an array.

FOR LV0 = 0 TO (LV1-1) STEP 1

 PRINT "TURN MOTOR, THEN HIT INPUT 24 TO TEACH POINT"

 INH 24 : REM Inhibits the program until Input 24 is pressed

 DA0(LV0)=P12290/P12375 : REM Stores Double Array entry with

 REM Encoder Positive divide by PPU of Axis0.

 INH -24 : REM Waits for Input 24 to turn off.

NEXT

PRINT "Teach Completed, Total Points Taught = ";LV1

PRINT "Press Input 24 to enable drives and move to zero/start"

INH 24

INH -24

DRIVE ON X : REM Enable Axis0 "X".

DWL 0.5

X0 : REM Moves to zero position.

INH -516 : REM Waits for motion to be completed.

PRINT "Input 24 to run taught points"

INH 24

' FOR/TO/STEP/NEXT loop to make absolute moves to position taught.

FOR LV0=0 TO (LV1-1) STEP 1

 X(DA0(LV0))

 INH -516

 PRINT DA0(LV0) : REM Print the position to the terminal.

NEXT

RETURN

ENDP

Programmable Limit Switch

A programmable limit switch (PLS command) turns on an output based on an axis position automatically when

enabled. This position is based on an array variable.

Green: Master

Orange: Cam Axis

Pink: PLS Output

PROGRAM

WRITING ACROBASIC PROGRAMS

220 ACR Programmer’s Guide

ACC 10 DEC 10 STP 10 VEL 1

DRIVE ON Y Z

DWL 0.1

RES Y Z

GOSUB SetupArrays

CAM DIM Z2 : REM Define 2 cam segments

REM Define cam segment range and source

CAM SEG Z(0,(P12631*1/3),LA0)

CAM SEG Z(1,(P12631*2/3),LA1)

CAM SRC Z1 : REM Define cam source as ENC1

REM Set scale to cam axis PPU for 1/1. 500 cam counts = 500 encoder counts.

CAM SCALE Z(1/8000)

PLS0 SRC P12802

PLS0 DST P4100

PLS0 BASE LA2

PLS0 RATIO 0.01 : REM Array entries per input count

 REM (500 for cam peak / 5 array for PLS).

PLS0 MASK 256

CAM SRC Z RES

CAM RES Z

CAM ON Z : REM Start camming.

PLS0 ON

Y/2

DWL1

Y0

CAM OFF Z

PLS0 OFF

END

_SetupArrays

DIM LA(3) : REM Dimension 2 long arrays.

DIM LA0(9) : REM LAO has 9 elements.

LA0(00)=0 : REM Start defining LA0 cam table.

LA0(01)=73

LA0(02)=250

LA0(03)=427

LA0(04)=500

LA0(05)=427

LA0(06)=250

LA0(07)=73

LA0(08)=0

DIM LA1(6)

LA1(00)=0

LA1(01)=0

LA1(02)=-500

LA1(03)=-500

LA1(04)=0

LA1(05)=0

DIM LA2(5)

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 221

LA2(0) = 0

LA2(1) = 0

LA2(2) = 0

LA2(3) = 256

LA2(4) = 256

RETURN

ENDP

Note that output on position (OOP) is not supported on the IPA, so PLS should be used instead. ACR7000

products have OOP support in addition to PLS. OOP uses a different set of commands.

EIP Scanner–Wago 750
' EtherNetIP Scanner Sample

' Valid for ACR7000 or IPA (not ACR9000).

' For use with Wago 750 series Ethernet/IP bus coupler.

' To check EthernetIP status in terminal emulator, use DIAG ETHIP.

PROGRAM

PBOOT : REM LRUN to troubleshoot

REM Sample code for IPA or ACR7000 series as scanner to Wago 750 series

REM EtherNet/IP bus coupler.

REM Not compatible with ACR9000 or 3rd party EtherNet/IP devices.

P37392=1 : REM number of I/O nodes

P39424=((192<<24)+(168<<16)+(100<<8)+(28))

REM IP=192.168.100.28 on Node 0 - set this to Wago IP.

P39425=10 : REM Input data interval in ms.

P39426=10 : REM Output data repetition interval.

P39427=0

_START

ETHIP LOOK

PRINT "DISCOVERING"

INH -16674

PRINT "COMPLETE"

IF (bit 16682) THEN PRINT "Failed to find."

IF (P37397<>0) : REM If any node is not discovered on network...

 DWL 1

 GOTO START

ENDIF

PRINT "Starting network..."

SET 16672 : REM START EIPIO.

WHILE (NOT (BIT16681 OR BIT16682))

WEND

IF (BIT16681)

 REM START SUCCESS

 PRINT "Starting success!"

ENDIF

IF (BIT16682)

 REM START FAILED

 PRINT "Start failed!"

ENDIF

WRITING ACROBASIC PROGRAMS

222 ACR Programmer’s Guide

ENDP

Joystick

This sample uses EtherNet/IP (Wago 750 bus coupler) with two analog inputs to create an analog joystick.

#DEFINE XjoyRest P0

#DEFINE YjoyRest P1

#DEFINE Deadband P2

#DEFINE XanalogIn P35332

#DEFINE YanalogIn P35340

#DEFINE Xon BIT8465

#DEFINE Yon BIT8497

PROGRAM

PBOOT : REM LRUN to troubleshoot.

REM Sample code for IPA or ACR7000 series as scanner to Wago 750

REM series Ethernet/IP bus coupler.

REM Not compatible with ACR9000 or other 3rd party Ethernet/IP devices.

P39424=((192<<24)+(168<<16)+(100<<8)+(2))

REM IP=192.168.100.2 Node 0 verify in Status Panels > EtherNet/IP.

REM First 2 analog inputs on EtherNet/IP are X and Y joystick.

DIM LV(1) : REM Dimension 1 local variable

lv0=0 : REM Reset value

GOSUB START

REM This sets default values for MOV (default interpolated moves)

ACC 10 DEC 10 STP 10 VEL 1

REM This sets default values for JOG (single axis offset moves)

JOG ACC X 10

JOG DEC X 10

JOG VEL X 1

REM In case already running, stop jogging

JOG OFF X Y

GOSUB ENABLEDRIVE : REM GO TO SUBROUTINE "ENABLEDRIVE"

REM This will then go to _ENABLEDRIVE and run that subroutine until

REM the return and then come back to this point.

_MAIN

IF (BIT16683) THEN PRINT "ETHERNET/IP NODE FAILURE" : JOG OFF X : END

IF ((XanalogIn < 0.1) OR (YanalogIn < 0.1)) THEN PRINT "JOYSTICK

DISCONNECTED" : JOG OFF X : END

REM X analog input is into P35332 (See Numeric Status > Ethernet/IP >

REM Node0 ADC > ADC Input Value).

REM Y analog input is into P35340

XjoyRest = 4.6 : REM X joystick resting voltage value.

YjoyRest = 3.823 : REM Y joystick resting voltage value.

Deadband = 0.1 : REM Deadband.

IF (NOT Xon) THEN PRINT "X AXIS NOT ON" : DWL 1 : GOTO MAIN

IF (XanalogIn > (XjoyRest + Deadband)) THEN JOG FWD X : PRINT "JOG X

SPEED",(XanalogIn-XjoyRest)

 Line

Wraps

 Line

Wraps

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 223

IF (XanalogIn < (XjoyRest - Deadband)) THEN JOG REV X : PRINT "JOG X

SPEED",((XanalogIn-XjoyRest)*-1)

IF ((XanalogIn < (XjoyRest + Deadband)) AND (XanalogIn > (XjoyRest -

Deadband))) THEN JOG OFF X

JOG VEL X (absf(XanalogIn-XjoyRest))

IF (NOT Yon) THEN PRINT "Y AYIS NOT ON" : DWL 1 : GOTO MAIN

IF (YanalogIn > (YjoyRest + Deadband)) THEN JOG FWD Y : PRINT "JOG Y

SPEED",(YanalogIn-YjoyRest)

IF (YanalogIn < (YjoyRest - Deadband)) THEN JOG REV Y : PRINT "JOG Y

SPEED",((YanalogIn-YjoyRest)*-1)

IF ((YanalogIn < (YjoyRest + Deadband)) AND (YanalogIn > (YjoyRest -

Deadband))) THEN JOG OFF Y

JOG VEL Y (ABSF(YanalogIn-YjoyRest))

DWL 0.1 : REM Loop execution very fast. This dwell slows down in case you

 REM do LRUN in the terminal so it does not flood the port.

GOTO MAIN

END : REM Ends the program

_ENABLEDRIVE

REM ENABLE AXIS0

DRIVE ON X : REM TURNS ON OUTPUT TO ENABLE DRIVE.

INH 8465(3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8465) THEN PRINT "Axis0 is enabled."

IF (NOT BIT8465) THEN PRINT "Axis0 is not enabled. Ending program. Check

Motion and Drive Status Panels for errors" : END

REM ENABLE AXIS1

DRIVE ON Y : REM TURNS ON OUTPUT TO ENABLE DRIVE.

INH 8497(3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8497) THEN PRINT "Axis1 is enabled."

IF (NOT BIT8497) THEN PRINT "Axis1 is not enabled. Ending program. Check

Motion and Drive Status Panels for errors" : END

RETURN : REM RETURN BACK TO GOSUB

_START

' EtherNet/IP Scanner sample

' Valid for ACR7000 or IPA (not ACR9000).

' For use with Wago 750 series EtherNet/IP bus coupler.

' To check EtherNet/IP status in terminal emulator, use DIAG ETHIP.

P37392=1 : REM Number of I/O nodes.

P39425=10 : REM Input data interval.

P39426=10 : REM Output data repetition interval.

P39427=0

ETHIP LOOK

PRINT "DISCOVERING..."

INH -16674

PRINT "COMPLETE"

IF (BIT16682) THEN LV0=LV0+1 : PRINT "Failed to find.", LV0

IF (LV0>=3) THEN END

IF (P37397<>0) THEN DWL 1 : GOTO START : REM If any node is not discovered

 REM on the network...

PRINT "Starting network..."

 Line

Wraps

 Line

Wraps

 Line

Wraps

 Line

Wraps

 Line

Wraps

 Line

Wraps

 Line

Wraps

WRITING ACROBASIC PROGRAMS

224 ACR Programmer’s Guide

SET 16672 : REM START EIPIO

WHILE (NOT (BIT16681 OR BIT16682))

WEND

IF (BIT16681)

 REM START SUCCESS

 PRINT "Start success!"

ENDIF

IF (BIT16682)

 REM START FAILED

 PRINT "Start failed!"

ENDIF

RETURN

ENDP

Capture Data
PROGRAM

REM Program to set up multi-channel high-speed data capture.

REM Initialize local long variables.

DIM LV2

REM Initialize local arrays.

DIM LA(2) : REM Dimension 2 long integer arrays

DIM LA0(500) : REM Dimension 500 elements for Long Array0

DIM LA1(500) : REM Dimension 500 elements for Long Array1

REM General sample settings.

SAMP CLEAR : REM Clear current sampling settings

P6915 = 10 : REM Sample timer period in ms (0=servo period)

SAMP TRG +792 : REM Start recording on rising edge of axis0 jog

REM Note that motion would be within another program, typically Prog 0.

REM If capturing data for Master0 (Interpolated motion such as X Y), use

REM Master 0 In Motion bit 516.

REM Channel 0 sample settings

SAMP 0 SRC P12290 : REM Set the source to Axis 0 Actual Position.

SAMP 0 BASE LA0 : REM Array for recording data.

REM Channel 1 sample settings

SAMP 1 SRC P6916 : REM Set the source to Global System Clock.

SAMP 1 BASE LA1 : REM Array for recording data.

REM Begin

SET 104 : REM Arm sample trigger.

INH-104 : REM Wait for capture for all arrays to complete.

REM List both arrays of captured data.

REM To see in terminal emulator do LRUN, to exit press ESC key.

FOR LV1 = 0 TO 1 STEP 1

 PRINT "LA";LV1;" ARRAY"

 FOR LV0 = 0 TO 499 STEP 1

 PRINT LA(LV1)(LV0)

 NEXT

 LV0=0

NEXT

ENDP

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 225

Peer-to-Peer
' EtherNet/IP Peer-to-Peer sample

' Valid for ACR7000 or IPA (not ACR9000).

' To check EtherNet/IP status in terminal, use DIAG ETHIP.

' To check EtherNet/IP status at peer in terminal, use CIP.

PROGRAM

PBOOT

GOSUB ConfigScanner

END

_ConfigScanner

P37392 = 0 : REM # I/O nodes.

P37393 = 1 : REM # Peer nodes.

P39680 = ((192<<24)+(168<<16)+(100<<8)+(2)) : REM IP for Peer 0 adapter

 REM unit is 192.168.100.2.

P39681 = 10 : REM Input RPI.

P39682 = 10 : REM Output RPI.

P39683 = 0 : REM Participation mode, 0 = mandatory.

P39684 = 33 : REM Connection type.

P39685 = 4 : REM # of groups of data to be exchanged.

P39686 = 100 : REM Max consumed parameters.

P39687 = 100 : REM Max produced parameters.

P39696 = 12288 : REM Peer 0 Group 0 Start Parameter - This is the current

 REM position of Axis 0 of Peer 0 which are Longs.

P39697 = 4 : REM Peer 0 Group 0 Length – Peer 0 P12288-P12291.

P39698 = 0 : REM Peer 0 Group 0 Direction - 0 is from Peer 0 to

 REM Scanner. The Scanner will read these 4 parameters

 REM into Group 0 Long registers (P39936-P39939).

P39699 = 39400 : REM Peer 0 Group 1 Start Parameter - These are user

parameters which are Floats

P39700 = 2 : REM Peer 0 Group 1 Length – Peer 0 P39400, P39401.

P39701 = 1 : REM Peer 0 Group 1 Direction - 1 is from Scanner to

 REM Peer0. Scanner Group1 Floats are P40072 and P40073.

 REM Writing values at Scanner will then be sent to P39400

 REM and P39401 on Peer 0.

P39702 = 39300 : REM Peer 0 Group 2 Start Parameter - These are user

 REM parameters which are Floats.

P39703 = 2 : REM Peer 0 Group 2 Length – Peer 0 P39300, P39301.

P39704 = 0 : REM Peer 0 Group 2 Direction - 0 Peer 0 to Scanner.

REM Writing values at Peer 0 P39300 and P39301 will be sent to Scanner Group

REM 2 Floats P40080 and P40081.

SET 16672 : REM Start the network.

RETURN

ENDP

ACR7xT Status
REM Sample program to view axis status. Download to an empty program and then

REM LRUN from terminal emulator to read report. Other programs can be running

REM and will not stop. When downloading do not save to flash or it will stop

REM the other programs.

WRITING ACROBASIC PROGRAMS

226 ACR Programmer’s Guide

PROGRAM

CLEAR

DIM LV7 : REM Dimension/allocation 7 long local variables.

LV1=0

LV3=4 : REM ENTER THE NUMBER OF AXES USED.

?" Dim lists memory allocation for programs, streams, globals and defines.

must be done at sys prompt"

DIM : REM Must be done at sys prompt.

ATTACH : REM Lists program master and slave axis attach, alias.

ATTACH AXIS : REM Lists axis type (stepper/DAC), feedback.

FOR LV1 = 0 TO (LV3-1) STEP 1

?"" : REM prints blank line -- used for formatting.

?""

?"AXIS", LV1, " PULSES PER UNIT: ", P(12375+LV1*256)

REM ACR Extended IO Settings

?"AXIS", LV1, " Enable Drive I/O: ", BIT (8468+LV1*32)

?"AXIS", LV1, " Enable CW/CCW (versus Step/Dir): ", BIT (8464+LV1*32)

?"AXIS", LV1, " DEO Serves Shutdown Function: ", BIT (8470+LV1*32)

?"AXIS", LV1, " Enable EXC Response: ", BIT (8469+LV1*32)

?"AXIS", LV1, " Invert Drive Fault Input Level: ", BIT (8453+LV1*32)

?""

?""

REM Axis Gain Values

? "AXIS", LV1, " PGAIN", P(12304+LV1*256)

? "AXIS", LV1, " IGAIN", P(12305+LV1*256)

? "AXIS", LV1, " ILIMIT", P(12306+LV1*256)

? "AXIS", LV1, " IDELAY", P(12307+LV1*256)

? "AXIS", LV1, " DGAIN", P(12308+LV1*256)

? "AXIS", LV1, " DERIVATIVE WIDTH", P(12309+LV1*256)

? "AXIS", LV1, " FEEDFORWARD VEL", P(12310+LV1*256)

? "AXIS", LV1, " FEEDFORWARD ACC", P(12311+LV1*256)

? "AXIS", LV1, " PLUS TORQUE LIMIT", P(12328+LV1*256)

? "AXIS", LV1, " MINUS TORQUE LIMIT", P(12329+LV1*256)

? "AXIS", LV1, " FBVEL GAIN SETTING", P(12352+LV1*256)

REM Axis Limits

? "AXIS", LV1, " HLDEC: ", P(12421+LV1*256)

? "AXIS", LV1, " Positive EOT Limit Level Invert: ", BIT(16144+LV1*32)

? "AXIS", LV1, " Negative EOT Limit Level Invert: ", BIT(16145+LV1*32)

? "AXIS", LV1, " Home Limit Level Invert: ", BIT(16146+LV1*32)

? "AXIS", LV1, " Positive EOT Limit Enable: ", BIT(16148+LV1*32)

? "AXIS", LV1, " Negative EOT Limit Enable: ", BIT(16149+LV1*32)

?""

?""

REM AXIS0 SLM gives eval overflow error, must query via read-only parameters.

REM NOTE THESE P VALUES ARE MISSING IN HELP FILE

? "AXIS", LV1, " Positive Soft Limit: ", P(12424+LV1*256)

? "AXIS", LV1, " Negative Soft Limit: ", P(12425+LV1*256)

? "AXIS", LV1, " Soft Limit Decel: ", P(12422+LV1*256)

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 227

? "AXIS", LV1, " Positive Soft Limit Enable", BIT(16150+LV1*32)

? "AXIS", LV1, " Negative Soft Limit Enable", BIT(16151+LV1*32)

?""

?""

REM This command enables the servo loop associated with an axis without using

REM the bit flag designated for this purpose.

? "AXIS", LV1, " NOT ENABLED (0 AXIS ENABLED, 1 AXIS DISABLED): ",

BIT(785+32*LV1)

?""

?""

REM STEPPER SETTINGS

? "AXIS", LV1, " User Maximum motor current (Amps): ", P(7938+LV1*16)

? "AXIS", LV1, " Standby Current Percentage: ", P(7944+LV1*16)

? "Standby Current Delay (msec.): ", P(7945+LV1*16)

? "Micro-steps per full step (power of 2) = ", P(7946+LV1*16)

? "Enable Auto Standby ", BIT(15618+LV1*32)

? "Assert Drive configuration ", BIT(15616+LV1*32)

? ""

? "AXIS", LV1, " STEPPER SETTING2 IN DEC IS: ", P(8066+LV1*16)

? "AXIS", LV1, " STEPPER SETTING3 IN DEC IS: ", P(8067+LV1*16)

? "AXIS", LV1, " STEPPER SETTING4 IN DEC IS: ", P(8068+LV1*16)

? ""

? "LV1= ", LV1

NEXT

ENDP

ACR7xT Home to Hard Stop
PROGRAM

REM Stepper motors are open loop. Below code presumes encoder

REM attached for the step motor to detect hard stop.

CLEAR

DIM LV10 : REM DIMENSION 10 LOCAL VARIABLES

DRIVE ON X

JOG ACC X 10

JOG DEC X 10

JOG VEL X 1

GOSUB HOMEHARDSTOP

_MAIN

DWL 2 : REM WAIT 2 SECONDS

JOG ABS X 10 : REM MOVE TO POSITION 10

INH -792 : REM INHIBIT PROGRAM UNTIL MOVE IS DONE

DWL 2

JOG ABS X 0 : REM MOVE TO POSITION 0

INH -792

LV2=LV2+1

PRINT "CYCLES=", LV2

GOTO MAIN

WRITING ACROBASIC PROGRAMS

228 ACR Programmer’s Guide

_HOMEHARDSTOP

JOG REV X

WHILE (BIT 792)

 LV0=P6144

 DWL 0.1

 LV1=P6144

 IF (LV1>=LV0)

 JOG OFF X

 ENDIF

WEND

JOG INC X 1 : REM MOVE 1 REV OFF HARDSTOP

INH -792

JOG RES X : REM RESET THIS JOG POSITION AS 0

RES X : REM RESET THE CURRENT POSITION AS 0

PRINT "AT HOME"

RETURN

ENDP

Time Subroutine

This Time subroutine implements a "clock" for showing time since power up or reboot, assuming P6916 is not

reset by the user. P6916 resets at 231, or 2,147,483,648. P6916 is a free-running clock in milliseconds.

