AC890 Engineering Reference

Product Manual : Frame K

HA500572 Issue 5
Compatible with Software Version 3.7

Chapter 1

Safety

Please read these important Safety notes before installing and operating this equipment.

Caution

CAUTION notes in the manual warn of danger
to equipment.

WARNING

WARNING notes in the manual warn of danger to personnel.

Safety

Safety Information

Δ

Requirements

IMPORTANT Please read this information BEFORE installing the equipment.

Intended Users

This manual is to be made available to all persons who are required to install, configure or service equipment described herein, or any other associated operation.
The information given is intended to highlight safety issues, and to enable the user to obtain maximum benefit from the equipment.

Complete the following table for future reference detailing how the unit is to be installed and used.

INSTALLATION DETAILS					
Model Number (see product label)		Where installed (for your own information)			
Unit used as a: (refer to Certification)	Component	Relevant Apparatus	Unit fitted:	Wall-mounted	Enclosure

Application Area

The equipment described is intended for industrial motor speed control utilising AC induction or AC synchronous machines.

Personnel

Installation, operation and maintenance of the equipment should be carried out by qualified personnel. A qualified person is someone who is technically competent and familiar with all safety information and established safety practices; with the installation process, operation and maintenance of this equipment; and with all the hazards involved.

Safety Information

Product Warnings

4	Caution Risk of electric shock	1	Caution Refer to documentation

Hazards

DANGER! - Ignoring the following may result in injury

1. This equipment can endanger life by exposure to rotating machinery and high voltages.
2. The equipment must be permanently earthed due to the high earth leakage current, and the drive motor must be connected to an appropriate safety earth.
3. Ensure all incoming supplies are isolated before working on the equipment. Be aware that there may be more than one supply connection to the drive.
4. There may still be dangerous voltages present at power terminals (motor output, supply input phases, DC bus and the brake, where fitted) when the motor is at standstill or is stopped.
5. For measurements use only a meter to IEC 61010 (CAT III or higher). Always begin using the highest range.
CAT I and CAT II meters must not be used on this product.
6. Allow at least 5 minutes for the drive's capacitors to discharge to safe voltage levels $(<50 \mathrm{~V})$. Use the specified meter capable of measuring up to 1000 V dc $\&$ ac rms to confirm that less than 50 V is present between all power terminals and between power terminals and earth.
7. Unless otherwise stated, this product must NOT be dismantled. In the event of a fault the drive must be returned. Refer to "Routine Maintenance and Repair".

Safety

Safety Information

WARNING! - Ignoring the following may result in injury or damage to equipment

SAFETY

Where there is conflict between EMC and Safety requirements, personnel safety shall always take precedence.

- Never perform high voltage resistance checks on the wiring without first disconnecting the drive from the circuit being tested.
- Whilst ensuring ventilation is sufficient, provide guarding and /or additional safety systems to prevent injury or damage to equipment.
- When replacing a drive in an application and before returning to use, it is essential that all user defined parameters for the product's operation are correctly installed.
- All control and signal terminals are SELV, i.e. protected by double insulation. Ensure all external wiring is rated for the highest system voltage.
- Thermal sensors contained within the motor must have at least basic insulation.
- All exposed metalwork in the Inverter is protected by basic insulation and bonded to a safety earth.
- RCDs are not recommended for use with this product but, where their use is mandatory, only Type B RCDs should be used.

EMC

- In a domestic environment this product may cause radio interference in which case supplementary mitigation measures may be required.
- This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product.
- This is a product of the restricted sales distribution class according to IEC 61800-3. It is designated as "professional equipment" as defined in EN61000-3-2. Permission of the supply authority shall be obtained before connection to the low voltage supply.

Safety Information

CAUTION!

APPLICATION RISK

- The specifications, processes and circuitry described herein are for guidance only and may need to be adapted to the user's specific application. We can not guarantee the suitability of the equipment described in this Manual for individual applications.

RISK ASSESSMENT

Under fault conditions, power loss or unintended operating conditions, the drive may not operate as intended. In particular:

- Stored energy might not discharge to safe levels as quickly as suggested, and can still be present even though the drive appears to be switched off
- The motor's direction of rotation might not be controlled
- The motor speed might not be controlled
- The motor might be energised

A drive is a component within a drive system that may influence its operation or effects under a fault condition.
Consideration must be given to:

- Stored energy
- Supply disconnects
- Sequencing logic
- Unintended operation

Safety

Getting Started

Chapter 2

Getting Started

A few things you should do when you first receive the unit.