This could be added to a program or, if a program is already running, downloaded into an empty program. To see

the values, go into the Terminal Emulator and type LRUN at the program prompt after downloading.

#DEFINE Time LV0

#DEFINE ms LV1

#DEFINE seconds LV2

#DEFINE ExcSeconds LV3

#DEFINE minutes LV4

#DEFINE ExcMinutes LV5

#DEFINE hours LV6

#DEFINE ExcHours LV7

#DEFINE days LV8

DIM LV10

_CheckTime

Time = P6916 : REM capture current time in ms.

REM Extract the millisecond portion.

ms = Time MOD 1000 : REM Extract any ms less than 1 full second.

REM Extract the second portion.

REM Remove ms from the Time and convert time to seconds.

seconds = (Time - ms)/1000

ExcSeconds = seconds MOD 60 : REM Extract any seconds less than

 REM a full minute.

REM Extract the minute portion.

REM Remove seconds from the Time and convert time to minutes.

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 229

minutes = (seconds - ExcSeconds) / 60

REM Extract any minutes less than a full hour.

ExcMinutes = minutes MOD 60

REM Extract the hour portion.

REM Remove excess minutes and convert to full hours.

hours = (minutes - ExcMinutes) /60

REM Remove any hours less than a full day.

ExcHours = hours MOD 24

REM only full days are left. Only works up to <25 days.

REM Remove excess hours and convert what is left to days.

days = (hours - ExcHours)/24

PRINT "Approximate Time Running : ";days;" Days ";

PRINT USING "##";ExcHours;" Hours ";

PRINT USING "##";ExcMinutes;" Minutes ";

PRINT USING "##";ExcSeconds;".";ms;" Seconds "

RETURN

Error Recovery (IPA)

This sample on error handling addresses error checking and recovery, which should be programmed into each

application. Error handling is then done automatically as the application runs and is helpful in diagnosing problems.

PROGRAM

PBOOT

REM Error recovery program.

_LOOP

IF (BIT8467)

 REM Kill all motion was signaled, check causes

 IF (BIT8465)

 REM DRIVE IS STILL ENABLED

 GOSUB CheckLimits

 ELSE IF (BIT10009)

 REM TORQUE ENABLE INPUT WAS OPENED

 GOSUB CheckTorqueEnable

 ELSE IF (BIT9498)

 REM DRIVE FAULTED

 AXIS0 DRIVE RES

 INH -8475 : REM WAIT FOR RESET TO COMPLETE

 IF (BIT9498)

 GOTO FaultLatched

 ENDIF

 ELSE IF (BIT8479)

 REM EXCESS POSTION ERROR WAS TRIPPED

 CLR 8467 CLR 522

 ENDIF

ENDIF

IF (NOT BIT8467)

WRITING ACROBASIC PROGRAMS

230 ACR Programmer’s Guide

 REM Kill has been cleared, restart Program 0.

 RUN PROG0

ENDIF

GOTO LOOP

_CheckTorqueEnable

IF (BIT10011)

 REM Torque enable inputs mismatch.

 REM Requires a HARD power cycle.

 ? "TORQUE ENABLE HEALTH EVENT"

 ? " CYCLE POWER"

 GOTO FaultLatched

ENDIF

WHILE (BIT10010)

 REM WAIT HERE UNTIL THE INPUT IS CLOSED

WEND

CLR 8467

AXIS0 DRIVE ON

RUN PROG0

RETURN

_CheckLimits

IF (BIT16132 OR BIT16133)

 REM HARD LIMIT WAS HIT

 CLR 8467

 CLR 522

ENDIF

IF (BIT16136 OR BIT16137)

 REM SOFT LIMIT WAS HIT

 CLR 8467

 CLR 522

ENDIF

RETURN

_FaultLatched

?"DRIVE FAULT DID NOT CLEAR, CHECK HARDWARE"

?"requires a HARD power cycle"

END

ENDP

Add-On Instructions (AOIs) for IPA

The IPA and ACR7000 are compatible for use with CompactLogix and ControlLogix PLCs and can utilize both

Class 1 I/O messaging and Class 3 MSG instructions. Add-On Instructions are available to enhance the

development of IPA applications within the RSLogix environment.

This includes an IPA program already written that you can adjust (to set their desired units and select the motor,

etc.) and AOIs and UDTs you import into RSLogix. These make it easy to control the IPA with these function

blocks directly on the ladder logic:

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 231

These AOIs include over 400 predefined boolean tags and 50 parameters that update every EtherNet/IP cycle

(adjustable, default 10 ms) for the PLC to read/write to the IPA, including most of the commonly used bits and

parameters (axis, master, program, etc.). The AOIs use these tags, but users can also use them.

The AOIs can be downloaded from the IPA product page here.

Further details can be found in the EtherNet/IP Programmer’s Guide for IPA. Available AOIs include:

• IPA_ServoOn

• IPA_ServoOff

• IPA_Home

• IPA_Move

• IPA_MoveStop

• IPA_MoveVelocity

• IPA_SetPosition

• IPA_SetTorqueLimit

• IPA_Fault Reset

Xpress HMI with ACR7000

The Xpress HMI is a compatible HMI for the ACR7000 for applications that need an operator touchscreen

interface. This sample includes 2-axis jog and teach panels.

Click here for a complete sample on parker.com.

http://www.parkermotion.com/products/Servo_Drive_Controllers__7313__30_32_80_567_29.html
https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/1915/acr7000-controller-and-acr9000-xpress-jog-teach-sample

WRITING ACROBASIC PROGRAMS

232 ACR Programmer’s Guide

Xpress HMI with IPA

The Xpress HMI is a compatible HMI for the IPA for applications that need an operator touchscreen interface.

This sample includes a jog panel similar to PMM's and a status panel similar to PMM’s Common Status Panel.

Click here for a complete sample on parker.com.

https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/1955/ipa-software---example---interact-xpress-hmi

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 233

WRITING ACROBASIC PROGRAMS

234 ACR Programmer’s Guide

Testing Programs

PMM’s Panels and Oscilloscopes give visual indications of the controller status. The Motion Status Panel lists the

program line numbers as well as axis positions, program status and common errors. This same information is in

the Bit Status Panel and Numeric Status Panel but placed in a single panel. You can have your own list of bits and

parameters with Watch Lists, a new feature of PMM.

If a program stopped running, the line number will be the last line executed when the program halted. This can

help determine why the program stopped, if there is a syntax error or if motion is commanded and the there is a

KAMR (Kill All Motion Request). If the line number is 0, the program never ran.

If a program is starting but you are not sure about the program flow, you can insert PRINT statements in the

program. As an example see EIP scanner - Wago 750. Print statements can be your own programmer notes

(strings are in quotes), parameter values such as motor positions or global parameters that may be updated from

external HMI/PLC/PC connections.

Program Not Running?
There are several common reasons a program might not run:

Syntax error in the code. This is not as likely unless the syntax issue is in a part of code that does not always

run, but instead runs based on some early logic and causes the program to sometimes take another branch.

Check the Motion Status Panel for a line number. This will be set to the line last executed when the program

halted. In the Terminal Emulator, go to program prompt and click List With Line Numbers to see the program with

line numbers in controller’s memory (these are automatically assigned on download).

HALT command. A legitimate command to halt a program via the HALT command or something setting the

program's control flag directly (BIT1033 Program Halt Request for Prog 0). Is there an HMI or other external

connection used in the system normally during operation such as a PLC or PC?

Axis not ready. Trying to command a move before the axis is able to move, either because the KAMR flags have

not been cleared yet or drive is not fully enabled yet, etc.

Out of memory. This would not generally occur on first power up, more if you were using GOSUB commands

and the subroutines did not always have a RETURN from them. In this case, the pointers created by the GOSUB

branch would not always be cleared by doing a RETURN from the subroutine and these pointers would build up in

memory over time and eventually exceed the memory allocation for that particular program space. The result is a

program crash.

Axis Motion Status?
Each axis can have multiple types of motion as we have seen from the Setpoint Summation explanation. Visually,

we can view axis motion status in Status Panels → Servo Loop Status and select the axis and desired units (counts or

user units):

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 235

Graphing with Oscilloscopes

PMM includes a 4-channel oscilloscope and you can use it to graph any parameter and any flag, including user

parameters and user flags.

Sampling

The channels can be sampled on a regular basis from the PC or at higher speed with onboard sampling. This will

start with the selected bit trigger, typically the Master In Motion bit or, for a single axis, its Jog Active bit, though

WRITING ACROBASIC PROGRAMS

236 ACR Programmer’s Guide

any bit can be used in either rising edge (bit turning on starts the sampling) or falling edge (bit turns off starts the

sampling) mode.

Note that Program 14 has a large memory allocation set as default to use local arrays to capture the selected

channels. After sampling is complete, if onboard was used, the data will then be uploaded to the PC and graphed.

Run will run the code specified by the Motion button continuously and graph it. Single will run the code within

Motion one time and graph.

The channels can be toggled on/off with the checkboxes. Users can display the numeric data with Display Data

and Export Data that they can then import into Excel or other programs for further analysis.

To scope a program, change the Motion code to "RUN PROG0" but leave Download Commands set to PROG14 (as

shown in picture above); that sets where the data collection is done and we do not want it to conflict with the

arrays used in our user PROG0.

Adding Lines of Code to Programs
You can add lines of code to a program that is already downloaded to the controller. This can be useful when

testing or debugging an application when you do not want to make a permanent change to the program stored in

PMM. This would be done in PMM’s Terminal Emulator while online with the controller.

Each code statement you want to add must include a line number. Otherwise, the controller could not

understand where to place each code statement. To determine the correct line numbers, go into the Terminal

Emulator in Parker Motion Manager and click List Line Number.

This turns on line numbering with the Force Line Numbers with List bit (bit 5651) and then sends a LIST

command. The LIST command displays the current program.

Having determined the correct line number placement for the code statements, enter the line number, a space and

the command. For example:

15 VEL 10

The new program lines are stored in the program space.

NOTE: Code changes made with this procedure are not reflected in the program stored in PMM.

To ensure your changes are permanent, enter them in the PMM Program Editor and

download it to the controller with the Save to Flash option checked.

Trace a Program
PMM’s Motion Status Panel lists the program line numbers while the program is running. The program can run

faster than this panel updates unless a dwell or inhibit is encountered. To see the stream of line numbers as they

are executed go into the Terminal Emulator and type TRON and then LRUN at the correct program prompt (e.g.

P00>). This will then echo the line numbers of the program in sequence. This can be helpful to determine if

 WRITING ACROBASIC PROGRAMS

 ACR Programmer’s Guide 237

certain lines are executed or not in case of conditionals. To exit listen mode, press Escape. To turn trace mode

off, use TROFF.

SYS>PROG0

P00>NEW

P00>10 DIM LV1

P00>20 LV0 = 0

P00>30 PRINT CHR$(65+LV0);

P00>40 LV0 = LV0+1

P00>50 IF (LV0 < 3) THEN GOTO 30

P00>60 PRINT

P00>TRON

P00>LRUN

<10><20><30>A<40><50><30>B<40><50><30>C<40><50><60>

P00>TROFF

P00>LRUN

ABC

P00>_

BINARY HOST INTERFACE

238 ACR Programmer’s Guide

CHAPTER 5

Binary Host Interface

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 239

Binary Host Interface

You can enhance communications with the ACR series controller through the binary host interface.

Binary Data Transfer

Binary Data Packets

Binary Parameter Access

Binary Peek Command

Binary Poke Command

Binary Address Command

Binary Parameter Address Command

Binary Mask Command

Binary Parameter Mask Command

Binary Move Command

Binary SET and CLR

Binary FOV Command

Binary ROV Command

Application: Binary Global Parameter Access

NOTE: For Windows applications, it usually makes much more sense to use the ComACRServer6

API, a COM server designed to automation communications to ACR controllers.

ComACRServer6 is compatible with VB.NET, C#, VBA and many other Windows

programming tools (any that can use COM).

Binary Data Transfer
The binary data transfers in this chapter consist of a control character (Header ID) followed by a stream of data

encoded according to the current state of the MODE command. Note that regardless of the mode, the Header ID

is never converted during binary data transfer.

NOTE: Much of the data in this section pertains specifically to serial/parallel communications on

older ACR products. The protocol has not been changed to preserve backwards

compatibility with older applications. Information relating to serial/parallel data transfer

is not relevant to ACR7000 and IPA controllers, which only have Ethernet.

BINARY HOST INTERFACE

240 ACR Programmer’s Guide

During binary transfers to the controller, the delay between bytes must be no more than the communications

timeout setting for the given channel. If the timeout activates, the transfer is thrown out and the channel goes

back to waiting for a normal character or a binary header ID. The default communication timeout is 50

milliseconds.

The following is a list of valid data conversion modes. The default mode for the FIFO channel is zero and the

default for the COM1 and COM2 channels is one. Note that high bit stripping cannot be done without also

activating the control character-prefixing mode.

Mode Description

MODE 0 No Conversion (recommended for Ethernet)

MODE 1 Control Character Prefixing

MODE 2 No Conversion

MODE 3 Control Character Prefixing and High Bit

Stripping

Control Character Prefixing

Control character prefixing follows Kermit communications protocol conventions. The escape code for control

character prefixing is the '#' character. The control character-prefixing mode prevents valid data within a binary

packet from being confused with the serial XON / XOFF flow control codes.

Transmitting

If the character to be sent is either a 0x7F or a character in the range of 0x00 to 0x1F, the character is 'XORed'

with 0x40 and proceeded with a '#' character. Otherwise, the byte is sent normally.

For example, if the character to be sent is 0x01, the character is transmitted as a "#A" string (0x01 XOR 0x40 =

0x41 = 'A'). The special case where the character to be sent is the '#' character is handled with the two character

"##" string.

Receiving

When receiving control prefix encoded data, a '#' character is thrown away and causes the next character to be

read from the data stream. If the character is in the range of 0x3F to 0x5F, the character is 'XORed' with 0x40 to

decode the true value. Otherwise, the character is used exactly as read from the stream.

High Bit Stripping

High bit stripping follows Kermit communications protocol conventions for 7-bit data paths. The escape code for

high bit stripping is the '&' character and must be used in conjunction with the control character prefixing

described above.

High bit stripping is for cases in which a 7-bit data path must be used for binary data transfer. This mode

introduces a large overhead in the transfer of binary data since over half of the bytes are expanded to two-byte

sequences and several are expanded to three bytes. If possible, an 8-bit data path should be used for binary data

transfer.

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 241

Transmitting

If the character to be sent is greater than 0x7F, the character is 'ANDed' with 0x7F and proceeded with the '&'

character. Note that the AND may result in a control code which must then be handled by control character

prefixing. The original character may also need to be sent with control character prefixing.

For example, if the character to be sent is 0xC2, the character is transmitted as a "&B" string (0xC2 AND 0x7F =

0x42 = 'B'). As another example, if character to be sent is 0x83, the character is transmitted as the three

character "&#C" string (0x83 AND 0x7F = 0x03 (control character)). The special case where the character to

be sent is the '&' character is handled with the two character "#&" string.

Receiving

When receiving high bit encoded data, '#' characters are handled as normal control character prefix sequences. If

the received character is neither a '#' nor a '&' character, the character is used exactly as read from the stream.

If the received character is the '&' character, it is thrown away and causes the next character to be read from the

data stream. This new character may be a '#' character, which will initiate control prefix decoding sequence. The

result is a value in the range of 0x00 to 0x7F, which is then 'ORed' with 0x80 to reestablish the high bit in the data.

Binary Data Packets
Packets allow binary access to system parameters at any time. This method must be used if commands are sitting

in the input queue since PRINT statements would also be buffered. The packet is the quickest way to access

information such as current position and following error for display in an application program.

Packet Request

Packets are requested by sending a four-byte binary request record. The following is a list of the bytes contained

in this record:

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Group Code

Byte 2 Group Index

Byte 3 Isolation Mask

Group Code and Index

The group code and group index work as a pair to select the data coming back in a data packet. The group code

selects a general data grouping and the group index selects a set of eight fields within that group. The isolation

mask then selects which of these eight fields is to compose the final data packet.

Isolation Mask

The isolation mask acts as a filter to select only the specific data required (for example, actual position for Axis 2,

Axis 3 and Axis 5). If a bit is set in this mask, the corresponding data field is allowed to return in the data packet.

In order to return all eight fields, the isolation mask must be 0xFF. Mask bit 0 is used to isolate the first field in a

group and bit 7 is used to isolate the last field.

BINARY HOST INTERFACE

242 ACR Programmer’s Guide

Parameter Access

The following is a list of groups and what the isolation mask will isolate:

Group Description Isolation Usage

0x10 Flag Parameters Eight consecutive parameters

0x18 Encoder Parameters ENC0-ENC15

0x19 DAC parameters DAC0-DAC7

0x1A PLC parameters PLC0–PLC7

0x1B Miscellaneous Eight consecutive parameters

0x1C Program Parameters PROG0 - PROG15

0x20 Master Parameters MASTER0 - MASTER7

0x28 Master Parameters MASTER8 - MASTER15

0x30 Axis Parameters AXIS0 - AXIS7

0x38 Axis Parameters AXIS8 - AXIS15

0x40 CMT Parameters CMT0 - CMT7

0x50 Logging Parameters Eight consecutive parameters

0x60 Encoder Parameters ENC16 - ENC23

Packet Header

After a packet request is received, the ACR responds by sending back a four-byte packet header. This header is a

direct echo of the request record. The echoing allows host software to do asynchronous sampling. A request can

be sent by one part of the program and packet retrieval can be done by a centralized receiver. This routine would

recognize the 0x00 in the header as an incoming packet and act accordingly.

In a synchronous retrieval mode, it is possible for extra data to be in front of an incoming packet header. This

would occur if there were any ASCII data pending at the time of the request, such as during a LIST. In order to

retrieve a packet correctly, the host software must be able to process this data while waiting for the packet header

to arrive. This should not be a problem, however, if all system echoing is turned off and no ASCII data retrieval is

being done.

Packet Data

After the packet header is received, the data arrives as a set of four-byte fields. The bits in the isolation mask

determine the number of fields and what they apply to. If the mask is 0xFF, a total of eight fields (32 bytes) would

follow. The first field to be returned corresponds to the bit position of the lowest bit in the mask that is set.

Long integers (LONG) are returned as a four-byte field. Floating point numbers (FP32) are returned in 32-bit IEEE

floating-point format. Both types of field are returned with the low order byte first.

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 243

Usage Example

This example requests actual positions from axes 2, 3 and 5:

Fields: Header Axis 2 Axis 3 Axis 5

Output: 00 30 02 2C

Input: 00 30 02 2C 20 21 22 23 30 31 32 33 50 51 52 53

Actual Positions:

• AXIS2: 0x23222120

• AXIS3: 0x33323130

• AXIS5: 0x53525150

Binary Parameter Access
Binary parameter access provides a method of reading from and writing to single system parameters on the

controller. Unlike binary data packets, binary parameter access uses the index of the parameter directly from

Appendix A. There are no groups or masks.

A parameter access header consists of a Header ID (0x00) followed by a Packet ID code and a two-byte

parameter index. The Packet ID codes for the different types of packets are shown below. The following pages

define each of the packets in detail.

Packet ID Codes

Code Packet Type Description

0x88 Binary Get Long Receive long integer from controller

0x89 Binary Set Long Send long integer to controller

0x8A Binary Get IEEE Receive IEEE value from controller

0x8B Binary Set IEEE Send IEEE value to controller

Usage Example

This example requests current position from axis 0 parameter P12288:

Fields: Header Parameter Value

Output: 00 88 00 30

Input: 00 88 00 30 10 11 12 00

Current Position Parameter Value:

• AXIS0: 0x00121110

BINARY HOST INTERFACE

244 ACR Programmer’s Guide

Binary Get Long

This packet gets a single parameter from the controller. The parameter index is a two-byte value sent low-order

byte first. The parameter value in the receive packet is a four-byte long integer received low-order byte first.

Transmit Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x88)

Byte 2-3 WORD Parameter Index

Receive Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x88)

Byte 2-3 WORD Parameter Index

Byte 4-7 LONG Parameter Value

Binary Set Long

This packet sets a single parameter on the controller. The parameter index is a two-byte value sent low-order

byte first. The parameter value is a four-byte long integer and is sent low order byte first.

Transmit Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x89)

Byte 2-3 WORD Parameter Index

Byte 4-7 LONG Parameter Value

Receive Packet

None.

Binary Get IEEE

This packet gets a single parameter from the controller. The parameter index is a two-byte value sent low-order

byte first. The parameter value in the receive packet is a four-byte image of an IEEE floating point number received

low-order byte first.

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 245

Transmit Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x8A)

Byte 2-3 WORD Parameter Index

Receive Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x8A)

Byte 2-3 WORD Parameter Index

Byte 4-7 IEEE32 Parameter Value

Binary Set IEEE

This packet sets a single parameter on the controller. The parameter index is a two-byte value sent low-order

byte first. The parameter value is a four-byte image of an IEEE floating point number and is sent low-order byte

first.

Transmit Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x8B)

Byte 2-3 WORD Parameter Index

Byte 4-7 IEEE32 Parameter Value

Receive Packet

None.

Binary Peek Command
A binary peek command consists of a four-byte header followed by an address and the data to be fetched from

that address. The header contains a data conversion code that controls pointer incrementing and the FP32 →

IEEE floating point conversion. The conversion only applies to older ACR controllers. The ACR7000 and IPA use

ARM Cortex processors, which support 32-bit IEEE754 floating point values natively.

BINARY HOST INTERFACE

246 ACR Programmer’s Guide

NOTE: Refer to Binary Global Parameter Access Note at end of Binary Host Interface section for

details.

The command returns the header and peek address followed by the requested data.

Transmit Packet

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x90)

Byte 2 Conversion Code

Byte 3 Peek Word Count

Long 0 Peek Address

Receive Packet

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x90)

Byte 2 Conversion Code

Byte 3 Peek Word Count

Long 0 Peek Address

Long 1 Peek Data 0

Long 2 Peek Data 1

 :

Long N Peek Data (Count - 1)

Conversion Codes

Code Source Destination

0x00 LONG LONG

0x01 FP64 IEEE32

0x02 FP32 IEEE32

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 247

Usage Example

This example peeks at three words, starting at peek address 0x404500.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller

depending on system memory allocation.

Fields: Header Address Data0 Data1 Data2

Output: 00 90 00 03 00 50 40 00

Input: 00 90 00 03 00 50 40 00 10 11 12 13 20 21 22 23 30 31 32 33

Requested data at address:

• 0x405000: 0x13121110

• 0x405001: 0x23222120

• 0x405002: 0x33323130

Binary Poke Command
A binary poke command consists of a four-byte header followed by an address and the data to be stored at that

address. There is no information returned from this command. The header contains a data conversion code that

controls pointer incrementing and the IEEE → FP32 floating point conversion. The conversion only applies to

older ACR controllers. The ACR7000 and IPA use ARM Cortex processors, which support 32-bit IEEE754

floating point values natively.

NOTE: Refer to Binary Global Parameter Access Note at end of Binary Host Interface section for

details.

Transmit Packet

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x91)

Byte 2 Conversion Code

Byte 3 Poke Word Count

Long 0 Poke Address

Long 1 Poke Data 0

Long 2 Poke Data 1

 :

BINARY HOST INTERFACE

248 ACR Programmer’s Guide

Data Field Description

Long N Poke Data (Count - 1)

Receive Packet

None.

Conversion Codes

Code Source Destination

0x00 LONG LONG

0x01 IEEE32 FP64

0x02 IEEE32 FP32

Usage Example

This example pokes data into three words, starting at poke address 0x405000.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,

depending on system memory allocation.

Fields: Header Address Data0 Data1 Data2

Output: 00 91 00 03 00 50 40 00 10 11 12 13 20 21 22 23 30 31 32 33

Data poked into addresses:

• 0x405000: 0x13121110

• 0x405001: 0x23222120

• 0x405002: 0x33323130

Binary Address Command
A binary address command consists of a four-byte header containing a program number and a parameter code.

The command returns the header followed by the base address of the parameter type in question. If the returned

address is zero, no parameters of that type have been allocated in the given program.

Peeking at the returned address will return the number of variables dimensioned for the requested type. In the

case of numeric variables (DV, SV, LV), the count will be followed by the actual numeric data. For arrays (DA, SA,

LA), the count will be followed by the addresses of the individual arrays. These addresses point to storage areas

as if they were normal numeric variables of the same type (count followed by data).

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 249

Transmit Packet

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x92)

Byte 2 Program Number

Byte 3 Parameter Code

Receive Packet

Data Field Description

Byte 0 Header ID (0x00)

Byte 1 Packet ID (0x92)

Byte 2 Program Number

Byte 3 Parameter Code

Long 0 Parameter Address

Parameter Codes

Code Mnemonic Description

0x00 DV Double Variables

0x01 DA Double Arrays

0x02 SV Single Variables

0x03 SA Single Arrays

0x04 LV Long Variables

0x05 LA Long Arrays

0x06 $V String Variables

0x07 $A String Arrays

Usage Example

This example requests the starting address of the Single Variable information for Program 5.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,

depending on system memory allocation.

BINARY HOST INTERFACE

250 ACR Programmer’s Guide

Fields: Header Parameter Address

Output: 00 92 05 02

Input: 00 92 05 02 00 80 40 00

Starting address of the Single Variable information for Program 5:

Address: 0x408000

Binary Parameter Address Command
A binary parameter address command consists of a four-byte header containing a parameter index. The command

returns the header followed by the address of the parameter. If the returned address is zero, the parameter index

was invalid.

Transmit Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x93)

Byte 2-3 WORD Parameter Index

Receive Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x93)

Byte 2-3 WORD Parameter Index

Long 0 LONG Parameter Address

Usage Example

This example requests the address of the axis 0 current position parameter.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,

depending on system memory allocation.

Fields: Header Parameter Address

Output: 00 93 00 30

Input: 00 93 00 30 31 50 40 00

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 251

Current Position Parameter Address:

AXIS0: 0x405031

Binary Mask Command
A binary mask command consists of a four-byte header followed by an address and two bit masks to be combined

with the data at that address. There is no information returned from this command. The address must point to a

long integer storage area. The NAND mask is used to clear bits and the OR mask is used to set bits (OR mask is

dominant). The data is modified as follows:

data = (data AND NOT nandmask) OR ormask

Transmit Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x94)

Byte 2 BYTE Reserved (0x00)

Byte 3 BYTE Reserved (0x00)

Long 0 BYTE Data Address

Long 1 BYTE NAND Mask

Long 2 BYTE OR Mask

Receive Packet

None.

Usage Example

This example uses the Binary Mask Command to clear all of the Opto-isolated Outputs and then set Output 32.

The data address for Opto-isolated Outputs Parameter P4097 is assumed to have been previously returned using

the Binary Parameter Address Command on the previous page.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,

depending on system memory allocation.

Fields: Header Parameter Address NAND Mask OR Mask

Output: 00 94 00 00 43 60 40 00 FF FF FF FF 01 00 00 00

Opto-isolated Output Parameter P4097 Modified Data at address:

0x406043: 0x00000001

BINARY HOST INTERFACE

252 ACR Programmer’s Guide

Binary Parameter Mask Command
A binary parameter mask command consists of a four-byte header followed by two bit masks to be combined with

a system parameter. There is no information returned from this command. The parameter index in the header

must be a long integer. The NAND mask is used to clear bits and the OR mask is used to set bits (OR mask is

dominant). The data is modified as follows:

data = (data AND NOT nandmask) OR ormask

Transmit Packet

Data Field Data Type Description

Byte 0 BYTE Header ID (0x00)

Byte 1 BYTE Packet ID (0x95)

Byte 2-3 WORD Parameter Index

Long 0 LONG NAND Mask

Long 1 LONG OR Mask

Receive Packet

None.

Usage Example

This example uses the Binary Parameter Mask Command to clear all of the Opto-isolated Outputs and then set

Output 32.

Fields: Header NAND Mask OR Mask

Output: 00 95 01 10 FF FF FF FF 01 00 00 00

Opto-isolated Output Parameter P4097 Modified Data:

P4097: 0x00000001

Binary Move Command
A binary move consists of a variable length header followed by a number of four-byte data fields. The bit-mapped

information in the header determines the number of data fields and their content. All data fields are sent low

order byte first.

Binary Move Packet

Data Field Data Type Description

Head 00 BYTE Header ID (0x04)

Head 01 BYTE Header Code 0

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 253

Data Field Data Type Description

Head 02 BYTE Header Code 1

Head 03 BYTE Header Code 2

Head 04 BYTE Header Code 3

Head 05 BYTE Header Code 4

Head 06 BYTE Header Code 5

Head 07 BYTE Header Code 6

Head 08 BYTE Header Code 7

Data 00 IEEE32 Master VEL

Data 01 IEEE32 Master FVEL

Data 02 IEEE32 Master ACC/DEC

Data 03 LONG* Slave 0 Target or NURB/Spline control point

Data 04 LONG* Slave 1 Target or NURB/Spline control point

Data 05 LONG* Slave 2 Target or NURB/Spline control point

Data 06 LONG* Slave 3 Target or NURB/Spline control point

Data 07 LONG* Slave 4 Target or NURB/Spline control point

Data 08 LONG* Slave 5 Target or NURB/Spline control point

Data 09 LONG* Slave 6 Target or NURB/Spline control point

Data 10 LONG* Slave 7 Target or NURB/Spline control point

Data 11 LONG* Slave 8 Target or NURB/Spline control point

Data 12 LONG* Slave 9 Target or NURB/Spline control point

Data 13 LONG* Slave 10 Target or NURB/Spline control point

Data 14 LONG* Slave 11 Target or NURB/Spline control point

Data 15 LONG* Slave 12 Target or NURB/Spline control point

Data 16 LONG* Slave 13 Target or NURB/Spline control point

Data 17 LONG* Slave 14 Target or NURB/Spline control point

Data 18 LONG* Slave 15 Target or NURB/Spline control point

BINARY HOST INTERFACE

254 ACR Programmer’s Guide

Data Field Data Type Description

Data 19 LONG* Primary Center

Data 20 LONG* Secondary Center

Data 21 IEEE32 Primary Scaling or NURB/Spline Knot

Data 22 IEEE32 Secondary Scaling or NURB Weight

* These fields are in IEEE32 format if bit 2 of header code 3 is set.

Header Code 0

There are two versions defined for Header Code 0 based on Secondary Master Flag Bit Index 5, Enable Rapid

Move Modes.

The default-disabled mode for this flag (Secondary Master Flag Bit Index 5 cleared) uses the following Header

Code 0 definition.

Enable Rapid Move Modes Flag Disabled—Default Cleared Value:

Data

Field

Data Type Description

Bit 0 FVEL Lockout Forces FVEL to zero for this move

Bit 1 FOV Lockout Forces FOV to 1.0 for this move

Bit 2 STP Ramp Activate Sets STP equal to DEC, else STP 0

Bit 3 Code 3 Present Header contains "Header Code 3"

Bit 4 Velocity Data Present Packet contains master VEL

Bit 5 Acceleration Data

Present

Packet contains master ACC/DEC

Bit 6 Counter Dir Count down if set, else up

Bit 7 Counter Mode Master move counter enable

The enabled mode for this flag (Secondary Master Flag Bit Index 5 Set) uses the following Header Code 0

definition. The Move Modes for this header code are defined following the header code definitions.

Enable Rapid Move Modes Flag Enabled—Set Value:

Data

Field

Data Type Description

Bit 0 Move Mode Bit 1 Selects the move mode for this move

along with Header Code 0 Bit 2.

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 255

Data

Field

Data Type Description

Bit 1 FOV/ROV Lockout Forces FOV or ROV to 1.0 for this move

Bit 2 Move Mode Bit 0 Selects the move mode for this move

along with Header Code Bit 0.

Bit 3 Code 3 Present Header contains "Header Code 3"

Bit 4 Velocity Data Present Packet contains master VEL

Bit 5 Acceleration Data

Present

Packet contains master ACC/DEC

Bit 6 Counter Dir Count down if set, else up

Bit 7 Counter Mode Master move counter enable

Header Code 1

Data

Field

Data Type Description

Bit 0 Master Bit 0 Master for this move packet

Bit 1 Master Bit 1

Bit 2 Master Bit 2

Bit 3 Interrupt Select Interrupt host when move starts

Bit 4 Arc Direction CCW if set, else CW

Bit 5 Arc Mode Packet contains center points or Spline

Knot present

Bit 6 Arc Plane Bit 0 Primary and secondary axis or NURB

Mode

Bit 7 Arc Plane Bit 1 For binary arc move commands or

SPLINE Mode

Header Code 2

Data

Field

Data Type Description

Bit 0 Slave 0 Present Slave target positions to be contained in

this move packet
Bit 1 Slave 1 Present

BINARY HOST INTERFACE

256 ACR Programmer’s Guide

Data

Field

Data Type Description

Bit 2 Slave 2 Present

Bit 3 Slave 3 Present

Bit 4 Slave 4 Present

Bit 5 Slave 5 Present

Bit 6 Slave 6 Present

Bit 7 Slave 7 Present

Header Code 3

Data

Field

Data Type Description

Bit 0 Incremental Target Target positions are incremental

Bit 1 Incremental Center Center points are incremental

Bit 2 Floating Point Data Targets and centers are IEEE32

Bit 3 Arc Radius Scaling Packet contains radius scaling /

NURB/Spline

Bit 4 FVEL Data Present Packet contains master FVEL

Bit 5 Block Skip Check Sets the master Block Skip Check

Bit 6 NURB or Spline Move data packet for NURB or Spline

Interpolation

Bit 7 Extended Codes Extended codes 4,5,6 and 7 are present.

This bit should be set if DBCB is used

Header Code 4

Data

Field

Data Type Description

Bit 0 Reserved Reserved

Bit 1

Bit 2

Bit 3 Master Bit 3 Master for this move packet

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 257

Bit 4 Reserved Reserved

Bit 5

Bit 6

Bit 7

Header Code 5

Data

Field

Data Type Description

Bit 0 Reserved Reserved

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Header Code 6

Data

Field

Data Type Description

Bit 0 Slave 8 Present Slave target positions to be contained in

this move packet
Bit 1 Slave 9 Present

Bit 2 Slave 10 Present

Bit 3 Slave 11 Present

Bit 4 Slave 12 Present

Bit 5 Slave 13 Present

Bit 6 Slave 14 Present

Bit 7 Slave 15 Present

BINARY HOST INTERFACE

258 ACR Programmer’s Guide

Header Code 7

Data

Field

Data Type Description

Bit 0 Reserved Reserved

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

The following Move Modes definition applies to Header Code 0 used with the Master Enable Rapid Move Modes

flag set.

Move Modes

Bits 0 and 2 in Header Code 0 indicate which type of move mode is contained in the binary move packet as

follows:

Bit 1

(Header Code 0 Bit

0)

Bit 0

(Header Code 0 Bit

2)

Move Mode

0 0 Move Mode 0 - Feed Continuous

0 1 Move Mode 1 - Feed Cornering

1 0 Move Mode 2 - Feed Stopping

1 1 Move Mode 3 – Rapid

Where: 0 = Bit Cleared; 1 = Bit Set

Example 1

The following illustrates Move Mode 0—Feed Continuous:

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 259

Example 2

The following illustrates Move Mode 1—Feed Cornering:

Example 3

The following illustrates Move Mode 2—Feed Stopping:

BINARY HOST INTERFACE

260 ACR Programmer’s Guide

Example 4

The following illustrates Move Mode 3—Rapid:

Linear Moves

The bits in header code 2 indicate which target positions are contained in the binary move packet. If the

"incremental target" bit in header code 3 is set, the targets are relative to the current target positions of the

slaves; otherwise, the targets are absolute. The "floating point data" bit in header code 3 indicates that the target

data is in IEEE floating point format, otherwise they are long integers.

Arc Moves

When the "arc mode" bit in header code 1 is set, a circular arc is generated using two of the first three slaves

attached to a master. Any slaves that are given a target position, but are not part of the circular interpolation, are

executed as normal linear moves. This allows for helical interpolation.

The "arc plane" bits in header code 1 are combined to generate a number from 0 to 3 that defines the primary and

secondary axes for the arc as follows:

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 261

Arc Plane Primary Axis Secondary Axis

0 Slave 0 Slave 1

1 Slave 1 Slave 2

2 Slave 2 Slave 0

3 Reserved Reserved

The "arc direction" bit in header code 1 indicates the direction of the arc relative to the primary and secondary

axes. A counter-clockwise arc is defined as an arc from the positive primary axis toward the positive secondary

axis.

The radius of the arc will be equal to the distance between the arc target position and the given center point. If

the arc target position is equal to the target position of the previous move, a 360-degree path will be generated.

The target position of the previous move must lie on the defined arc or the axes will jump to that location before

the arc begins.

If the "incremental center" bit in header code 3 is set, the center points are relative to the current target positions

of the slaves, otherwise the center points are absolute. The "floating point data" bit in header code 3 indicates that

the given center points are in IEEE floating point format, otherwise they are long integers.

NURB or SPLINE Moves

When the "NURB or Spline" bit in header code 3 (Bit 6) is set, the move data packet includes NURB or Spline

curve data. In addition, bit 5 and 6 in header code 1 will differentiate if the data is NURB or Spline. Bit 5 of

header code 1 is set when Spline data includes Knots.

The control points for NURB and Spline are sent as DATA3 thru DATA10, similar to the way the normal slave

targets are sent. Load the Knot in DATA13 and Weight in DATA14 and set bit 3 in header code 3.

Binary SET and CLR
The immediate setting and clearing of bits can be accomplished with a 3-byte binary command sequence. This

sequence is a 1-byte command header followed by a two-byte index value. The index value is sent low order byte

first. The command is not queued and the set or clear occurs when the command is first seen by the board.

Binary SET

Data Type Description

Byte 0 Header ID (0x1C)

Byte 1 Index Byte 0

Byte 2 Index Byte 1

Byte 3 0x00, present for backwards

compatibility.

BINARY HOST INTERFACE

262 ACR Programmer’s Guide

Binary CLR

Data Type Description

Byte 0 Header ID (0x1D)

Byte 1 Index Byte 0

Byte 2 Index Byte 1

Byte 3 0x00, present for backwards

compatibility.

Usage Example

Binary Output Description

1C 08 02 Set bit 520 (0x0208)

1D 20 00 Clear bit 32 (0x0010)

Binary FOV Command
The immediate setting of feedrate override for any or all axes can be accomplished with an eight-byte binary

command sequence. This sequence is a four-byte command header followed by a four-byte FOV value. The

command is not queued and the FOV occurs when the command is first seen by the board.

The second byte in the header is a bit mask that determines which masters are affected by the FOV value that

follows. The FOV value is an image of an IEEE 32-bit floating-point value, sent low order byte first.

For more than eight masters (not possible on the ACR7000 or IPA) the header bit mask byte 1 should be set to

zero and the two optional 16 master header bit mask byte 2 and byte 3 should be filled accordingly.

Binary Format

Data Type Description

Byte 0 Header ID (0x07)

Byte 1 Header Bit Mask

Byte 2 16 Master Header Bit Mask, Part 1

Byte 3 16 Master Header Bit Mask, Part 2

Byte 4 FOV Byte 0

Byte 5 FOV Byte 1

Byte 6 FOV Byte 2

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 263

Data Type Description

Byte 7 FOV Byte 3

Header Bit Mask

Data

Type

Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the FOV contained in

this command.

16 Master Header Bit Mask, Part 1

Data Type Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the FOV contained in

this command.