- How the manual is organised
- Initial steps
- Inspect the unit for transit damage
- Packaging and lifting

Getting Started

About this Manual

IMPORTANT Motors used must be suitable for Inverter duty.

Note Do not attempt to control motors whose rated current is less than 25\% of the drive rated current. Poor motor control problems may occur if you do.

This manual is intended for use by the installer, user and programmer of the 890 drive. It assumes a reasonable level of understanding in these three disciplines.
Note Please read all Safety information before proceeding with the installation and operation of this unit.
It is important that you pass this manual on to any new user of this unit.

How the Manual is Organised

This Engineering Reference manual is organised into chapters, indicated by the numbering on the edge of each page.

The manual is more detailed than the relevant QuickStart manual, and so is of use to the unfamiliar as well as the high-end user.

Initial Steps

Use the manual to help you plan the following:

Installation

Know your requirements:

- certification requirements, CE/UL/CUL conformance
- conformance with local installation requirements
- supply and cabling requirements

Operation

Know your operator:

- how is it to be operated, local and/or remote?
- what level of user is going to operate the unit?
- decide on the best menu level for the Keypad (where supplied)

Programming (using the 890 DSE Configuration Tool)

 Know your application:- create/install the most appropriate Application
- enter a password to guard against illicit or accidental changes
- customise the keypad to the application

Getting Started

Equipment Inspection

- Check for signs of transit damage
- Check the product code on the rating label conforms to your requirement.

If the unit is not being installed immediately, store the unit in a well-ventilated place away from high temperatures, humidity, dust, or metal particles.

Storage and Shipping Temperatures		
Storage Temperature :	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	Shipping Temperature : $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Refer to Appendix E: "Technical Specifications" to check the rating label/product code.
Refer to Chapter 10: "Routine Maintenance and Repair" for information on returning damaged goods.

Packaging and Lifting Details

Caution

The packaging is combustible. Igniting it may lead to the generation of lethal toxic fumes.

- Save the packaging in case of return. Improper packaging can result in transit damage.
- Use a safe and suitable lifting procedure when moving the unit. Never lift the unit by its terminal connections.
- Prepare a clear, flat surface to receive the drive before attempting to move it. Do not damage any terminal connections when putting the unit down.
- Refer to Figure 3.1 for the lifting ring locations. Refer to Chapter 4: Mechanical Details for unit weights. Refer to Chapter 4: Mounting the Drive for further information.

Chapter 3
 Product Overview

An introduction to the 890 range of products, and a quick look at the Keypads and available plugin Options.

- Product range
- Functional diagrams
- Keypads
- Option cards

Product Range

The 890 Frame K unit comprises a Master drive and either one or two Slave drives connected in parallel. The Master and Slave drives are specially adapted 890 Frame G, H or J drives which form a power-sharing combination that we call the 890 Frame K.

The 890 Series AC Drive is designed for speed control of standard 3-phase induction motors. These larger models are available in a range of ratings for constant torque and quadratic torque applications. This dual mode feature provides a cost effective solution to general industrial applications, as well as the control of pumps and fans.

- The unit can be controlled remotely using configurable analogue and digital inputs and outputs, requiring no optional equipment.
- Controlling the master unit locally using the 6901 Keypad, or remotely using DSELite (or other suitable PC programming tool) gives access to parameters, diagnostic messages, trip settings and full application programming. Other features also become available, such as the advanced sensorless vector control scheme which gives high torque, low speed operation; selectable switching frequencies; and a unique Quiet Pattern control system that minimises audible noise from the motor.
- Technology Options can be fitted to the master drive to provide serial communications and closed loop speed control.
- A System Board can be factory-fitted to the master drive. This enables the drive for high end web processing or mini PLC replacement applications.

IMPORTANT Motors used must be suitable for Inverter duty.

Note Do not attempt to control motors whose rated current is less than 25% of the drive rated current. Poor motor control or Autotune problems may occur if you do.

The unit is available using three Frame sizes: G, H and J.

Note All kW ratings are at 400VAC, all HP ratings are at 460VAC.

Introduction

The 890 Frame K unit extends the power output of the 890 series of drives by connecting 890 Frame G, H or J drives in parallel. These specially adapted drives form a power-sharing, master-slave relationship. A Master plus one or two slaves can be supported, depending upon the required power output.

Typical Frame K Drive Layout

Important Points

- Individual drives are connected in parallel to form a Frame K.
- The Master drive must always be the right-hand drive in the cubcle.
- All drives must have the same electrical rating.
- All drives must use an AC Line Choke with the same electrical rating.
- All drives must use an Output Choke with the same electrical rating.
- The ribbon cable must be used to connect between drives.
- The Cable Tray and Cover for the ribbon cable must be fitted.
- If fitted, all drives must use a Brake Resistor with the same electrical rating.

For those familiar with the 890 Frame G, H \& J drives:

The Master and Slave drives are standard units with the following modifications:

Master Drive	Power Control PCB replaced by Master Power
Unit:	Board plus Slave Power Board. Keypad and
	Technology Box options.
Slave Drive	Power Control PCB replaced by Slave Power
Unit:	Board. Power Control PCB removed. Keypad removed and blanking plate fitted. No Technology Box option.

Master Power Board

The Master Power Board provides the interface between the Control Board and the drive power stacks. It includes the following functions:

slave detection	detects the number of connected slave units and scales the current feedback accordingly
dead-time	
compensation:	adjusts the PWM control signals to minimise the effects of IGBT dead-time on the output current waveforms and maintain stable operation
current balance	adjusts the slave IGBT turn-on delay to promote current sharing between the individual drive units
fault handling:	combines the fault signals from the individual drive units (over-current,
stack fault, over-temperature, heatsink-	
hot) for processing by the control board	
protection:	rapid overall over-current detection and overall output current imbalance (ie.
earth fault) detection.	

Slave Power Board

The Slave Power Board provides the interface between the Master Power Board and the individual drive power stack. It includes the following functions:
local fault handling: $\left.\begin{array}{l}\text { rapid local over-current trip for short- } \\
\text { circuit protection } \\
\text { local output current imbalance trip to } \\
\text { detect sharing imbalance in one phase } \\
\text { local over-voltage detection (results in a } \\
\text { "STACK TRIP" trip) } \\
\text { local line phase-loss detection }\end{array}\right\}$ local fault diagnosis: \(\left.\quad \begin{array}{l}fault LEDs to aid in fault diagnosis

local DB unit control:

detects the presence of a DB unit and

enables control and trip functions

the slave power PCB provides a ribbon\end{array}\right\}\)| cable header for connection of the |
| :--- |
| control signals to the next slave power |
| unit - the ribbon cable must be correctly |
| installed since the interface contains |
| high speed unprotected control signals |

Soffware

The software is updated to include stack identification and a new PHASE FAIL trip to protect individual drive input bridges in the event of a blown line fuse.

Hardware
The drives are mechanically identical to the standard 890 Frame G, H and J drives.

Figure 3.1 Component Identification

Functional Diagram

Keypad

The 890 SD is fitted with the 6901 Keypad.
It provides Local control of the 890. For example, you can start and stop the motor and check on diagnostic information. It provides plain language programming and can also upload, store and download parameters.
The 6901 keypad fits to the front of the 890SD.
You can also remote-mount the 6901 keypad up to 3 metres away. For remote-mounting, you'll need the correct Remote Mounting Kit. Refer to Chapter 7: "The Keypad".

Option Cards

The 890SD Standalone Drive can be fitted with a range of Option Cards. They are plugged into the removable Control Board.

- Feedback Board : Resolver type, Encoder type
- Fieldbus Comms - all major protocols

These are easily fitted to the plug-in Control Board.
For full details of the options available refer to Appendix A.

Control Board Access

You can access this board from the front of the unit by removing the lower front cover.

- It contains a Processor that provides a range of analog and digital inputs/outputs, together with their reference supplies.
- It has connections for the range of Option Cards.
- There is a mini USB port for connection to a PC. Use Parker SSD Drives' DSE 890 (Drive Systems Explorer) Configuration Tool to graphically program and configure the drive.