BINARY HOST INTERFACE

264 ACR Programmer’s Guide

16 Master Header Bit Mask, Part 2

Data Type Description

Bit 8 Master 8 Affected

Bit 9 Master 9 Affected

Bit 10 Master 10 Affected

Bit 11 Master 11 Affected

Bit 12 Master 12 Affected

Bit 13 Master 13 Affected

Bit 14 Master 14 Affected

Bit 15 Master 15 Affected

NOTE: Masters affected by the FOV contained in

this command.

Usage Example

This example uses the following IEEE conversions:

0.500 = 3F000000

0.123 = 3DFBE76D

Binary Output Description

07 08 00 00 00 00 00 3F Set Master 3 FOV to 0.5

07 05 00 00 6D E7 FB 3D Set Master 0 and Master 2 FOV to 0.123

Binary ROV Command
The immediate setting of rapid feedrate override for any or all axes can be accomplished with an eight-byte binary

command sequence. This sequence is a four-byte command header followed by a four-byte ROV value. The

command is not queued and the ROV occurs when the command is first seen by the board.

The second byte in the header is a bit mask that determines which masters are affected by the ROV value that

follows. The ROV value is an image of an IEEE 32-bit floating-point value, sent low order byte first.

For more than eight masters (not possible on the ACR7000 or IPA) the header bit mask byte 1 should be set to

zero and the two optional 16 master header bit mask byte 2 and byte 3 should be filled accordingly.

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 265

Binary Format

Data Type Description

Byte 0 Header ID (0x1F)

Byte 1 Header Bit Mask

Byte 2 16 Master Header Bit Mask, Part 1

Byte 3 16 Master Header Bit Mask, Part 2

Byte 4 ROV Byte 0

Byte 5 ROV Byte 1

Byte 6 ROV Byte 2

Byte 7 ROV Byte 3

Header Bit Mask

Data Type Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the ROV contained in this command.

16 Master Header Bit Mask, Part 1

Data Type Description

Bit 0 Master 0 Affected

Bit 1 Master 1 Affected

Bit 2 Master 2 Affected

Bit 3 Master 3 Affected

BINARY HOST INTERFACE

266 ACR Programmer’s Guide

Data Type Description

Bit 4 Master 4 Affected

Bit 5 Master 5 Affected

Bit 6 Master 6 Affected

Bit 7 Master 7 Affected

NOTE: Masters affected by the ROV contained in this command.

16 Master Header Bit Mask, Part 2

Data Type Description

Bit 8 Master 8 Affected

Bit 9 Master 9 Affected

Bit 10 Master 10 Affected

Bit 11 Master 11 Affected

Bit 12 Master 12 Affected

Bit 13 Master 13 Affected

Bit 14 Master 14 Affected

Bit 15 Master 15 Affected

NOTE: Masters affected by the ROV contained in this command.

Usage Example

This example uses the following IEEE conversions:

0.500 = 3F000000

0.123 = 3DFBE76D

Binary Output Description

07 08 00 00 00 00 00 3F Set Master 3 ROV to 0.5

07 05 00 00 6D E7 FB 3D Set Master 0 and Master 2 ROV to 0.123

Application: Binary Global Parameter Access
Also see Binary Peek and Binary Poke commands.

 BINARY HOST INTERFACE

 ACR Programmer’s Guide 267

Description

Global user variables (see Variable Memory Allocation) can be read and set using the Binary Peek and Poke

Command interface.

NOTE: A maximum word count of 255 can be used when using the Binary Peek and Poke

Command interface.

Hardware Dependent System Pointer Address

Controller System Pointer

Address

ACR1200 0x400008

ACR1500 0xC08008

ACR2000 0x400008

ACR8000 0x403E08

ACR8010 0x403E08

ACR8020 0x400009

Reading Global Variables

Peek at the System Pointer Address (see above information) to receive the Global_Variable_Address. If the

returned address is zero, there are no dimensioned global variables (see the DIM command). If the returned

address is other than zero, peek at this address to receive the number of dimensioned global variables.

Read a global variable P(index) using the following addressing scheme for Peek:

Peek_Address = Global_Variable_Address + 1 + (index * 2)

Where index = 0 to (number of dimensioned global variables – 1).

Even though global variables are stored on-board as floating point 64 (FP64) numbers, they are returned as IEEE32

numbers (Conversion Code 0x01).

Setting Global Variables

Peek at the System Pointer Address (see System Pointer Address on previous page) to receive the

Global_Variable_Address. If the returned address is zero, there are no dimensioned global variables (see the DIM

command). If the returned address is other than zero, peek at this address to receive the number of dimensioned

global variables.

To prevent corruption of user memory, always verify P(index) is within the dimensioned global variable range

before performing a POKE command. Set a global variable P(index) using the following addressing scheme for

Poke:

Poke_Address = Global_Variable_Address + 1 + (index * 2)

BINARY HOST INTERFACE

268 ACR Programmer’s Guide

Where index = 0 to (number of dimensioned global variables – 1).

Even though global variables are sent as IEEE32 numbers, they are stored on-board as floating point 64 (FP64)

numbers (Conversion Code 0x01).

 TROUBLESHOOTING

 ACR Programmer’s Guide 269

CHAPTER 6

Troubleshooting

TROUBLESHOOTING

270 ACR Programmer’s Guide

Troubleshooting

When a system does not function as expected, the first thing to do is identify and isolate the problem. When this

is accomplished, steps may be taken toward resolution.

Problem Isolation
The first step is to isolate each system component and ensure that each component functions properly when it is

run independently. This may require dismantling the system and putting it back together piece by piece to detect

the problem. If additional units are available, it may be helpful to exchange them with the system’s existing

components to help identify the source of the problem.

Determine if the problem is mechanical, electrical or software related and note whether it can be recreated or is

repeatable.

Random events may appear to be related, but they are not necessarily contributing factors to the problem.

There may be more than one problem. Isolate and solve one problem at a time.

Information Collection
Document all testing and problem isolation procedures. If the problem is particularly difficult to isolate, be sure to

note all occurrences of the problem along with as much specific information as possible. These notes may come in

handy later and will also help prevent duplication of testing efforts.

Once the problem is isolated, refer to the table below, Common Problems and Their Solutions. If instructed to

contact Parker Technical Assistance, please refer to Technical Assistance for contact information.

Troubleshooting Table
This section includes a table of common problems and their solutions. For locations of the ACR7000 or IPA

status LEDs, see their Hardware Installation Guides. This table only lists problem LED indications.

Common Problems and Their Solutions

PROBLEM CAUSE / VERIFICATION SOLUTION

Power Status LED

Power status

LED is not on

There is no power to the controller. Check for disconnected power cable.

Check for blown fuse.

Verify the power source meets requirements

outlined in the Hardware Installation Guide.

 TROUBLESHOOTING

 ACR Programmer’s Guide 271

PROBLEM CAUSE / VERIFICATION SOLUTION

Power status

LED is steady red

There is inadequate power to the

controller.

Verify the power source meets requirements

outlined in the Hardware Installation Guide.

Remove all cables except power.

If the LED turns green after removing the

cables, re-attach the cables one at a time to

determine which cable or device is causing

the problem.

If the LED does not turn green, contact

Parker Technical Assistance. The unit is

likely damaged.

Power status

LED is alternating

red/green

Controller encountered error during boot

process.

Contact Parker Technical Assistance. The

unit will likely need to be sent back to the

factory for repair.

Axis Status LED

Axis status LED

is not on

Axis is disabled with no fault (normal state

for steppers or servo motors).

Enable drive.

Axis status LED

is red

Axis fault. Motion on this axis is disabled

during a fault state.

NOTE: The LED illuminates red whenever

the drive fault input is activated (drive

faulted, no axis cable connected, etc.).

Check for faulted drive. Enable drive. Refer

to Operation section of this table.

Check for axis cable disconnected.

Ethernet Status LED

Ethernet

link/activity:

yellow LED is off

No Ethernet link is detected. Check for the correct type of cable and try

different Ethernet cable.

Ethernet speed:

green LED is

flashing

Ethernet port is getting intermittent 10

Mbps and 100 Mbps connection.

Verify the Ethernet port on the PC is

functioning correctly.

Verify the ACR controller Ethernet port is

functioning correctly with different PC.

Ethernet Communication

Communication

Error: 11003

Wrong computer IP address and/or subnet

mask.

Change IP address of computer in Network

Settings.

Communication

Error: 10061

Same IP address as ACR. Change IP address of computer in Network

Settings.

TROUBLESHOOTING

272 ACR Programmer’s Guide

PROBLEM CAUSE / VERIFICATION SOLUTION

Communication

Error: 11010

Wrong IP address configured in PMM

communication window.

Enter in correct ACR IP address in

controller’s connection window. Check

IPA’s dial switches for IP address.

In PMM, click Ping. If ping fails, see

Connecting to the Controller.

Operation

Drive will not

enable

Motion Enable Input is open.

Verify by checking Status Panels → Bit

Status → Miscellaneous Control Flags.

Check if 24 VDC is applied to the Motion

Enable Input.

Bit 5646 indicates status of 24 VDC Motion

Enable Input.

Bit 5645 indicates if Motion Enable Input has

been latched.

If both 5645 and 5646 are set, reapply 24

VDC to Motion Enable Input.

If only 5645, then SET 5647 to clear 5645

latch.

Encoder signal fault and/or encoder signal

is lost.

Verify by checking Status Panels → Bit

Status → Encoder Flags.

NOTE: Each encoder input has specific flag

sets.

For Encoder Signal Fault: Check for incorrect

termination. Noise in the system can cause

missed and/or false encoder feedback values.

For Encoder Signal Lost: Check feedback

cables.

Amplifier/drive is not powered on. Check if power is applied to the

amplifier/drive.

Many drives have separate control and motor

power. Check fuses/breakers in cabinet and

estop/safety circuit.

Excess position error (EXC). Motor has

exceeded maximum position error.

Verify by checking Status Panels → Bit

Status → Axis Flags → Primary Axis Flags.

Each axis is indicated by Bit “Not Excess

Error.”

Increase the EXC setting.

 TROUBLESHOOTING

 ACR Programmer’s Guide 273

PROBLEM CAUSE / VERIFICATION SOLUTION

Axis Enable output or Axis Fault input are

wrong.

Use Configuration Wizard to select Parker

drive used, or select Other and set NO or

NC for Enable and Fault.

Compax3 with ACR7xC: Drive X4/3 STO

Enable input open. Check machine safety

circuit is not open.

C3 X4/3 requires 24 VDC to enable. Apply

and then enable from ACR7xC controller

with DRIVE ON command.

Compax3 with ACR7xC: Drive

configuration incorrect for Axis type

(External Stepper or External Servo).

Check Compax3 Drive configuration for Axis

type: I10T10 Position Control Step/Dir 5V

for Stepper, Torque Control Standard Mode

for Servo.

PD-xxP with ACR7xC: Drive configuration

incorrect for Axis type (External Stepper

or External Servo).

Check P series drive configuration Control

Mode (Pulse Input for Stepper, Analog

Torque for Servo).

PD-xxP with ACR7xC: Inputs need to be

pulled high to 24 VDC.

For 71-032478 cable, connect White with

Blue Stripe to DC reference, Blue wire to

+24 VDC.

Drive will not

enable (cont.)

Drive faulted

PMM → Status Panels → Motion Status

Panel.

For ACR7xC controller, check drive for

faults/errors/alarms.

For ACR7xV or IPA, see Bit Status → Servo

Drive Flags.

For ACR7xT, see Bit Status → Stepper Drive

Flags.

Drive will enable,

but will not hold

torque

Incorrect configuration for motor

attached.

Correct the configuration for servo or

stepper through the Configuration Wizard.

For ACR7xC, check drive configuration or

stepper drive current settings.

Servo motor running open loop.

Verify that the drives are running open

loop: Status Panels → Bit Status → Axis Flags

→ Primary Axis Flags.

Each axis is indicated by Bit “Open Servo

Loop.”

Disable drive and clear the appropriate bit.

Tuning gains are not set correctly. Use PMM’s Servo Tuner (Tools → ServoTuner

→ Select Axis).

TROUBLESHOOTING

274 ACR Programmer’s Guide

PROBLEM CAUSE / VERIFICATION SOLUTION

Check if the tuning gains are set too low:

Status Panels → Numeric Status → Axis

Parameters → Servo Parameters.

Torque limit is not set correctly.

Verify torque limit setting: Status Panels →

Numeric Status → Axis Parameters → Limit

Parameters → Plus/Minus Torque Limit.

Example: TLM X1 indicates torque is limited

to 10% of drive motor capacity for axis X.

Drive will enable,

but loads drops

Brake is released before motor is enabled. Delay motion after enabling by brake’s

release time.

ACR7xV: Set Brake Relay Delay on Enable

(P28686 for Axis 0).

ACR7xC: Brake would be released by drive,

check drive settings.

IPA: Set C41 OUTBD (Output Brake Delay)

in milliseconds.

Load drops when

drive disabled

Motor is disabled before brake engages. Delay disabling motor by brake’s set time.

ACR7xV: Brake Delay after Disable (P28687

for Axis 0).

ACR7xC: Brake would be set by drive, check

drive settings.

IPA: Set C103 INUFD (User Fault Delay) in

milliseconds.

Drive will enable,

but motor will

not move

Stepper output motion does not occur.

ACR controller not configured for stepper

output in Configuration Wizard.

Correct configuration for stepper through

Configuration Wizard. Tuning gains must

remain at default values: PGAIN

0.002441406; IGAIN, ILIMIT, IDELAY,

DGAIN, DWIDTH, FFVEL, FFACC, and

TLM=0.

Axis encountered limits.

Verify: Status Panels → Bit Status → Axis

Flags → Quinary Axis Flags.

Each axis is indicated by Bit

“Positive/Negative End-of-Travel Limit

Encountered.”

Clear the appropriate Positive/Negative End-

of-Travel Limit Encountered Bit.

Clear any Master Kill All Motion Request Bits

and Axis Kill All Motion Request Bits. PMM

→ Status Panels → Motion Status → Clear All

Kills.

 TROUBLESHOOTING

 ACR Programmer’s Guide 275

PROBLEM CAUSE / VERIFICATION SOLUTION

Check PMM Configuration Wizard’s EOT

polarity is correct.

Master Kill All Moves request is active.

Verify: Status Panels → Bit Status → Master

Flags.

Each master is indicated by Bit “Kill All

Moves Request.”

Clear the appropriate Master Kill All Moves

Request Bit.

Also clear all associated Slave Kill All Motion

Request Bits.

Axis Kill All Motion Request is active.

Verify: Status Panels → Bit Status → Axis

Flags → Quaternary Axis Flags.

Each axis is indicated by Bit “ACR9000 Kill

All Motion Request.”

Clear the appropriate Axis ACR7000 Kill All

Motion Request Bit.

PMM → Status Panels → Motion Status Panel

→ Clear All Kills.

Master in feedhold or feedholding state.

Verify: Status Panels → Bit Status → Master

Flags.

Each master is indicated by Bit “In

Feedhold or Feedholding.”

Set the appropriate Cycle Start Request Bit.

Slave axis not attached to master.

Check the configuration by going into the

correct PROG level. Type ATTACH.

Correct the configuration through the

Configuration Wizard and download the

setup code.

Jog or Master Velocity set to zero (no

Master Profile).

Check these parameters by going into the

correct PROG level. Type VEL or JOG

VEL.

Assign Velocity or Jog Velocity values.

Example: VEL 1 or JOG VEL X 1.

Commanded feedrate override set to zero.

Check the feedrate override by going into

the correct PROG level. Type FOV.

Assign the appropriate feedrate override

value.

Example: FOV 1 indicates a master feedrate

of 1.

Brake is not released. Check wiring for brake and brake voltage

requirements. Confirm brake voltage is not

backwards.

Torque Limit is set to zero (servo). Assign the appropriate Torque Limit value.

TROUBLESHOOTING

276 ACR Programmer’s Guide

PROBLEM CAUSE / VERIFICATION SOLUTION

Verify Torque Limit setting by Status Panels

→ Numeric Status → Axis Parameters →

Limit Parameters → Plus/Minus Torque Limit.

Example: TLM X1 indicates torque is limited

to 10% of drive motor capacity for axis X.

Improper

operation

Feedback device counts are missing. Check the feedback cable and connections.

Check the amplifier to send back correct

signals.

Servo motors

make audible

noise

Incorrect tuning gain settings. Check tuning gain settings.

Incorrect motor commutation. Verify drive settings, motor connections.

For ACR7xV multi-axis servo, motor

power and feedback cables switched.

Confirm motor and feedback cables for each

axis.

Brake not released. If motor has brake or load has brake, check

its releasing when drive enables. Disconnect

load, power brake directly, motor shaft

should be free to turn.

Contamination/dry mechanics. Remove motor to confirm it is the

mechanics. Check gearhead for

contamination. Check leadscrew and square

rail bearings for lubricant. See

manufacturer’s recommendations.

Mechanical misalignment. Check load, bearings, ballscrew for

misalignment. Disconnect load from motor

to confirm if it is the mechanics.

Stepper motors

hot

Stepper motors are running at full current

when in motion and will be hotter

compared to servos.

Step motors can be hot to touch and safety

(burn) hazard, shroud/guard motor from

human contact.

Wrong motor current set. Check step motor current settings.

PMM → Config Wizard → Drive/Motor.

Confirm max case temperature does not

exceed motor rating.

Motor set for max current at 100%. Enable Standby Current Reduction. This will

reduce holding torque when not commanding

motion.

Motor current too high for ambient

temperature.

Lower motor current for steady state case

temperature.

 TROUBLESHOOTING

 ACR Programmer’s Guide 277

PROBLEM CAUSE / VERIFICATION SOLUTION

Motor current too high for no heat-sink. Lower motor current for steady state case

temperature.

Stepper motors

make audible

noise

Contamination/dry mechanics. Remove motor to confirm it is the

mechanics. Check gearhead for

contamination. Check leadscrew and square

rail bearings for lubricant. See

manufacturer’s recommendations.

Mechanical misalignment. Check load, bearings, ballscrew for

misalignment. Disconnect load from motor

to confirm if it is the mechanics.

One of the two step motor phases are not

connected.

Check motor resistance when

disconnected from drive. A phase and B

phase should have similar resistance.

Check motor connectors. Re-terminate

motor connection.

For eight-lead step motors, check that the

center taps are connected.

Replace step motor if resistance check

indicates motor short.

Motor not

moving at

correct velocity

Velocity commanded exceeds Master

velocity limit VEL LIMIT.

Axis max velocity is limiting MAXVEL.

Check the feedrate override by going into

the correct PROG level. Type FOV.

Confirm in terminal emulator at motion

program. Example: VEL LIMIT.

Confirm in terminal emulator at motion

program. Example: MAXVEL X or AXIS0

MAXVEL.

Assign the appropriate feedrate override

value. Example: FOV 1 indicates a master

feedrate of 1.

Incorrect torque

limit (servo only)

Verify Torque Limit setting by Status Panels

→ Numeric Status → Axis Parameters →

Limit Parameters → Plus/Minus Torque Limit.

Assign the appropriate Torque Limit value.

Example: TLM X1 indicates torque is limited

to 10% of drive motor capacity.

“Not valid while

in motion”

message received

Tried to enable/disable axis while motion is

commanded.

Check if axis is making coordinated motion:

Status Panels → Bit Status → Master Flags.

Each master is indicated by Bit “In Motion.”

Check if the axis is making jog motion: Status

Panels → Bit Status → Axis Flags → Primary

Axis Flags. Each axis is indicated by Bit “Jog

Active.”

Motion stops

unexpectedly

Axis has encountered soft limits. Jog off the limit. Clear the appropriate

Positive/Negative Soft Limit Encountered Bit.

Clear the associated Master Kill All Moves

TROUBLESHOOTING

278 ACR Programmer’s Guide

PROBLEM CAUSE / VERIFICATION SOLUTION

Verify: Status Panels → Bit Status → Axis

Flags → Quinary Axis Flags. Each axis is

indicated by Bit “Positive/Negative Soft

Limit Encountered.”

Request Bits. PMM → Status Panels → Motion

Status → Clear All Kills.

Axis has encountered Positive/Negative

End-of-Travel (EOT) Limits.

Check if EOT limits have been

encountered: Status Panels → Bit Status →

Axis Flags → Quinary Axis Flags. Each axis is

indicated by Bit “Positive/Negative EOT

Limit Encountered.”

Clear the appropriate Positive/Negative End-

of-Travel Limit Encountered Bit. Clear any

Master Kill All Motion Request Bit and any

Axis Kill All Motion Request Bits.

I/Os not working Positive/Negative End-of-Travel (EOT)

Limits not working.

Check the wiring of the limits, referring to

their respective hardware installation

guides.

Check if the Positive/Negative EOT Limits

are enabled: Status Panels → Bit Status →

Axis Flags → Quinary Axis Flags. Each axis is

indicated by Bit “Positive/Negative EOT

Limit Enable.”

Check that the associated inputs toggled:

If using onboard I/O: Status Panels → Bit

Status → Onboard I/O → Onboard I/O →

Inputs.

If using expansion I/O: Status Panels → Bit

Status → EtherNet/IP Scanner Flags → Node xx

Digital Inputs.

Check Configuration Wizard for inputs

assigned as EOTs.

NOTE: A triggered output will create a

contact closure, not a voltage source.

I/O not working

properly

Incorrect I/O wiring. Check wiring and external circuitry. Refer to

the Hardware Installation Guide.

Stepper motor

losing position

In vertical applications or applications

where a spring/applied force is resisting

motion, when the step motor stops, motor

current is reduced to standby current,

reducing holding torque.

In PMM → Configuration Wizard → Motor,

turn off Standby Current Reduction.

Step motor stalling. Motor does not have

torque for the load/acceleration/friction or

speed is beyond motor’s performance.

Reduce load, reduce acceleration (change

motion profile to trapezoidal), reduce

velocity, use larger motor, review motor

sizing.

Mechanical friction may be preventing

accurate positioning, though motion would

be repeatable.

If you have encoder on motor or load, turn

on Position Maintenance mode to enable end

of move correction.

 TROUBLESHOOTING

 ACR Programmer’s Guide 279

PROBLEM CAUSE / VERIFICATION SOLUTION

Stepper motor

moving at

standstill

Confirm other programs are not running

or other motion is not being commanded.

See Status Panels → Motion Status Panel. Also

see Status Panels → Servo Loop Status.

If step motor has encoder and excess

position error is set in Fault menu in

Configuration Wizard, Position

Maintenance is turned on.

Within program, at that section, consider

turning PM off or adjusting Position

Maintenance settings.

Servo motor

runs away

Analog output / encoder multiplier

mismatch.

Verify analog output by Status Panels →

Numeric Status → Object Parameters → DAC

Parameters.

Verify encoder input by Status Panels →

Numeric Status → Encoder Parameters →

Encoder Parameters → Encoder Position.

If encoder feedback is correct for

appropriate direction, change “DAC GAIN”

to the opposite value.

If encoder feedback is not correct for

appropriate direction, change “ENC MULT”

to the opposite value.

Unstable servo loop if drive is in velocity

mode.

Check the servo amplifier is in analog torque

mode.

Unstable servo loop gains. Servo gains too high. Can be issue if load has

decreased significantly. Retune with PMM →

Tools → Servo Tuner.

Motor miswiring to drive. Confirm motor and drive wiring and motor

configuration. Use servo drive alignment

procedure.

Encoder disconnected from motor.

Disable drive but have control power (for

feedback power), move motor or load and

encoder counts should be changing

incrementally as it is moved.

Replace motor with spare. Contact local

sales channel to set up a repair for the motor

or linear motor stage.

Amplifier has an analog input offset. Correct the analog offset in the amplifier.

Electrical noise. Reduce electrical noise or move the product

away from the noise source.

Improper shielding. Use shielded, twisted pair wiring for encoder

inputs, DAC/stepper outputs, and ADC

inputs.

Improper wiring. Check wiring for shorts, opens, and mis-

wired connections.

APPENDIX A: CONNECTING TO THE CONTROLLER

280 ACR Programmer’s Guide

APPENDIX A

Connecting to the Controller

 APPENDIX A: CONNECTING TO THE CONTROLLER

 ACR Programmer’s Guide 281

Connecting to the Controller

Connect one end of an Ethernet cable to the PC. Connect the other end to one of the controller’s two RJ-45

socket connectors. The two RJ-45 sockets can be used interchangeably and have the same IP address.

Turn on Control Power to the ACR/IPA.

The ACR7000 has a programmed IP address, whereas the IPA’s is set via rotary switches. The default address is

shown below. This address can be changed after initial communication is established. The PC will need to be

assigned a compatible IP address to communicate with the controller. These steps are detailed below.

Default IP Address

The factory assigns the following to each ACR7000 and IPA.

IP Address Subnet Mask (fixed)

192.168.100.01 255.255.255.0

Setting the IP Address and Subnet Mask—PC
Set the IP address and Subnet mask for your PC. These instructions are for Windows 10 users. If you have

another Windows version, the steps may vary. Please consult your Network Administrator.

1. Open the Windows Search tool (tap the Windows key).

2. Type Change Ethernet Settings.

3. Click Change Ethernet Settings.

4. Select Change adapter options.

APPENDIX A: CONNECTING TO THE CONTROLLER

282 ACR Programmer’s Guide

5. Select Ethernet. More than one Ethernet connection may be displayed. When a cable is plugged into the

controller and PC and the controller is powered on the Ethernet connection will show as “Unidentified

network”.

6. Click Properties. Administrator rights may be required.

 APPENDIX A: CONNECTING TO THE CONTROLLER

 ACR Programmer’s Guide 283

7. Select Internet Protocol Version 4 (TCP/IPv4).

8. Click Properties.

APPENDIX A: CONNECTING TO THE CONTROLLER

284 ACR Programmer’s Guide

9. Click the radio button next to Use the following IP address.

10. Enter an IP address with the same first three octets as the default ACR7000 IP address (192.168.100).

The last octet of the ACR7000 is “1” by default. Select a different number for the PC—the valid range is

1 to 254. Using 0 or 255 is not valid. In the example the IP address is set to 192.168.100.222. Set the

Subnet mask value to 255.255.255.0. Your window should look like the following:

11. Click OK. It is now safe to close these windows.

NOTE: It is good practice to isolate the ACR/IPA and related devices on their own subnet so that

their performance is not affected by high volume network traffic.

Verifying the IP Address
The following verifies that Ethernet is set up correctly.

12. In Parker Motion Manager, the IP Address field is the value for the controller.

13. On the Connect screen, click Connect.

In the Terminal Emulator, type VER. If Ethernet is set up correctly, the Terminal Emulator will report the

controller’s firmware version information.

Troubleshooting
Having problems connecting? This section covers some easy-to-execute troubleshooting options to fix common

connection problems. This is not a procedure, but rather just of list of things to check.

1. Make sure the unit is powered on with Control Power.

 APPENDIX A: CONNECTING TO THE CONTROLLER

 ACR Programmer’s Guide 285

2. Make sure the Ethernet cable is connected from the controller to the PC. The LEDs will indicate the

hardware connection:

3. If there are no lights, unplug the Ethernet cable and plug it in again. Check the lights again. If they do not

turn on, try another Ethernet cable.

4. Check that another device on the network does not have the same IP address.

5. Disconnect the Ethernet cable. Click Ping in PMM. Ping should fail. If it does not, connect the PC directly

to the controller without going through a switch. Check that the PC’s IP address is different than the

controller’s address. Try clicking Ping again and if successful, click Connect.

6. Confirm the PC does not have VPN running—close it if it is.

7. Cycle power on the controller and restart PMM. Note that Ethernet communications are available about

20 seconds after cycling power on the controller.

8. The IPA has rotary dial switches to set the IP address. If set to 99, then the IP address is set based on the

IP command. If unable to connect, change the dial switches to 1 and 0, changing the IP address back to

the default of 192.168.100.1. Update PC’s IP address per above and try connecting again. After

connection, you can check the IPA’s intended IP address using the IP command.

NOTE: ACR7000 series products do not have dial switches. If you change the IP address from the

default, we recommend labeling the controller with the new IP address on the front or

side of the unit.

Lost the ACR’s IP Address?
There are multiple ways to find the IP address of an ACR whose address has been lost. It is also possible to reset

the controller’s memory without software, useful if the address cannot be found.

Finding an ACR with the Scan Tool

This procedure is the simplest and requires no additional software beyond PMM.

1. Open PMM.

2. Make sure the PC is plugged into the ACR/IPA via Ethernet. The connection should be direct—there

should be no switch between the ACR/IPA and the PC.

3. Make sure the controller’s Ethernet lights are on.

4. In PMM, click Tools → Scan IP Address.

5. The Scan IP Address dialog will appear. It will list IP addresses available for connection from this PC.

APPENDIX A: CONNECTING TO THE CONTROLLER

286 ACR Programmer’s Guide

6. The IP address of the ACR controller is usually at or near the top. IP addresses for IPAs are highlighted

in orange, but this is not done for ACR7000 series controllers. Click Refresh to scan again or click Ok to

select that IP address for use in the project.

7. Not sure which IP address is the right one? Try turning off Wi-Fi.

Finding an ACR Using WireShark

This procedure uses WireShark, a popular third-party tool for recording network traffic that is free and open-

source. An understanding of WireShark is needed to use this procedure, so it is not recommended for novice

users.

NOTE: WireShark is a third-party tool and is not maintained or endorsed by Parker. These

instructions are provided for the convenience of users who are familiar with and prefer to

use WireShark.

1. Make sure the PC is plugged into the ACR/IPA via Ethernet. The connection should be direct—there

should be no switch between the ACR/IPA and the PC.

2. Open WireShark (may need to run as Administrator) and monitor the PC’s Ethernet port. Filter for ARP

commands.

3. Cycle power on the controller. After it powers on, it will broadcast a gratuitous ARP, which will indicate

its IP address.

4. Label the controller.

 APPENDIX A: CONNECTING TO THE CONTROLLER

 ACR Programmer’s Guide 287

Resetting the ACR74T via Hardware

This procedure is a way to recover the ACR74T in the event the IP address cannot be found. The procedure

wipes memory on the controller and is equivalent to a FLASH RES.

1. Remove power and disconnect all cables.

2. Remove cover taking electronic static discharge precautions (ESD wrist strap, foot strap and ideally a

jacket).

3. Locate JU1 jumper on the control board (board with the Ethernet port) and short the two sides together

while turning on control power. The pads can be shorted using copper tap, ground strap or a small piece

of wire (ideally stranded).

4. Connect with terminal software (such as PuTTY or Hyperterminal) to 192.168.100.1 port 5002. Type

clear -user, press Enter and cycle power. This erases the controller’s programs and non-volatile

settings back to factory default. The IP address will be reset to default (192.168.100.1). Re-connect with

PMM and re-download the project.

5. Use the IP command and ESAVE to change the IP address. Cycle power for the new address to take

effect. Change the PC’s IP address if the first three octets have changed.

6. Label the controller.

APPENDIX B: ETHERNET BASICS

288 ACR Programmer’s Guide

APPENDIX B

Ethernet Basics

 APPENDIX B: ETHERNET BASICS

 ACR Programmer’s Guide 289

Ethernet Basics

The appendix contains supplemental materials not directly related to any specific ACR series controller discussion.

IP Addresses, Subnets and Subnet Masks
The factory assigns an IP address of 192.168.100.1 and a subnet mask of 255.255.255.0 to each controller. Before

adding the controller to your network, assign it an IP address and subnet mask appropriate for your network.

Caution—Talk with your Network Administrators before assigning an IP address or subnet

mask to a controller. They can provide you with an available IP address, as well as which

subnet mask is appropriate for your particular network configuration.

Isolate the controller and related devices on their own subnet. The high-volume traffic on

networks could affect the ACR controller's performance. A closed network restricts the flow

of traffic to only the controller and related devices.

The IP address and subnet mask you assign each controller determines the subnet to which the controller belongs.

To manage the flow of data across a network, it can be divided into subnets, smaller networks within a network,

to provide more efficient delivery of data.

IP Addresses
An IP address is an identifier for a device on a TCP/IP network. Every device connected to the Internet must use a

unique IP Address.

The IP address is comprised of a 32-bit binary address that is subdivided into four 8-bit segments known as octets.

Because people do not generally think in binary, the address is expressed in dotted decimal format. Each binary

octet is converted to a decimal number ranging from 0 to 255, with each octet separated by a decimal point. For

example, an IP address in dotted decimal format looks like the following:

192.168.100.120

The address consists of a network ID and a host ID. The network ID acts as a general address, like a zip code.

The host ID is the address for a specific device within the network, like a home address. Most IP addresses fall

into one of the following address classes:

• Class A range. The first 8 bits are for the network ID; The remaining 24 bits are for the host ID.

• Class B range. The first 16 bits are for the network ID; The remaining 16 bits are for the host ID.

• Class C range. The first 24 bits are for the network ID; The remaining 8 bits are for the host ID.

The number of bits used for the network ID determine how many hosts a given address can support. Class A

networks provide a small number of network IDs but a very large number of host IDs and class C networks

provide a huge number of network IDs but a small number of host IDs.

APPENDIX B: ETHERNET BASICS

290 ACR Programmer’s Guide

Before a computer or router can send data, it has to identify the network ID through the address class. Each class

is assigned a range of numbers.

Address

Class

First octet in

dotted decimal

format begins

with

Excluded from Internet, allowed

for Intranet

A 0 to 127 10.0.0.0 to 10.255.255.255

127.0.0.0 to 127.255.255.255

B 128 to 191 172.16.0.0 to 172.31.255.255

C 192 to 223 192.168.0.0 to 192.168.255.255

Certain IP addresses have particular meanings and are not assigned to host devices:

• Using zeroes as a host ID signifies the entire network. For example, the IP address of 192.168.0.0

indicates network 192.168 where specific hosts can be found.

• Using 255 in an octet indicates a broadcast, where data is sent to all host devices on a network. For

example, the IP Address 192.168.255.255 will broadcast data to all host devices in that network.

Suppose you have 6 computers in a class C network. All share the same network address 192.168.10 in the first

three octets. The final octet for each computer is different, and represents the host ID.

Some addresses are reserved for private networks or intranets, where networks are masked or protected from

the Internet:

• 10.0.0.0 to 10.255.255.255

• 172.16.0.0 to 172.31.255.255

• 192.168.0.0 to 192.168.255.255

For additional information on private IP addresses, refer to IEEE specification RFC 1918 Address Allocation for

Private Internets. You can view it at http://www.faqs.org/rfcs/rfc1918.html.

http://www.faqs.org/rfcs/rfc1918.html

 APPENDIX B: ETHERNET BASICS

 ACR Programmer’s Guide 291

Subnets
As networks increase in size, it becomes more complex to deliver information. Subnets provide a logical way to

break apart network addresses into smaller, more manageable groups. There are additional benefits including

more efficient communications between devices and increases to the overall network capacity.

Subnet IDs
When sending data from one host to another, routers use the network ID (see above) in the IP address to locate

the network. On finding the network, the network is searched for the specific host. With a great deal of network

traffic this proves cumbersome. Under these circumstances, an IP address does not provide enough information

for routers and host devices to efficiently locate a host device.

To provide another level of addressing, some of the host ID is borrowed to create a subnet ID. The subnet ID

allows you to logically group devices together (often related to a specific network segment). Once data arrives at

the network, the subnet ID allows routers or host devices to locate the appropriate network segment and then

the host.

Suppose you have a class C network, comprised of 6 computers. All share the same network ID 192.168 but are

divided into two subnets. Three computers use 192.168.10, where 10 is the subnet ID; the remaining three use

192.168.5, where 5 is the subnet ID.

Subnet Masks
A subnet mask determines how many bits after the network ID are used for the subnet ID. As the subnet ID

increases, the number of host IDs available for that network decrease. Similarly, a smaller subnet ID allows you to

increase the number of hosts on the network. For simplicity, this discussion only looks at complete octets in

dotted decimal format and does not explore converting partial masks from binary to decimal.

APPENDIX B: ETHERNET BASICS

292 ACR Programmer’s Guide

What subnet mask to use depends on your network configuration and address class. Where the host ID appears

in the IP address, use a zero in the subnet mask. And where the network ID and subnet ID appear, use 255 in the

subnet mask. Suppose on network 172.20.0.0 (class B) you have to set up a new computer. You assign it

172.20.44.180 as the IP address. As a class B network, the first two octets are reserved for the network ID. The

third octet is reserved for the subnet ID and the last octet is for the host ID. So, using the subnet mask

255.255.255.0 identifies the final octet as the host ID.

 APPENDIX C: SERVO PID TUNING

 ACR Programmer’s Guide 293

APPENDIX C

Servo PID Tuning

APPENDIX C: SERVO PID TUNING

294 ACR Programmer’s Guide

Servo PID Tuning

PMM’s Servo Tuner helps you tune each analog torque servo drive to determine the gains for your application.

This can be done after the Configuration Wizard has been completed and downloaded.

For an introduction to PMM’s Servo Tuner, click here.

Purpose of Tuning
The tuning process determines the PID gains (see explanations below) that provide optimum servo performance

for your electromechanical system (servo motor with attached load). The gains can be adjusted in the Servo

Tuner under Tools in the Explorer. The Servo Tuner graphs motor performance and the gains can then be saved

to memory and optionally the project. Different machines may have different gains based on friction, component

rigidity/compliance and part-to-part variations.

The tuning gains should be adjusted with a move that is significant enough to excite the mechanical load. A slow,

low-speed move cannot excite the mechanical resonances of the load and tuning to such can lead to an unstable

system during higher-speed moves.

After tuning, test a move typical for the machine requirements to confirm system performance and further adjust

gains if necessary.

Test Simple Motion First
This first procedure is important to verify that the system is functional and stable.

1. In PMM's Servo Tuner, select the axis to tune.

2. Click Enable Drive. The motor should energize and be stable at standstill.

3. Click Move Settings and change if necessary. Start with a 1 revolution move in 1 second to confirm that

the motor starts and stops okay. Distances will be in user units (mm, inches, revs, etc.), so translate 1

motor revolution to those units. Leave S-Curve at 25% and Profile Definition as Trapezoidal.

4. For linear systems, users can check the Return Move box. Set Dwell Before Return to 1 second.

5. Click Single Run to do the move once.

6. Click Sampling and change the selection to Onboard Sampling to allow Repeat Run to work. The Repeat

Run button runs the move repetitively, uploading and graphing motor performance after each move.

Basic Tuning Process
This procedure is for developing a set of gains that will allow the machine to run at optimum performance.

1. Increase the Excess Position Error setting to 4 revolutions. This can be done in the Configuration Wizard

and then downloaded to controller but will be in user units. This can be changed back after tuning.

2. Change the move's Profile Definition to Trapezoidal with a distance of 1 revolution in 0.10 seconds with S-

Curve set to None.

3. Change Channel 3 from Actual Velocity to Actual Position for the specific axis being tuned.

 APPENDIX C: SERVO PID TUNING

 ACR Programmer’s Guide 295

4. Adjust the Proportional and Derivative gains per the diagram below, monitoring the Following Error.

NOTE: Be ready to disable or power down the system in event of uncontrolled motion.

Torque Limit can be used to limit the DAC output to the servo. The default is 10, which is the full ±10 VDC output

range for the servo output to the drive. The drive’s torque scaling per volt determines the current command and

torque output to which this translates.

In most cases, just the Proportional Gain and Derivative Gain can be iteratively adjusted until overshoot and

oscillatory responses at the end of the move are small and following error is minimal (first-order response). While

doing this, keep looking at the Following Error after the Secondary Setpoint has stopped moving. Following error

during motion is normal but most servo systems only need to settle into the final position quickly.

Save to Controller—After axis has been tuned, click Save to Controller. This stores axis tuning gains to non-volatile

memory.

Save to Project—This allows you to save the tuning gains as part of the project. This can be handy for creating a

backup copy of the project for the machine.

However, if users have multiple machines, different machines’ mechanics will vary; even if the machine and parts

are the same, alignments will be slightly different, seal/wiper friction will be slightly different, the load may be

slightly different, etc. Depending upon the application needs, you may want to re-tune each system starting from

the default values instead of a previous machine’s tuning gains. In this case you would not save the gains to the

project. This situation is uncommon.

You can use File → Save As to create a backup for this specific machine with the final tuning gains, leaving the initial

project at the default tuning gains.

For multi-axis systems, you can select a different axis to tune using the Axis pull-down and repeating the

procedure.