Diagram showing Option Cards fitted to the Control Board

890SD Standalone Drive

This chapter describes the mechanical and electrical installation of the 890SD Standalone Drive. It discusses configuring your system, and how to turn the motor for the first time.
Follow the steps for a successful installation.

- Step 1: Mechanical Installation

Main Points
Sizing the Enclosure
Mounting the drive
Air flow
Installing the External Vent Kit (Frame G)
Fitting the Top Vent and Gasket (Frames H \& J)
AC Line Choke
Main Cooling Fan and Supply Requirements

- Step 2: Connecting power

Wiring Scheme
Mandatory Equipment

- Step 3: Control connections

Control connection diagram
890SD minimum control connections

- Step 4: Powering-up the Unit
4.1: Apply the 3-Phase Supply
4.2: Configure the 890SD Standalone Drive

Set-up parameters

- Step 5: Run the motor

The Autotune feature
Initial start-up routines

890SD Standalone Drive

Step 1: Mechanical Installation

Install the 890 units and associated equipment into the cubicle. The diagram shows a typical layout using Star Point earthing for EMC compliance. Refer to Appendix C for further information.

Main Points

- This is a cubicle-mounted unit. It is not suitable for wall-mounting.
- Mount 890's vertically on a solid, flat, normally cool, non-flammable, vertical surface.
- Adequate ventilation must be provided. Separate the drive from other equipment in a large multifunction cabinet.
- Avoid excessive vibration.
- The earth points ($\mathrm{E}, \mathrm{G}, \mathrm{M} \& \mathrm{~S}$) are shown separated - it may be possible to use one large star point without EMC problems, this will depend upon your application.
Note Refer to Appendix C for information about EMC compliance.

Sizing the Enclosure

The enclosure should comply with the European safety standards VDE 0160 /EN50178 and will require a tool for opening.
The size of the enclosure will depend on many factors:

- Physical size and number of units
- Ventilation clearances
- Power output, affected by derating due to altitude and ambient temperature

890SD Standalone Drive

Enclosure/Environmental Information

The information here will help you to specify the enclosure to house the 890 (s).

890 Operating Conditions		
Operating Temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$, derate up to a maximum of $50^{\circ} \mathrm{C}$ Derate linearly at 1\% per degree centigrade for temperature exceeding the maximum rating ambient for the drive.	
Product Enclosure Rating	Cubicle Mounted only (with or without Top Vent): IP20 - UL (c-UL) Open Type (North America/Canada) Type 1 IP00 - power terminals	
Cubicle Installation	The 890 must be installed to EN60204 Standard in the cubicle. For USA, the cubicle shall meet the requirements of UL50.	
Cubicle Rating	Cubicle to provide the following attenuation to radiated emissions:	
	EN61800-3 Category C3	NONE
	EN61800-3 Category C2 Restricted Distribution EN61000-6-3	10db
	EN61800-3 Category C1 Unrestricted Distribution EN61000-6-4	20 db

890SD Standalone Drive

890 Operating Conditions	
Altitude	If greater than 1000 m above sea level, derate by 1% per 100 m to a maximum of 2000 m
Humidity	Maximum 85% relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ non-condensing
Atmosphere	Non flammable, non corrosive and dust free
Climatic Conditions	Class 3k3, as defined by EN50178
Vibration	The product has been tested to the following specification: Test Fc of EN60068-2-6 $10 \mathrm{~Hz}<=\mathrm{f}<=57 \mathrm{~Hz}$ sinusoidal 0.075 mm amplitude $57 \mathrm{~Hz}<=\mathrm{f}<=150 \mathrm{~Hz}$ sinusoidal lg 10 sweep cycles per axis on each of three mutually perpendicular axis
Safety Overvoltage Category Pollution Degree Europe North America/ Canada	Overvoltage Category III Pollution Degree II (non-conductive pollution, except for temporary condensation) When fitted inside an enclosure, this product conforms with the Low Voltage Directive 2006/95/EC EN50178 to show compliance. Complies with the requirements of UL508C as an open-type drive.

890SD Standalone Drive

Mounting the Drive

Note The 890 Frame K consists of two or three, identical specification Frame G, H or J drives. It comprises a Master drive with either one or two Slave drives.

The Master drive is ALWAYS the right-hand drive in the cubicle.