APPENDIX C: SERVO PID TUNING

296 ACR Programmer’s Guide

 APPENDIX C: SERVO PID TUNING

 ACR Programmer’s Guide 297

Explanation of Tuning Gains

Proportional Gain (PGAIN)

This command modifies the value used in the PID algorithm to control proportional gain. The default gain is

0.0024414 (10 volts at 4096 pulses) for all axes. Units are volt/pulse.

Derivative Gain (DGAIN)

This command modifies the value used in the PID algorithm to control derivative gain. The default gain is 0.0001

for all axes.

Integral Gain (IGAIN)

This command modifies the value used in the PID algorithm to control integral gain. Increase the integral gain to

counter any steady-state error after the commanded move is complete. The default gain is 0.0 for all axes. Units

are volts/second/pulse.

NOTE: If ILIMIT is zero the integral will remain off, even if the IGAIN value is set to something

other than zero.

Integral Limit (ILIMIT)

This command modifies the value used by the PID filter to limit the amount of integral term allowed to build up in

the loop. The default gain is 0.0 for all axes. Units are volts/second/pulse.

Integral Delay (IDELAY)

This command modifies the value used in the PID algorithm to control integral delay. The integral delay

determines the amount of time, after a move ends, before integration begins. If the value is set to zero, integration

is active all the time, even during moves. The default gain is 0.0 for all axes. Units are milliseconds.

Torque Limit (TLM)

This is the controller’s analog max output in volts (max is 10 volts = 100%). Users can use this to limit motor

torque—1 volt would be a 10% limit. This would be a limit to the servo amplifier in torque mode. The amplifier

setting sets the motor current scaling for 10 volt input to the drive and can be used to correlate the motor torque

to DAC output voltage.

The IPA uses the standard ACR tuning gains (PGAIN, DGAIN, etc.), however with the IPA the feedback resolution

is normalized to 8000 counts per revolution. With other the ACR controllers the gains are feedback resolution-

dependent.

Thus, the IPAs gains will be similar for standard and high-resolution servos. An ACR’s gains will be linearly lower

for higher resolution servos.

Tips and Tricks
Auto Scale is on by default for vertical scaling in PMM. Note the following error values as you are tuning; the

graph may appear larger but that may just be the Auto Scale adjusting based on the data spread.

The position values and following error are in encoder counts.

APPENDIX C: SERVO PID TUNING

298 ACR Programmer’s Guide

Can’t reach speed?

It could be a lack of torque from the motor. Try slowing down acceleration ramp.

Your power supply could be pulling down if it does not have the capacitance or is undersized for the current

needed. Monitor the Bus Voltage parameter for the ACR7xV or the voltage of the servo drive for ACR7xC.

Check that you are not approaching the max speed of the motor. Check the motor speed-torque rating for the

voltage at which it is powered.

Move Settings will automatically calculate based on the distance. If the distance is too short with low

acceleration/deceleration, the maximum velocity may not be reached. Increase the distance or the accel/decel.

Can’t accelerate?

Check the DAC output. If this is 10 volts, check that the amplifier's voltage scaling is correct. If it is, you may

need to:

• Get a larger motor.

• Decrease the system load.

• Decrease friction.

• Lower the acceleration/deceleration for the moves.

Derivative Smoothing

Take away humming noise from the servo motor due to DGAIN. The smoothing parameter is P12402 for Axis 0.

Axis parameter “DGAIN Smooth” is used to subdue the humming noise in the torque loop due to DGAIN. The

default value is 0, which means no smoothing is applied. The user may typically change this value from 0 to 5. The

DGAIN command must be used after changing this parameter to make this change effective.

Example

REM The DGAIN term will be averaged over 4 samples.

P12402 = 4 : REM Turn on smoothing.

DGAIN X0.0001

Advanced Tuning Gains
See PMM online help or Command Reference for further details.

FF Velocity (FFVEL)

This sets the velocity feedforward for an axis. Used to correct for velocity error while moving.

FF Acceleration (FFACC)

This sets the acceleration feedforward gain for an axis. Used to correct for acceleration error while accelerating

or decelerating.

Derivative Width (DWIDTH)

Sets the control derivative sampling rate. Default width is 0. Determines how often following error is sampled

when calculating derivative term. At 0, sampling occurs at servo interrupt rate (PERIOD). For legacy systems

only. For modern servo motors, this should be left at 0.0.

 APPENDIX C: SERVO PID TUNING

 ACR Programmer’s Guide 299

Feedback Velocity (FBVEL)

Sets the velocity feedback gain to amplify the rate of change of feedback. Only for analog feedback systems or

dual-feedback loop systems (motor feedback for velocity and load-mounted encoder for position). For standard

servo drives, this should be left at 0.0.

Lowpass Filter (LOPASS)

This command initializes the output filter as a lowpass filter, reducing high-frequency noise that may occur in a

system. Setting the cutoff frequency to zero turns off the lowpass filter.

Notch Filter (NOTCH)

This command sets up the first half of the output filter to act as a notch filter, reducing mechanical resonance that

may occur in a system. Setting the center frequency to zero turns off the notch filter.

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

300 ACR Programmer’s Guide

APPENDIX D

PMM Improvements Over ACR-View

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 301

PMM Improvements Over ACR-View

The ACR7000 family is supported by a new software tool, Parker Motion Manager (PMM). Parker Motion

Manager combines the best of ACR-View and years of user feedback in a modern, user-friendly and scalable

software development environment. PMM is newly built and independent from ACR-View, allowing both software

tools to be installed on the same PC if needed.

New features include:

• Streamlined Configuration Wizard

• Product-specific status panels

• Improved Terminal Emulator

• Reimagined scope tools

• Projects now stored as single files for easy sharing and archiving

For ACR programmers new to Parker Motion Manager (PMM), many improvements have been implemented. The

layout is similar in terms of having a connection panel, Configuration Wizard, program editor and status panels.

This summary is a brief synopsis of the major differences between the two development packages.

Parker Motion Manager supports all ACR7000 controllers plus the IPA single-axis drive/controller. It does not

support the ACR9000, ACR9600 or any prior generation ACR.

Improvement 1—Both use ComACRServer6, which is installed with PMM or ACR-View 6. If users have

developed PC interfaces to the ACR9000 or IPA, these will work the same with the ACR7000.

Improvement 2—When starting PMM, users will immediately note the File → Recent Projects menu option

allowing users to quickly jump in and get working. These are both on the optional Start Page and under the File

menu. The default number of recent projects is nine files, but this can be changed under Tools → Options.

By default, PMM will reopen the last project worked on. This can be changed in the Options menu:

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

302 ACR Programmer’s Guide

As comparison, ACR-View had a scroll list of projects but they were not sorted by last used. The image below

shows PMM on the left and ACR-View on the right.

Improvement 3—Uploading from an existing controller is now easier from the New Project window (File →

New Project).

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 303

With ACR-View, users would have to create a new project, select the controller and then upload.

Improvement 4—With Parker Motion Manager, projects are now stored as a single file (.pprj), making it easier

to transfer and share (below, left). In ACR-View, projects were a folder with separate files for the .8k programs,

configuration, etc. (below right) that had to be zipped to be shared.

Improvement 5—In Parker Motion manager, System Code is generated every time on Finish or before

downloading. System Code is not stored within the project. This prevents changes in the Configuration Wizard

from failing to update System Code.

In ACR-View, it was generated as users moved through the Configuration Wizard, which caused issues if users

reopened the project and jumped around in the different sections to edit/tune/adjust settings.

Improvement 6—Terminal Emulator changes:

A. Users can now arrow up and arrow down rather than retype commands. This much-loved feature of

power coders (from DOS PCs of yester-year) is now available!

B. Dedicated buttons include LIST (list program), LIST LINE NUMBERS and Clear Display. There is also a pull-

down to select which program prompt you want to receive commands.

C. Expanded buttons on the right for common commands (5 groups of 12 user buttons).

D. Expanded User Buttons with multiple lines.

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

304 ACR Programmer’s Guide

E. The fourth and fifth groups of buttons have been pre-populated with common commands. Power users

have full edit access and can re-use these groups, but these predefined buttons help new users.

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 305

Improvement 7—The Defines editor is now in table format, making it easier for programmers to put in a

description and name for bits, parameters and constants.

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

306 ACR Programmer’s Guide

Improvement 8—Defines can be created directly from the Numeric Status panels by right-clicking.

Improvement 9—PMM Windows can be docked, pinned or resized. They can also be popped out and placed

anywhere on the screen, very useful for users with two monitors. This is a feature of PMM’s new user interface

engine.

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 307

Improvement 10—The Configuration Wizard now includes Parker mechanics (actuators, precision tables and

gearheads) for inches or millimeters. This saves the user from having to look up the stage and/or gearhead

specifications in the catalog when configuring the unit scale.

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

308 ACR Programmer’s Guide

Improvement 11—Same motor on multiple axis? Quickly populate the Configuration using Axis Copy (right-click

on Axis).

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 309

Improvement 12—Testing code and want to remove a section of code (comment out multiple lines)? Rather

than typing REM or ' at the beginning of each line, select the lines and use the Toolbar icon highlighted below.

Improvement 13—In ACR-View, when doing a Find (CTRL+F), the first instance was found and then the focus

was set on the program editor. So, when users pressed Enter, ACR-View would remove that text, inserting a

carriage return and linefeed in its place.

In PMM, the focus remains on the Find Next window. So now when pressing Enter, it will move to the next

instance, allowing users to quickly move through the code instead of clicking with the mouse. Not a big change, but

a nice change for power users and heavy programmers.

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

310 ACR Programmer’s Guide

Improvement 14—Improved Servo Tuning screen and graphing!

Channel defaults are set for standard motion tuning. Auto-Scaling is turned on, so no more hunting for the signal.

Note the Servo Tuner is a separate tool like in ACR-View, but there is not the simple step-tuning in the

Configuration Wizard which was limited with high-resolution encoder systems. This was removed because tuning

is best performed after configuration is complete.

Easy motion! Set the distance, time and move shape with optional S-curving and motion is generated

automatically.

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 311

What is the value of each channel at a given point in time? Just mouse over! No need to export to Excel (though

that is still available with the Export Data button).

Improvement 15—PMM File Transfer provides status information during download. It will also highlight

download errors.

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

312 ACR Programmer’s Guide

Improvement 16—Product-specific status panels.

Improvement 17—Oscilloscope now has Flag Parameters available to graph. ACR-View had this function with a

work-around, but now users can easily select Flag Parameters to visually graph these changes compared to other

bits/parameters in their programs.

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 313

Improvement 18—Four Watch windows now available. Each Watch list can hold 20 lines of bits or parameters.

No more switching between the Numeric and Bit Status panels!

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

314 ACR Programmer’s Guide

To populate the Watch lists, right-click on indicators within the Motion Status Panel.

Or, from the Numeric Status Panel, Bit Status Panel or Defines editor, just right-click.

 APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

 ACR Programmer’s Guide 315

Improvement 19—User Parameters and User Bits are now in the Numeric and Bit Status panels! This includes

user parameters P0-P4095, user non-volatile parameters (P39168-P39423) and non-volatile longs (P38912-P39167).

Improvement 20—The positive direction on an axis is now easily changed with a check box in the Configuration

Wizard.

Improvement 21—Save to Flash in ACR-View was 30-60 seconds. This has been greatly improved with PMM.

Improvement 22—New ease of use feature: zoom in the Program editor. Hold the CTRL key and use the

mouse scroll wheel to zoom in and out.

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

316 ACR Programmer’s Guide

Improvement 23—By default, PMM is set for 100 Defines, allowing users to name their bits/parameters. The

default for ACR-View was 20.

Improvement 24—All programs have memory allocated by default, whereas in ACR-View, only Program 0 and

Program 15 had memory allocated by default.

Improvement 25—Program 14 has been set for use with the oscilloscopes to prevent conflict with the user’s

arrays in their programs.

Improvement 26—Scope tools (Servo Tuner, Oscilloscope, etc.) can graph individual bits when configured to

graph flag parameters.

Improvement 27—Scope tools (Servo Tuner, Oscilloscope, etc.) can now graph position and speed data in user

units instead of encoder counts (at the user’s option).

 APPENDIX E: ACR7XC/ACR9000 COMPARISON

 ACR Programmer’s Guide 317

APPENDIX E

ACR7xC/ACR9000 Comparison

APPENDIX E: ACR7XC/ACR9000 COMPARISON

318 ACR Programmer’s Guide

ACR7xC/ACR9000 Comparison

This section covers similarities and differences between the ACR7xC controller and the ACR9000. The 7000

series controller is designed as a direct replacement for the ACR9000, supporting up to 8 servo and stepper axes

in any combination.

The default IP address of all ACR7000 controllers is 192.168.100.1. The default for the ACR9000 was

192.168.10.40.

The ACR9000's Ethernet port did not auto-detect straight-through/crossover cables. The ACR7000 auto-detects

straight-through or crossover ethernet cables. Both products support 10/100 Mbps.

The ACR7xC has the same axis connector pinout and discrete I/O pinout as the ACR9000.

The 7000 controller has two Ethernet ports available for use. The ports are configured as an unmanaged switch

and have the same IP address. The ACR9000 had one ethernet port.

Like the ACR7xT and IPA, the ACR7xC can be an EtherNet/IP master to a Wago 750-363 EtherNet/IP bus

coupler for expansion IO (or Wago's previous 750-352 or 750-341 bus coupler modules).

The ACR7xC can also be a slave on an EtherNet/IP network for an Allen Bradley or Omron PLC. This can be

done at same time as being an EtherNet/IP master to a Wago 750 (although this is discouraged).

There is no serial or USB port, but there are five Ethernet streams available. The ACR9000 supported 4.

No battery! The ACR7000 is entirely flash-based. Using retentive variables such as P38912-P39167 (32-bit longs)

or P39168-P39423 (32-bit floats)? No worries! The ACR7000 saves these in the background to behave the same

as a battery-backed ACR9000 (9000PxUxBx), with the benefit of not having to periodically replace a battery or

modify the program when upgrading.

No IEC support. Most users using the 9600 were using the AcroBASIC programs and not IEC, which was not

expanded to work on Windows 10 anyway.

Powered from 24 VDC. The ACR9000 was powered from 120 VAC or 240 VAC.

The same AcroBASIC programming that has worked for 15+ years with the ACR9000 will work with the 7000.

Same ComACRServer: any PC applications (VB, LabVIEW, .NET, etc.) that a machine builder developed work the

same with the 7000 as the 9000.

The 7000 controller has one 15-pin high density D-sub auxiliary encoder input that can only be used with

incremental quadrature encoders. The ACR9000 had one (2/4-axis models) or two (6/8-axis models) 9-pin D-sub

auxiliary encoder ports that supported incremental and SSI encoders.

The same axis I/O cables can be used, allowing users to easily upgrade systems. The same cables to connect to

Parker drives all work with the 7000 series controller: P series, Aries, Compax3, Gemini Servo and Stepper, Zeta,

E-AC, etc. The 7000 controller supports SSI feedback on its axis connectors just like the 9000.

Much smaller. A four-axis 9000P3U4B0 and a four-axis ACR74C-A0V2C1 are shown below.

 APPENDIX E: ACR7XC/ACR9000 COMPARISON

 ACR Programmer’s Guide 319

New and improved software, Parker Motion Manager, supports the ACR7000 series controller, integrated stepper

controller and integrated servo controllers. Anyone familiar with ACR-View will be able to pick it up very quickly

since it has a similar look and feel, but we have taken out what is not needed and made drastic improvements to

the usability.

The ACR7xC does not have RS485 on the axis connectors and thus do not support Drive Talk and those related

commands (DTALK).

The ACR7000 does not have EthernetPOWERLINK and those related commands are not supported (EPLC).

More form factors are available beyond just the ACR7xC. The ACR7000 integrated stepper (ACR7xT) and

ACR7000 integrated servo (ACR7xV) are available for new applications with a multi-axis controller and multiple

motor drives within a single package, saving space and cabling.

APPENDIX F: ACR7XV/IPA DIFFERENCES

320 ACR Programmer’s Guide

APPENDIX F

ACR7xV/IPA Differences

 APPENDIX F: ACR7XV/IPA DIFFERENCES

 ACR Programmer’s Guide 321

ACR7xV/IPA Differences

The 7000 series integrated drive/controller products share aspects of the 9000 multi-axis controller and the IPA

integrated servo drive/controller. All the 9000 commands, parameters, and flags that are used to control

programs, masters and axes are present on the 7000 series. These include the position loop servo gain command

and parameters specifically. There are also parameters and flags used for servo drive or stepper drive

configuration and status reporting. Those for the servo drive are analogous to the “C” and “S” parameters of the

IPA in terms of function but are consistent with the ACR parameter and flag model rather than the legacy Aries

parameters and commands. Also, these values may be saved with the ESAVE command and will automatically be

restored on power up, but they are not automatically saved like the Aries-style parameters of the IPA.

The motor parameters can be viewed in both the Numeric Status Panel and under Configuration Wizard →

Drive/Motor → Show Advanced Motor Parameters.

APPENDIX G: 6K TO ACR COMMAND REFERENCE

322 ACR Programmer’s Guide

APPENDIX G

6K to ACR Command Reference

 APPENDIX G: 6K TO ACR COMMAND REFERENCE

 ACR Programmer’s Guide 323

6K to ACR Command Reference

This section covers common 6K commands and their closest ACR equivalents where applicable. The ACR uses a

different architecture than the ACR, so this table should be taken as suggestion only.

NOTE: "P" parameters and flags will show the parameter/flag number for the first axis or master.

Others can be found in PMM help file.

Most 6K programs only run one at a time. ACR programs can all be running at the same time. So, most 6K

programs would be rewritten in ACR as subroutines with labels, unless the 6K is using multitasking.

6K to ACR Command Crossover Table

6K Command ACR Command Shorthand ACR Command Notes

Scaling Setup

SCLA, SCLV, SCLD PPU Requires RES after changing PPU.

Part of Configuration Wizard.

SCLMAS GEAR PPU

Limits

LH3,1

HLIM X3 Y1

LS2,3 SLIM X2 Y3

LSNEG -1: LSPOS +1 SLM X1 Could also set differently using SLM

X(-10,25). Axis 0 bits shown. SET

and CLR bits as appropriate

(Positive EOT bit shown is for Axis

0).

LIMLVL000 SET 16144 : SET 16145 :

CLR16146

INFNC0-R, INFNC1-S,

INFNC2-T

HLBIT X0 or HLBIT

X(1,0,2)

 HLBIT X0: Negative and home

automatically assigned as next

contiguous inputs (1 and 2). Set

within Configuration Wizard on

Fault Screen.

LHAD100,200 HLDEC X100 Y200

TLIM ?BIT16132

?BIT16133

?BIT 16130

APPENDIX G: 6K TO ACR COMMAND REFERENCE

324 ACR Programmer’s Guide

6K Command ACR Command Shorthand ACR Command Notes

Homing

HOMZ

MSEEK

Home to a Z-channel (mode 0).

HOM0, HOM1 JOG HOME X1, JOG

HOME X-1, MSEEK

 Home to a trigger input (mode 2).

HOMVF HOMA JOG HOMVF, JOG ACC

HOMAA/HOMADA

HOMAD

JOG JRK, JOG DEC

HOMBAC1, HOMDF1,

HOMEDG1

SET16152, SET16154,

SET16153

 Home Backup Enable bit must be on

(BIT 16152).

PSET RES REN Use to reset or preset the position

counters for an axis. Zeroes the

Current Position (MOV) register

and adds parameter.

See also: JOG RES, GEAR RES,

CAM RES JOG REN.

Non-Interpolated Motion

Incremental Motion

D+4:MC0:MA0:GO1 JOG INC X4 See Also: JOG ACC, JOG DEC,

JOG VEL
D+4, -3 : MC00 : MA00 :

GO11

JOG INC X4 Y-3

Absolute Motion

D : MC0 : MA1 : GO1 JOG ABS X4 Move to the Jog Offset register's

absolute position.

Continuous Motion

D+ : MC1 : GO1 JOG FWD X SET 796 Flags shown for Axis 0.

D- : MC1 : GO1

S1

JOG REV X

JOG OFF X

SET 797

CLR 796 : CLR

797

Non-Interpolate Motion Trajectory

A JOG ACC Scaled by PPU to user units/second2.

 APPENDIX G: 6K TO ACR COMMAND REFERENCE

 ACR Programmer’s Guide 325

6K Command ACR Command Shorthand ACR Command Notes

AD JOG DEC Scaled by PPU to user units/second2.

Scaled by PPU to user units/second

Scaled by PPU to user

units/second^3. Pure S-Curve

V JOG VEL Scaled by PPU to user units/second.

AA/ADA JOG JRK Scaled by PPU to user units/second3.

Interpolated Motion

S SET BIT 523 SET 523 Flags shown for Master 0. Uses

DEC setting.

K SET BIT 522 SET 522 Uses the HLDEC deceleration

ramp.

!K CTRL+X or CTRL+Z CTRL+X kill all motion for all

programs. CTRL+Z kills motion

and disables all drives.

KDRIVE SET BIT 8471 SET 8471 BITS 8471, 8503, 8535, 8567, 8599,

8631, 8663, 869.

Linear Interpolated Motion

D 2, 3 : MC00 : MA11 :

GOL11

MOV X2 Y3 X2 Y3 Absolute moves.

D 7, 8 : MC00 : MA00 :

GOL11

MOV X/7 Y/8 X/7 Y/8 Incremental moves.

D 4, 5 : MC00 : MA10 :

GOL11

MOV X4 Y/5 X4 Y/5 Mixed moves.

Circular 2D Interpolated

PARCOM

PARCOP

PARCOM/PARCOP

PARCM

PARCP

CIRCCW

CIRCW

SINE

No equivalent

No equivalent

 Counter-clockwise.

Clockwise.

Circular 3D Interpolated

APPENDIX G: 6K TO ACR COMMAND REFERENCE

326 ACR Programmer’s Guide

6K Command ACR Command Shorthand ACR Command Notes

No equivalent TARC Axes must have same PPU.

Interpolated Motion Trajectory

PA ACC Scaled by PPU to user units/second2

PAD DEC/STP Scaled by PPU to user units/second2

PV VEL Scaled by PPU to user units/second

PAA/PADA JRK Scaled by PPU to user units/second3.

Pure S-curve is ACC**2/VEL.

See also: IVEL, FVEL, F

PAXES TANG

Interpolated Motion Trajectory

FOLEN GEAR ON/OFF LOCK can be used for gantry axes.

FOLMAS GEAR SRC Can gear to any encoder or

parameter.

FOLRN

FOLRD

GEAR RATIO GEAR RATIO sign determines

direction.

Use ratio rather than decimal

number, ex. "(1/10)". GEAR RATIO

is a 64-bit floating point value.

FOLMD GEAR ACC/DEC GEAR ACC/DEC is change in ratio

over time.

SCLMAS GEAR PPU

FMCLEN No direct equivalent.

Use MOD.

NMCY No direct equivalent. Can use simple division algorithm

and use whole number.

Tuning

All ACR gains are in volts. 6K gains are in volts, millivolts or microvolts.

SGP (mV) PGAIN PGAIN = SGP/1000

SGV (uV) DGAIN DGAIN = SGV/1e6

 APPENDIX G: 6K TO ACR COMMAND REFERENCE

 ACR Programmer’s Guide 327

6K Command ACR Command Shorthand ACR Command Notes

SGI (mV) IGAIN IGAIN = SGI/1000

SGILIM (mV) ILIMIT ILIMIT = SGILIM/1000

SGVF (uV) FFVEL FFVEL = SGVF/1e6

SGAF (uV) FFACC FFACC = SGAF/1e6

DACLIM (V) TLM TLM = DACLIM

TDAC PRINT P6400 ?P6400 ?Pnnnn prints the value in

parameter nnnn.

DAC P6400

Communications

NTADDR192,168,10,30 IP "192.168.100.1" Defaults shown. Requires ESAVE

and REBOOT to take effect
NTMASK255,255,255,0 IP MASK "255.255.255.0"

Variables

VARB1 User Flag Parameters Bits 128-255 (P4100-4104) and bits

1920-2047 (P4156-4159) are user

bits.

VARI1 LV0 Must dimension local variables first.

Example: DIM SV(10).

Variables start at "0" for ACR

controllers.

VARS1 $V0 Must dimension number and length

of string variables.

VAR1-255 SV0 or DV0 SV are 32-bit floating point local

variables. DV are 64-bit floats. LV

are 32-bit LONG integers.

VAR1-255 P0-P4095 P0-P4095 are 64-bit global floating

point user variables (already default

in Config Wizard).

Position Counters

1TPC ?P12295 Secondary Setpoint in raw counts.

It is the sum of interpolated

command, jog, gear, cam (Primary

APPENDIX G: 6K TO ACR COMMAND REFERENCE

328 ACR Programmer’s Guide

6K Command ACR Command Shorthand ACR Command Notes

Setpoint) with Backlash and

Ballscrew Compensation.

1TPE ?P12290 Actual Position in raw counts.

Depends upon ENC SRC Following

Error in raw counts.

1TPER ?P12291 Hardware Position capture in raw

counts.

See also: INTCAP, HSINT, GEAR

ON/OFF TRG.

!TPCE ?P12292

ENCPOL1 ENC0 MULT -4 Valid values are "4" and "-4" for

ACR/IPA.

SMPER 0.25,0.33 EXC X0.25 Y0.33 EXC X0 does not disable excess

error checking.

SMPER0 CLR 8469 Disables error checking.

Program

BREAK END Used to terminate program.

COMMENT (;) REM Comment is stored.

 Apostrophe (') Comment is stripped. MUST be on

its own line.

DEL NEW Automatically performed by PMM,

not needed in

DEF PROGRAM Starts program definition

END ENDP Used to terminate program

definition.

GOTO program GOTO label You cannot GOSUB or GOTO to

another program; use label in the

same ACR program instead. GOSUB program GOSUB label

Drive Control

DRIVE0 DRIVE OFF X CLR 8465 AXIS0 DRIVE OFF

DRIVE1 DRIVE ON X SET 8465 AXIS0 DRIVE ON

No Equivalent DRIVE RES X Axis LED: Green = Enabled, Red =

Disabled or Faulted

 APPENDIX G: 6K TO ACR COMMAND REFERENCE

 ACR Programmer’s Guide 329

6K Command ACR Command Shorthand ACR Command Notes

AXIS0 DRIVE RES: toggles axis'

reset output.

IO Control

OUT1 SET BIT 32 SET32 or

BIT32 = 1

Could also use P4097 = P4097 OR

1

OUT0 CLR BIT 32 CLR32 or

BIT32 = 0

Could also use P4097 = P4097

AND 2**31

OUTXXX1 SET BIT 35 SET 35 or

BIT35 = 1

Bit0 - 31 are inputs. Discrete

outputs start at bit32

OUTXXX0 CLR 35 CLR 35 or

BIT35 = 0

TIN ?P4096 Response is a decimal

representation of binary bits

TIN.1 ?BIT0 Reports back a 0 (zero) for inactive,

-1 for active input

1TIN ?P4104 Response is a decimal

representation of binary bits

TOUT ?P4097 Response is a decimal

representation of binary bits

1TOUT ?P4105 Response is a decimal

representation of binary bits

TOUT.1 ?BIT32 Reports back a 0 (zero) for inactive,

-1 for active output

Other

SSFR PERIOD ACR7000 and IPA much faster than

6K / Gem6K.

BAUD No serial

communication.

TREV VER Also can use P7042 and P7043 to

retrieve VER and U.

TCOM HELP Shows a list of reserved words that

should not be used as aliases.

APPENDIX G: 6K TO ACR COMMAND REFERENCE

330 ACR Programmer’s Guide

6K Command ACR Command Shorthand ACR Command Notes

ENCSND0 ENC0 SRC0 Quadrature encoder mode.

ENCSND1 ENC0 SRC1 Step and direction mode.

CMDDIR BIT8455 Could also use ENC MULT and

DAC GAIN together (required for

ACR7xC). Already part of Config

Wizard.

EPM PM See Position Maintenance.

ANI P6408 ADC inputs.

ANO P6400 DAC outputs.

AS, ASX P4120, 4168, 4296, 4360,

4600

 There are five groups of axis flags in

the ACR.

 APPENDIX H: ACR7000 BITS AND PARAMETERS

 ACR Programmer’s Guide 331

APPENDIX H

ACR7000 Bits and Parameters

APPENDIX H: ACR7000 BITS AND PARAMETERS

332 ACR Programmer’s Guide

ACR7000 Bits and Parameters

This section covers bits and parameters added to the ACR firmware specifically to handle new hardware features

on the ACR7000. Relevant bits and parameters therefore vary by product.

ACR7xT Control and Status Bits
The control, status, fault and warning bits are in the Stepper Flags. These bits will only have meaning for integrated

steppers and will be ignored for other types of steppers. The bit numbers shown below are for Stepper 0, P4584.

For each subsequent stepper, add 32 to the bit number.

Control Bits Flag Fault and Warning Bits Flag

Assert new configuration 15616 Motor short to ground fault 15624

Set parameters to factory default 15617 Over temperature warning 15625

Enable Auto Standby 15618 Over temperature fault 15626

Assert Standby current 15619 Stall threshold warning 15627

Status Bits Under voltage 15628

Driver chip configured 15620 Drive at Standby current 15629

Driver chip configuration underway 15621 General fault 15630

User configuration invalid, default installed 15622 Debug Control/Status Bits

Change to Standby current underway 15623 Assert Debug write register 15632

 Debug configuration underway 15633

ACR7xT Latched Fault and Warning Bits
The fault and warning bits listed above represent the instantaneous state of any fault or warning that is present in

the drive hardware. But these bits will disappear if the underlying hardware condition disappears, so it may not be

possible to diagnose a problem with the current state only. The bits below represent a sort of latched state of the

fault and warning bits listed above. Every time the bits above are monitored, their state is OR’ed into the

corresponding bits below. That allows a persistent record of any of the bits above having been present. The bits

below are cleared when the drive is enabled from a previously disabled state.

Latched Fault and Warning Bits

Flag

Axis 0 Axis 1 Axis 2 Axis 3

 APPENDIX H: ACR7000 BITS AND PARAMETERS

 ACR Programmer’s Guide 333

P4584 P4585 P4586 P4587

Motor short to ground fault 15640 15672 15704 15736

Over temperature warning 15641 15673 15705 15737

Over temperature fault 15642 15674 15706 15738

Stall threshold warning 15643 15675 15707 15739

Under voltage 15644 15676 15708 15740

Not used 15645 15677 15709 15741

General fault 15646 15678 15710 15742

ACR7xT Control and Status Parameters
The control and status parameters are additional stepper parameters. These parameters will only have meaning

for integrated steppers and will be ignored for other types of steppers. The parameter numbers shown below are

for stepper 0. For each subsequent stepper, add 16 to the parameter number. Unlisted parameters are reserved.

The parameters are listed first and then fully described individually in the paragraphs below.

Float Parameter Descriptions Parameter
Default

Value
Range

Full scale current (Amps) P7936 N/A Value reported as status

Product maximum motor current (Amps) P7937 N/A Value reported as status

User selected maximum motor current

(Amps)

P7938 0.5 0.0-4.0

Motor resistance (ohms) P7939 0.9 0.1-15.0

Motor inductance (mH) P7940 2.5 0.1-40.0

Integer Parameter Descriptions Parameter Default Value Range

Standby Current Percentage P7944 100 3-100

Time from full to standby current (msec.) P7945 0 0-5000

Micro-steps per full step (power of 2) P7946 256 1-256

Configuration error code P7947 N/A Value reported as status

Drive Register write value (for debug) P7948 N/A

APPENDIX H: ACR7000 BITS AND PARAMETERS

334 ACR Programmer’s Guide

Drive Register read value (for debug) P7949 N/A Value reported as status

Drive Register tuning value (for tuning) P7950 73765 0-131071 (0x1ffff)

Drive Register raw status read P7951 N/A 16 or 20 bit number

The table below shows the possible values returned in P7947 above and their meanings.

Error description Value

No error 0

Max Current setting range error 1

Motor resistance range error 2

Motor Inductance range error 3

Standby Current range error 4

Standby time range error 5

Micro-stepping setting value error 6

ACR7xV Configuration Bits and Parameters
The table below shows the parameters used for servo drive configuration. Note these are set from PMM’s

Configuration Wizard. These parameters occupy the same parameter space that had been used for Drive Talk on

the ACR9000 and in most cases, have the same names and meanings as those parameters.

Parameter
Parameter

Name
Units Value

Motor

Default

Min

Value
Max Value Description

28674 Feedback

Resolution

Counts/Rev 524288 524288 32 1073741823 Rotary motor: Counts per

full revolution. Linear

Motor: counts/electrical

pitch.

28704 Continuous

Current

A rms 2.6 2.6 0 200 Continuous operating

current in Amps (rms).

28705 Continuous

Current Derating

% 10 10 0 100 Current derating

percentage at rated speed.

28706 Peak Current A rms 7.8 7.8 0 400 Maximum allowable

current for the motor,

Amps (rms).

 APPENDIX H: ACR7000 BITS AND PARAMETERS

 ACR Programmer’s Guide 335

28707 Motor Inductance mH 5.68 5.68 0 200 Maximum value of motor

inductance.

28708 Motor Inductance

Factor

None 0.75 0.75 0 1 Minimum motor inductance

divided by the maximum

motor inductance.

28709 Motor Maximum

Temperature

°C 125 125 0 200 Maximum allowable motor

winding temperature.

28710 Winding Resistance Ohm 1.33 1.33 0 100 Motor winding resistance,

Ohms (measured line-to-

line).

28711 Motor Rated Speed RPS 83.3 83.3 0 400 Speed of motor at

maximum power.

28675 Motor Pole Pairs None 4 4 1 200 Motor pole count divided

by 2.

28712 Motor Damping µNm/rad/sec 67 67 0 10000 Value of the motor's

damping, includes bearing

and magnetic losses

(N/meter/sec for linear

motors).

28713 Motor Rotor

Inertia/Forcer Mass

kgm2×10-6 25 25 0 1000000 Motor rotor inertia for

rotary motors, or the

forcer mass (kg) for linear

motors.

28715 Linear Motor Pole

Pitch

mm 0 0 0 300 Electrical pitch of the

magnets for use with linear

motors. (Set to zero for

rotary motors).

28717 Motor Maximum

Torque

Nm 4.67 4.67 0 4000 Maximum torque available

for motor. Maximum force

in N for linear motors.

28714 Motor Constant,

Ke

V/krpm or

V/m/s

44.3 44.3 0 800 Motor voltage constant

(Ke). Volts(0-peak).

28718 Torque Scaling Nm 4.67 4.67 0 4000 Full scale torque available

for motor. Maximum force

in N for linear motors.

28776 Encoder Polarity None 1 1 0 1 Positive Encoder direction:

0 for CW, 1 for CCW.

APPENDIX H: ACR7000 BITS AND PARAMETERS

336 ACR Programmer’s Guide

28678 Invert Halls None 0 0 0 1 Controls the logic sense of

the Hall sensors. Set = 1

to invert the halls.

28775 Hall Only

Commutation

None 0 0 0 4 Commutation with

incremental encoders: 0 =

hall, 2=DC brush mode.

28719 Motor Ambient

Temperature

°C 25 25 -50 250 Motor ambient

temperature used by the

software motor thermal

model.

28720 Motor Thermal

Resistance

°C/W 1.4 1.4 0 16 Temperature rise of the

motor winding above

motor case temperature

per watt of winding power

dissipation between the

winding and case.

28721 Motor Thermal

Time Constant

Min 20 20 0 7200 Time the motor takes to

reach 63% of its final

temperature given constant

power.

28722 Winding Time

Constant

Min 0.7 0.7 0 3600 Time for the winding to

reach 63% of its final

temperature rise above the

rest of the motor given

constant power.

28679 Disable Thermal

Switches

None 1 1 0 1 Thermal Switch Checking:

= enable=0 , disable=1.

28716 Motor Velocity

Limit

RPS 83.3 83.3 0 250 Maximum velocity of

motor in revs/s. Linear

motor in meters/s.

28725 Encoder

Commutation

Offset

Counts -0.45 -0.45 -1 1 Encoder commutation

offset. 1=180 degrees.

28769 Serial Encoder Valid

Bits

 35 35 0 214783647 Number of valid bits for

serial encoder. Single and

multi-turn total.

28771 Feedback Type 5 5 0 10 Feedback type. 1 =

incremental encoder,

5=BiSS

 APPENDIX H: ACR7000 BITS AND PARAMETERS

 ACR Programmer’s Guide 337

28772 Serial Encoder Valid

Turns

 65535 65535 1 214783647 Number of supported multi

turns for a serial encoder

28800 BiSS Single Turn

bits

 21 21 0 64 Number of single turn bits

in BiSS frame

28801 BiSS Multi Turn bits 16 16 0 20 Number of multi turn bits

in BiSS frame

28802 BiSS Status Bit

Offset

 0 0 0 16 Status bit offset in BiSS

frame

28803 BiSS CRC_Invert 0 0 0 1 Set = 1 if BiSS CRC is not

inverted

28804 BiSS CRC 0 0 0 1 Set =1 to skip BiSS CRC

check

28805 BiSS Status Bit

Inversion

 1 1 0 1 BiSS Status bit polarity

(0=inverted)

28806 BiSS Position Bits

Offset

 2 2 0 32 Position data offset in BiSS

frame

28807 BiSS Protocol Type 0 0 0 1 BiSS Protocol type. BiSS

C=0, BiSS B=1

28686 Brake Relay Delay

on Enable

ms 50 0 0

Delay in milliseconds after

DRIVE ON. Brake will

remain engaged/holding for

delay time.

28687 Brake Delay after

disable

ms 50 0 0

Delay in milliseconds after

DRIVE OFF. Servo loop

will continue operating,

allowing time for brake to

engaged/hold.

Brake Relay Delay on Enable: Specifies the amount of time that the brake relay will remain asserted after the

current is applied to the motor windings when the drive is enabled. This allows torque to build up in the motor

while the brake output is off (brake set). This is important in vertical applications where the motor must be able

to support the load before the brake is released. This should be set for the disengage/release time of the brake.

Brake Delay after disable: Specifies the amount of time that current will remain in the motor windings after DRIVE

OFF issued. This setting is intended to be used in vertical applications, where the brake must be enabled while the

motor still has torque so that the load is always supported. This is the complement to the Brake Relay Delay on

Enable setting. This should be set for the engage/set time of the brake. This delay will not occur in error

condition, only when axis is disabled.

APPENDIX H: ACR7000 BITS AND PARAMETERS

338 ACR Programmer’s Guide

ACR7xV Status Parameters
The usual scheme for P parameters applies for eight axes here. So Axis1 will be Axis 0 +256, axis2 is +512, etc.

Parameter Name Axis0 Axis1 Axis2 Axis3 Axis4 Axis5 Axis6 Axis7

Drive Continuous Current

Rating

P28736 P28992 P29248 P29504 P29760 P30016 P30272 P30528

Drive Maximum Current

Rating

P28737 P28993 P29249 P29505 P29761 P30017 P30273 P30529

Commanded Current P28738 P28994 P29250 P29506 P29762 P30018 P30274 P30530

Commanded Torque P28739 P28995 P29251 P29507 P29763 P30019 P30275 P30531

Actual Torque P28740 P28996 P29252 P29508 P29764 P30020 P30276 P30532

Actual Velocity P28741 P28997 P29253 P29509 P29765 P30021 P30277 P30533

Shaft Power, watts P28742 P28998 P29254 P29510 P29766 P30022 P30278 P30534

Drive Temperature P28743 P28999 P29255 P29511 P29767 P30023 P30279 P30535

Motor Temperature P28744 P29000 P29256 P29512 P29768 P30024 P30280 P30536

Bus Voltage P28745 P29001 P29257 P29513 P29769 P30025 P30281 P30537

Thermistor temperature P28746 P29002 P29258 P29514 P29770 P30026 P30282 P30538

Fan On P28691 P28947 P29203 P29459 P29715 P29971 P30227 P30483

Custom Product ID P28692 P28948 P29204 P29460 P29716 P29972 P30228 P30484

Encoder Position P28693 P28949 P29205 P29461 P29717 P29973 P30229 P30485

Current Hall State P28694 P28950 P29206 P29462 P29718 P29974 P30230 P30486

Operating Hours P28695 P28951 P29207 P29463 P29719 P29975 P30231 P30487

Operating Minutes P28696 P28952 P29208 P29464 P29720 P29976 P30232 P30488

Operating Milliseconds P28697 P28953 P29209 P29465 P29721 P29977 P30233 P30489

ACR7xV Status 1 Flags
All eight axes have their status parameters in a row rather than offset by increments of 256.