- The Master Drive can be recognised by "-M" in the Product Code, for example: 890SD-M/... is the Model Number for a Frame G Master drive in Europe.
- A Slave Drive is indicated by "-S". Refer to the Product Label on the side of the drive.

Prepare a clear, flat surface to receive the drive before attempting to move it. Do not damage any terminal connections when putting the drive down.

IMPORTANT Under no circumstances must the drive be lifted using the power terminals.
The drives are supplied with 4 lifting eye bolts fitted to the $4 \mathrm{PE} /$ grounding locations on the sides of the drive for handling using a hoist.
Frames G and H may be set on end for installation by forklift. Frame J may be placed on forklift blades with care to avoid the fan mounting studs and fan power terminals on the bottom (with the fan removed the fan is shipped separately from the drive).

IMPORTANT The $\mathbf{8 9 0}$ drive must be securely mounted using all $\mathbf{1 0}$ off M8 mounting hole positions as detailed on HG465731U00. Refer to the drawings at the end of this chapter.

The drives must be installed inside a cubicle. The cubicle must provide the required security, mounting surfaces and minimum clearances for ventilation.

890SD Standalone Drive

Mechanical Details

Frame G

Weight	100 kg (108kg including Dynamic Brake unit)
Dimensions	Refer to drawing HG465731U003
Frame H	
Weight	125 kg (138kg including Dynamic Brake unit)
Dimensions	Refer to drawing HG465731U002
Frame J	
Weight	160 kg (176kg including Dynamic Brake unit)
Dimensions	Refer to drawing HG465731U001

890SD Standalone Drive

Frame G, H \& J

Mounting Orientation	Vertical, on a solid, flat, vertical surface
Power Terminations	3-phase supply and output terminals Bus-bars with 2 off M12 holes, 25 mm separation. 2 off M12 bolt, nut and washer supplied. Tightening torque 97 Nm (71.5lb-ft) Protective earth terminals 4 off M10 bolts with conical washers - supplied loose. Tightening torque 55 Nm (40.5lb-ft) DC link terminals Bus-bars with 2 off M12 holes, 35 mm separation. Designed to accept semiconductor fuses directly mounted on terminals (eg. Ferraz-Shawmut A100P) 2 off M12 bolt, nut and washer supplied. Tightening torque 97 Nm (71.5lb-ft) Dynamic brake terminal Bus-bars with 2 off M12 holes, 44 mm separation. 2 off M12 bolt, nut and washer supplied. Tightening torque $97 \mathrm{Nm}(71.5 \mathrm{lb}-\mathrm{ft})$
Control Terminations	Removable screw connectors for 0.75 mm 2 wire (18 AWG). Terminals will accept up to $1.5 \mathrm{~mm}^{2}$ wire (16 AWG). Tightening torque 0.6 Nm ($0.4 \mathrm{lb}-\mathrm{ft}$)

890SD Standalone Drive

Air Flow

The drives use very large airflows and have been designed with specific airflow patterns within a cabinet. It is generally intended that the bulk of the air comes into the cabinet at the top, flows down (some going through the drive to maintain internal temperatures), into the main cooling fan, through the drive, the brake/exhaust duct (supplied), and finally out the top of the cabinet through vent assembly (supplied).

This flow pattern insures that the top of the cabinet is effectively evacuated and the inside of the drive is cooled by fresh air.

The brake/exhaust duct allows for field installation
 of a braking module and it gives clearance for inlet air to come from the front of the cabinet into the top of the drive and down; we strongly recommend that this is fitted with the drive whether a brake is fitted or not. It is also important that the top vent is properly fitted to assure that the exhaust air is not recirculated. Refer to fold-out drawings HG465731U001, 2 and 3 at the end of this chapter for typical cubicle layout information.

We recommend that these drives are separated from other equipment in a large multifunction cabinet so that the airflow is better controlled. i.e. air heated by other items should not affect the inlet temperature to the drive's main fan.

890SD Standalone Drive

Care should be taken in placing the cabinet so that there is sufficient space in front of the cabinet to keep the exhaust air and inlet air separated. If there is not sufficient space, redirection of the exhaust air is required. These drives dissipate substantial heat (refer to Appendix E: "Technical Specificatons" Electrical Ratings, for Total Power Loss) and therefore sufficient volume for exhaust venting is required to keep the drive from raising the operating temperature beyond that specified in the Environmental Specification.