 APPENDIX H: ACR7000 BITS AND PARAMETERS

 ACR Programmer’s Guide 339

Parameter Name Mask 0x01 0x02 0x04 0x08 0x010 0x20 0x40 0x80

Flag Parameter

Code=0x10; Index=0x04

 P4392 P4393 P4394 P4395 P4396 P4397 P4398 P4399

Axis Number

Status Flags Bit

Index

0 1 2 3 4 5 6 7

Motor Configuration

Warning

0 9472 9504 9536 9568 9600 9632 9664 9696

Motor Configuration Error 1 9473 9505 9537 9569 9601 9633 9665 9697

Invalid OS Loader 2 9474 9506 9538 9570 9602 9634 9666 9698

Max Inductance = 0 3 9475 9507 9539 9571 9603 9635 9667 9699

Rated Speed = 0 4 9476 9508 9540 9572 9604 9636 9668 9700

DPOLE = 0 5 9477 9509 9541 9573 9605 9637 9669 9701

Resistance = 0 6 9478 9510 9542 9574 9606 9638 9670 9702

Ke = 0 7 9479 9511 9543 9575 9607 9639 9671 9703

Continuous Current = 0 8 9480 9512 9544 9576 9608 9640 9672 9704

Peak Current = 0 9 9481 9513 9545 9577 9609 9641 9673 9705

Cont Motor Current >

Drive

10 9482 9514 9546 9578 9610 9642 9674 9706

Torque Rating > Drive 11 9483 9515 9547 9579 9611 9643 9675 9707

Peak Current > Drive 12 9484 9516 9548 9580 9612 9644 9676 9708

Inertia = 0 13 9485 9517 9549 9581 9613 9645 9677 9709

Damping = 0 14 9486 9518 9550 9582 9614 9646 9678 9710

Reserved 15 9487 9519 9551 9583 9615 9647 9679 9711

Reserved 16 9488 9520 9552 9584 9616 9648 9680 9712

Reserved 17 9489 9521 9553 9585 9617 9649 9681 9713

Reserved 18 9490 9522 9554 9586 9618 9650 9682 9714

Reserved 19 9491 9523 9555 9587 9619 9651 9683 9715

APPENDIX H: ACR7000 BITS AND PARAMETERS

340 ACR Programmer’s Guide

Reserved 20 9492 9524 9556 9588 9620 9652 9684 9716

Reserved 21 9493 9525 9557 9589 9621 9653 9685 9717

Reserved 22 9494 9526 9558 9590 9622 9654 9686 9718

Reserved 23 9495 9527 9559 9591 9623 9655 9687 9719

Reserved 24 9496 9528 9560 9592 9624 9656 9688 9720

Reserved 25 9497 9529 9561 9593 9625 9657 9689 9721

Drive Faulted 26 9498 9530 9562 9594 9626 9658 9690 9722

Bridge Hardware Fault 27 9499 9531 9563 9595 9627 9659 9691 9723

Bridge Temperature Fault 28 9500 9532 9564 9596 9628 9660 9692 9724

Drive Over-voltage Fault 29 9501 9533 9565 9597 9629 9661 9693 9725

Drive Under-voltage Fault 30 9502 9534 9566 9598 9630 9662 9694 9726

Bridge Foldback Warning 31 9503 9535 9567 9599 9631 9663 9695 9727

ACR7xV Status 2 Flags
All eight axes have their status parameters in a row rather than offset by increments of 256.

Parameter Name Mask 0x01 0x02 0x04 0x08 0x010 0x20 0x40 0x80

Flag Parameter

Code=0x10; Index=0x04

 P4408 P4409 P4410 P4411 P4412 P4413 P4414 P4415

Axis Number

Status Flags Bit

Index

0 1 2 3 4 5 6 7

Power Regeneration Fault 0 9984 10016 10048 10080 10112 10144 10176 10208

Reserved 1 9985 10017 10049 10081 10113 10145 10177 10209

Drive Temperature Fault 2 9986 10018 10050 10082 10114 10146 10178 10210

Motor Thermal Model Fault 3 9987 10019 10051 10083 10115 10147 10179 10211

Motor Temperature Fault 4 9988 10020 10052 10084 10116 10148 10180 10212

Bad Hall State 5 9989 10021 10053 10085 10117 10149 10181 10213

 APPENDIX H: ACR7000 BITS AND PARAMETERS

 ACR Programmer’s Guide 341

Feedback Failure 6 9990 10022 10054 10086 10118 10150 10182 10214

Drive Disabled 7 9991 10023 10055 10087 10119 10151 10183 10215

Over Current Fault 8 9992 10024 10056 10088 10120 10152 10184 10216

Power Regeneration Warning 9 9993 10025 10057 10089 10121 10153 10185 10217

Shaft Power Limited Warning 10 9994 10026 10058 10090 10122 10154 10186 10218

Reserved 11 9995 10027 10059 10091 10123 10155 10187 10219

Reserved 12 9996 10028 10060 10092 10124 10156 10188 10220

Reserved 13 9997 10029 10061 10093 10125 10157 10189 10221

VQ exceed bus voltage 14 9998 10030 10062 10094 10126 10158 10190 10222

Low Voltage at Enable 15 9999 10031 10063 10095 10127 10159 10191 10223

Control Power Active (IPA) 16 10000 10032 10064 10096 10128 10160 10192 10224

Alignment Error 17 10001 10033 10065 10097 10129 10161 10193 10225

Hardware Error 18 10002 10034 10066 10098 10130 10162 10194 10226

Internal Error 19 10003 10035 10067 10099 10131 10163 10195 10227

Encoder Read Fault 20 10004 10036 10068 10100 10132 10164 10196 10228

Reserved 21 10005 10037 10069 10101 10133 10165 10197 10229

Encoder Loss Fault 22 10006 10038 10070 10102 10134 10166 10198 10230

Reserved 23 10007 10039 10071 10103 10135 10167 10199 10231

Drive Param Error 24 10008 10040 10072 10104 10136 10168 10200 10232

Torque Enable Fault (IPA) 25 10009 10041 10073 10105 10137 10169 10201 10233

Torque Enable Open (IPA) 26 10010 10042 10074 10106 10138 10170 10202 10234

Torque Enable Health Event

(IPA)

27 10011 10043 10075 10107 10139 10171 10203 10235

Reserved 28 10012 10044 10076 10108 10140 10172 10204 10236

Reserved 29 10013 10045 10077 10109 10141 10173 10205 10237

Reserved 30 10014 10046 10078 10110 10142 10174 10206 10238

Reserved 31 10015 10047 10079 10111 10143 10175 10207 10239

	User Information
	Important Safety Information
	Contents
	Change Summary
	Revision E Changes

	Before We Begin
	Assumptions of Technical Experience
	Before You Begin

	CHAPTER 1 Parker Motion Manager
	Parker Motion Manager
	Getting Started with PMM
	Connection
	Uploading a Project from the Controller to PMM
	Procedure

	Downloading a Project from PMM to the Controller
	Procedure
	Reference

	Parker Motion Manager Parts
	Menu
	Toolbar
	Explorer
	Message Window
	Watch Windows

	Configuration Wizard
	Axes
	Master (Units)
	Drive/Motor
	Drive/Motor (ACR7xT Stepper)
	Motor Settings
	Drive Settings

	Drive/Motor (ACR7xV Servo or IPA)
	Drive/Motor (ACR7xC)
	Feedback
	Scaling
	Specify Transmission
	Specify Reducer(s)
	Enter Scaling Factor

	Fault
	Hardware Limit Detection
	Assign Digital Inputs for Specific Functions
	Software Limit Detection
	Maximum Position Error Detection
	Position Maintenance Settings

	Memory
	Finish and System Code

	Program Editor
	Terminal Emulator
	Prompts
	Basic Terminal Operations
	User Buttons

	Tools
	Servo Tuner
	Channels
	Position Loop Gains
	Move Configuration
	Timebase
	Display
	Status Axis(0)
	The Scope

	Jog/Home/Limits
	Communications
	Drive
	Hardware Limits
	Software Limits
	Position Error
	LED Legend

	OS Update

	Status Panels
	Motion Status Panel (ACR7000 Family)
	Axis Status Bits
	Programs
	Axis Position
	Master
	Online Status
	Motion Enable Input

	Drive Status Panel (ACR7xV and ACR7xT)
	Control Status
	Drive Faults
	Controller Information

	Common Status Panel (IPA)
	Status
	Buttons
	Control Status and Drive Faults
	Controller Information
	Programs

	Numeric Status
	Bit Status
	Ethernet/IP Status Panel
	Failure Status
	Scanner Parameters
	Operation Error Code Descriptions

	Scanner Parameter Status
	EtherNet/IP Node Data
	Controls

	Servo Loop Status

	Scopes
	Common Tools
	Channels
	Timebase
	Controls
	Display
	The Scope

	Oscilloscope
	Strip Chart
	XY Plot

	CHAPTER 2 ACR Basics
	ACR Basics
	Delimiter
	Remarks
	Program Labels
	Move—Default Motion
	Axis Names
	Stopping Motion
	Program Flow
	Wait for Bit or Parameter
	Selection
	IF/THEN
	IF/ELSE/ENDIF
	ELSE IF Condition
	GOSUB/RETURN
	Example

	GOTO

	GOTO and GOSUB Sample Program
	Repetition
	FOR/TO/STEP/NEXT
	WHILE/WEND

	Bits, Parameters and Variables
	User Bits and Parameters

	Using Parameters and Bits
	Setting Binary Bits
	Clearing Binary Bits
	Printing the Current Value
	A Word on Aliases

	Programming Example
	Local Variables
	Defines
	Starting, Pausing, and Halting Programs
	Running a Program
	Running a Program at Power Up
	Listening to a Program
	Viewing a Running Program
	Halting a Program
	Pausing a Program
	Resuming a Paused Program
	Affecting Multiple Programs
	Restart Controller
	Running Startup Programs

	Parametric Evaluation
	Parentheses and Operational Order
	Nested Parentheses
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Example Code Conventions

	ACR System
	ACR Architecture
	Program Execution Timing
	ACR7xV/ACR7xT/IPA Hardware Architecture
	ACR7xC Hardware Architecture

	Ethernet
	Ethernet TCP/IP
	EtherNet/IP Scanner
	EtherNet/IP Node
	Ethernet/IP Peer-to-Peer
	ACR EtherNet/IP Architecture Examples

	Command Syntax
	Description of Format
	Arguments and Syntax
	Example 1
	Example 2
	Example 3
	Example 4

	Variable Substitution Syntax
	Example 5
	Example 6

	Nested Commands Syntax
	Commands Lists
	Axis Limits
	Character I/O
	Drive Control
	Feedback Control
	Global Objects
	Interpolation
	Logic Function
	Memory Control
	Non-Volatile
	Operating System
	Program Control
	Program Flow
	Servo Control
	Setpoint Control
	Transformation
	Velocity Profile

	Startup Programs
	Example

	Resetting the Controller
	Memory
	Return to Factory Default
	Configuration
	What is Configuration Code?
	The Code

	Resources Reserved for Generated Code
	Flash Memory

	CHAPTER 3 Making Motion
	Making Motion
	Four Basic Categories of Motion
	Move Types
	Absolute Motion
	Example 1
	Example 2
	Example 3

	Incremental Motion
	Example 1
	Example 2

	Comparing Absolute and Incremental Motion
	Example—Absolute Motion
	Example—Incremental Motion
	Example—Absolute and Relative

	Combining Types of Motion
	Example

	Immediate Mode
	Example

	Differences Between FOV and VEL
	What are Motion Profiles?
	Example

	Interaction Between Motion Profilers
	Primary Setpoint
	Example

	Velocity Profile Commands
	Velocity Profile Setup
	Feedback Control Commands
	REN Details
	Calculations for the REN Command

	RES Details
	Register Values for RES X 10

	Coordinated Moves Profiler
	Example 1
	Example 2

	Jog Profiler
	Example 1
	X Axis Velocity and Position Profiles
	Y Axis Velocity and Position Profiles
	X and Y Velocity Motion Profiles
	X and Y Position Motion Profiles
	Example 2
	Change in JOG VEL Value “On the Fly”
	Example 3
	Velocity Profile of Sequential Jog Moves

	JOG VEL Details
	JOG VEL Command and Bit Profiles

	JOG Commands
	JOG REN Details
	JOG REN Clears Coordinated Moves Profiler (JOG REN X)
	JOG REN Preloads the Coordinated Moves Profiler (JOG REN X2)

	JOG RES Details
	JOG RES Clears the Jog Profiler (JOG RES X)
	JOG RES Preloads the Jog Profiler (JOG RES X2)

	Gear Profiler
	Simple Gear Example—Gearing to an Axis
	Gearing Example—Start Gearing on High-Speed Input

	Cam Profiler
	Cam Example Program—CAM X to Y Axis

	Homing
	Example

	Homing Subroutines
	Basic Homing (Homing Backup Disabled)
	Figure A
	Figure B

	Positive Homing (Homing Backup Enabled)
	Figure C
	Figure D
	Figure E
	Figure F

	Negative Homing (Homing Backup Enabled)
	Figure G
	Figure H
	Figure I
	Figure J

	Limit Detection
	Dedicated I/O for Homing

	Stopping Motion and Moves
	Kill All Moves versus Kill All Motion Request
	Example

	Flag Comparison
	Bit Status Window Comparison
	Example:

	Contoured (Tiered) Profiles
	Terminal Emulator Sample:
	Terminal Emulator Sample:

	Blended (Tiered) Interpolated Moves
	Example:

	High-speed Position Capture (INTCAP)
	ACR7xV Capture Modes
	Example Encoder Reference Trigger
	ACR7xC Example Capture—Two Axis Positions with One Trigger Input

	Lock
	Example

	Rotary Axis
	Example

	External Time Base
	Example

	Servo Loop Fundamentals
	Primary Setpoint Summation

	Setpoint Compensation
	Secondary Setpoint Summation

	Viewing the Setpoint Calculations
	Following Error
	Following Error

	Ballscrew Compensation
	BSC with PPU
	Encoder Accuracy
	Slope Correction
	BSC Using Slope Correction Value
	BSC Using Error Data Points From Laser Report

	Inverse Kinematics
	Programming the Inverse Kinematics
	Example

	CHAPTER 4 Writing AcroBASIC Programs
	Writing AcroBasic Programs
	Application Examples
	Sample Motion Program
	Enable Drives Subroutine
	Absolute Interpolated Motion Subroutine
	Incremental Interpolated Motion Subroutine
	Basic Absolute and Incremental Motion Subroutine
	Absolute Jog Moves Subroutine
	Incremental Jog Moves Subroutine
	Absolute and Incremental Jog Moves Subroutine
	Homing Subroutine
	Advanced Homing
	Homing for XYZ System
	Open Sample
	Teach Array
	Programmable Limit Switch
	EIP Scanner–Wago 750
	Joystick
	Capture Data
	Peer-to-Peer
	ACR7xT Status
	ACR7xT Home to Hard Stop
	Time Subroutine
	Error Recovery (IPA)
	Add-On Instructions (AOIs) for IPA
	Xpress HMI with ACR7000
	Xpress HMI with IPA

	Testing Programs
	Program Not Running?
	Axis Motion Status?
	Graphing with Oscilloscopes
	Sampling

	Adding Lines of Code to Programs
	Trace a Program

	CHAPTER 5 Binary Host Interface
	Binary Host Interface
	Binary Data Transfer
	Control Character Prefixing
	Transmitting
	Receiving
	High Bit Stripping
	Transmitting
	Receiving

	Binary Data Packets
	Packet Request
	Group Code and Index
	Isolation Mask
	Parameter Access
	Packet Header
	Packet Data
	Usage Example

	Binary Parameter Access
	Packet ID Codes
	Usage Example
	Binary Get Long
	Transmit Packet
	Receive Packet

	Binary Set Long
	Transmit Packet
	Receive Packet

	Binary Get IEEE
	Transmit Packet
	Receive Packet

	Binary Set IEEE
	Transmit Packet
	Receive Packet

	Binary Peek Command
	Transmit Packet
	Receive Packet
	Conversion Codes
	Usage Example

	Binary Poke Command
	Transmit Packet
	Receive Packet
	Conversion Codes
	Usage Example

	Binary Address Command
	Transmit Packet
	Receive Packet
	Parameter Codes
	Usage Example

	Binary Parameter Address Command
	Transmit Packet
	Receive Packet
	Usage Example

	Binary Mask Command
	Transmit Packet
	Receive Packet
	Usage Example

	Binary Parameter Mask Command
	Transmit Packet
	Receive Packet
	Usage Example

	Binary Move Command
	Binary Move Packet
	Header Code 0
	Enable Rapid Move Modes Flag Disabled—Default Cleared Value:
	Enable Rapid Move Modes Flag Enabled—Set Value:
	Header Code 1
	Header Code 2
	Header Code 3
	Header Code 4
	Header Code 5
	Header Code 6
	Header Code 7

	Move Modes
	Example 1
	Example 2
	Example 3
	Example 4

	Linear Moves
	Arc Moves
	NURB or SPLINE Moves

	Binary SET and CLR
	Binary SET
	Binary CLR
	Usage Example

	Binary FOV Command
	Binary Format
	Header Bit Mask
	16 Master Header Bit Mask, Part 1
	16 Master Header Bit Mask, Part 2
	Usage Example

	Binary ROV Command
	Binary Format
	Header Bit Mask
	16 Master Header Bit Mask, Part 1
	16 Master Header Bit Mask, Part 2
	Usage Example

	Application: Binary Global Parameter Access
	Description
	Hardware Dependent System Pointer Address

	Reading Global Variables
	Setting Global Variables

	CHAPTER 6 Troubleshooting
	Troubleshooting
	Problem Isolation
	Information Collection
	Troubleshooting Table
	Common Problems and Their Solutions

	APPENDIX A Connecting to the Controller
	Connecting to the Controller
	Default IP Address
	Setting the IP Address and Subnet Mask—PC
	Verifying the IP Address
	Troubleshooting
	Lost the ACR’s IP Address?
	Finding an ACR with the Scan Tool
	Finding an ACR Using WireShark
	Resetting the ACR74T via Hardware

	APPENDIX B Ethernet Basics
	Ethernet Basics
	IP Addresses, Subnets and Subnet Masks
	IP Addresses
	Subnets
	Subnet IDs
	Subnet Masks

	APPENDIX C Servo PID Tuning
	Servo PID Tuning
	Purpose of Tuning
	Test Simple Motion First
	Basic Tuning Process
	Explanation of Tuning Gains
	Proportional Gain (PGAIN)
	Derivative Gain (DGAIN)
	Integral Gain (IGAIN)
	Integral Limit (ILIMIT)
	Integral Delay (IDELAY)
	Torque Limit (TLM)

	Tips and Tricks
	Can’t reach speed?
	Can’t accelerate?
	Derivative Smoothing
	Example

	Advanced Tuning Gains
	FF Velocity (FFVEL)
	FF Acceleration (FFACC)
	Derivative Width (DWIDTH)
	Feedback Velocity (FBVEL)
	Lowpass Filter (LOPASS)
	Notch Filter (NOTCH)

	APPENDIX D PMM Improvements Over ACR-View
	PMM Improvements Over ACR-View
	APPENDIX E ACR7xC/ACR9000 Comparison
	ACR7xC/ACR9000 Comparison
	APPENDIX F ACR7xV/IPA Differences
	ACR7xV/IPA Differences
	APPENDIX G 6K to ACR Command Reference
	6K to ACR Command Reference
	6K to ACR Command Crossover Table

	APPENDIX H ACR7000 Bits and Parameters
	ACR7000 Bits and Parameters
	ACR7xT Control and Status Bits
	ACR7xT Latched Fault and Warning Bits
	ACR7xT Control and Status Parameters
	ACR7xV Configuration Bits and Parameters
	ACR7xV Status Parameters
	ACR7xV Status 1 Flags
	ACR7xV Status 2 Flags