The volumetric airflow rate for each drive is:
$\mathrm{G}=583 \mathrm{~m}^{3} / \mathrm{hr}(343 \mathrm{CFM}) \quad \mathrm{H}=1505 \mathrm{~m}^{3} / \mathrm{hr}(884 \mathrm{CFM}) \quad \mathrm{J}=1753 \mathrm{~m}^{3} / \mathrm{hr}(1032 \mathrm{CFM})$.

Ventilation Requirements

The drive gives off heat in normal operation and must therefore be mounted to allow the free flow of air through the ventilation slots and heatsink. Maintain minimum clearances for ventilation, and ensure that heat generated by other adjacent equipment is not transmitted to the drive. Refer to fold-out drawings HG465731U001, 2 and 3 at the end of this chapter for information to ensure adequate cooling of the drive. Be aware that other equipment may have its own clearance requirements. When mounting two or more 890 SD units together, these clearances are additive. Ensure that the mounting surface is normally cool.

890SD Standalone Drive

Installing the External Vent Kit (Frame G)

Parker SSD Drives Part Numbers: Frame G : LA465720U001
Refer to Drawing HG465731U003 Sheet 2 at the end of this Chapter for top panel and mounting plate hole positions.

Foam gasket stretches over duct prior to attaching upper housing

Duct slides down between clip and mounting panel within the sides of the drive housing

890SD Standalone Drive

Fitting the Top Vent and Gasket (Frames H \& J)

WARNING!

This unit must be operated with either a brake unit or blanking plate fitted to the supplied outlet duct. The top vent is then mounted on to the outlet duct. It is very important that the gasket for the vent is correctly fitted to the brake/exhaust outlet duct. Otherwise, hot exhaust air will flow back into the cabinet and overheat the drive. The brake/exhaust outlet duct should protrude from the top of the cabinet by 5-

10 mm to ensure engagement with the gasket. Refer to fold-out drawings HG465731U001 \&
HG465731U002 at the end of this chapter.

890SD Standalone Drive

Tools Required:

M10 wrench, quantity 2
\#3 Phillips or posidrive screwdriver
$10 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right)$ flat blade screwdriver

Assembly Procedure

On cabinets with removable panels the following procedure should be performed off the cabinet. For nonremovable cabinets this procedure should be performed prior to mounting the drive.

Note If the drive is not removed, then it must be protected from any cutting chips.

1. Cut top of cabinet as per drawing HG465731U001 \& HG465731U002 at the end of this chapter.
2. Install (4) M/M support studs in rearmost row of holes in pattern
3. Install (2) F/F M6 x 195 support studs in forward most holes with (2) M6 x 10 posidrive screws

Complete the following with the drive and exhaust duct fitted to ensure a good fit of the gasket to the duct.
4. Fit the gasket over the 4 support studs and exhaust duct.
5. Fit the mounting flange over the gasket and attach via (8) M6 x 25 screws, (16) M6 washers, and (8) M6 nuts.
6. Fit the top vent baffle over the support studs.
7. Fit grommet strip to bottom edge of grill and position.

8 . Fit vent top over the 4 support studs and grill.
9. Fix vent top via (2) M6 x 10 screws (using a 10 mm wrench on the support studs through the grill is helpful in aligning the stud to the hole in the top) and (4) M6 nuts and washers.

890SD Standalone Drive

AC Line Choke

IMPORTANT The drive must be used with an AC Line Choke, however, where a drive is individually supplied from a dedicated transformer with the required impedance, the AC Line Choke is not required.

Note Refer to Appendix E: "Technical Specifications" for further information.

Caution

Failure to provide the correct 3% line impedance will severely reduce the drives lifetime and could result in catastrophic failure of the drive.

Rating Guidelines for AC Line Chokes

Parker SSD Drives can supply the line chokes listed in Appendix E: "Technical Specifications" - Line Chokes.

If you wish to source your own line choke refer to the individual Electrical Rating tables in Appendix E for the relevant rms line currents. For constant torque applications refer to the AC Line Choke table for the peak instantaneous line current under overload conditions.
Note that the choke thermal design must accommodate the harmonic currents present in the supply waveform. These will vary according to supply impedance, but as a general guideline, the values used in the diagram below can be used.

1. Number of supply phases: 3
2. Frequency of operation: $50-60 \mathrm{~Hz}$
3. Choke inductance during overload should be a minimum of 90% of nominal inductance.

890SD Standalone Drive

Typical AC Line Current Waveform

Typical AC Line Harmonic Current Content

(Refer to Parker SSD Drives for exact information)
fundamental 90%
5th harmonic 40\%
7th harmonic 15\%
11th harmonic 7\%
13th harmonic 3\%

315A, $75 \mu \mathrm{H}$ Choke Outline Drawing for Frames G, H \& J - Drawing No. SD12224

890SD Standalone Drive

480A, $50 \mu \mathrm{H}$ Choke Outline Drawing for Frames G, H \& J - Drawing No. SD12225

890SD Standalone Drive

680A, $35 \mu \mathrm{H}$ Choke Outline Drawing for Frames G, H \& J - Drawing No. SD12226

890SD Standalone Drive

Main Cooling Fan and Supply Requirements

The Frame G and H drives have an integral main cooling fan. However, the Frame J drive has a separate main cooling fan which must be fitted to the bottom panel of the enclosure as shown in drawing HG465731U001 at the end of this chapter, with the 4 off M6 nuts provided. Refer to drawing HG463151D002 for fan wiring details (Frame J only) in Chapter 10: "Routine Maintenance and Repair" Fan Replacement.
The drives require an external single phase supply and fuse protection (motor start type) for the main cooling fan.

Drive	Part Number	Airflow $\left(\mathrm{cfm} / \mathrm{m}^{3} / \mathrm{hr}\right)$	Supply Volts	Watts	Fuse
$\begin{aligned} & \text { Frame G } \\ & <=132 \mathrm{~kW} / 200 \mathrm{HP} \end{aligned}$	DL389775	350/595	115	205	3A
	DL464085	350/595	230	195	2A
Frame G$>132 \mathrm{~kW} / 200 \mathrm{HP}$	DL465651U115	475/807	115	315	4A
	DL465651U230	475/807	230	330	2A
Frame G>132kW / 200HP	DL471062U115	475/807	115	405	5A
	DL471062U1230	475/807	230	355	3A
Frame H	DL389776U001	883/1500	115	560	8A
	DL464086U001	883/1500	230	520	4A
Frame J	DL389776U001	1032/1753	115	600	10A
	DL464086U001	1032/1753	230	560	5A

Step 2: Connecting Power

In this section we are going to connect the 3-phase supply to the 890SD Standalone Drive(s).
We'll also connect the motor and the (optional) brake resistor.

IMPORTANT Please read the Safety Information on page Cont. 3 \& $\mathbf{4}$ before proceeding.

WARNING

During commissioning, remove the fuses (or trip the circuit breaker) on your 3-phase supply. Make sure the power is OFF, and that it cannot be switched on accidentally whilst you are working.

Note Refer to Appendix E: "Technical Specifications" for additional Cabling Requirements and Terminal Block Wire Sizes.

Solid-State Short-Circuit Protection

These devices provide Class 10 motor overload protection. The maximum internal overload protection level (current limit) is 150% for 60 seconds in Constant mode, and 110% for 60 s in Quadratic mode. Refer to Appendix D: Programming - CURRENT LIMIT for user current limit adjustment information.
An external motor overload protective device must be provided by the installer where the motor has a fullload Ampere rating of less than 50% of the drive output rating; or when the MOTOR STALLED trip is TRUE (TRIPS STATUS::DISABLED WORD 1>>MOTOR STALLED); or when the STALL TIME parameter is increased above 480 seconds.

890SD Standalone Drive

Removing the Terminal Cover

Remove the terminal cover by releasing the 2 captive, quarter-turn fixings at the base of the drive. To replace, engage the tabs at the top of the cover into the drive and secure with the fixings.

Cable Tray and Cover

The drive control signals are passed to the slave(s) by connecting the 50 -way ribbon cable as shown. The ribbon cable sits inside the metal cable tray which provides mechanical protection and electrical screening.
Always fit the cable tray with the 2 holes to the left and the 2 slots to the right, as viewed from the front of the drive.

Remove the break-outs for the cable tray on the sides of the Terminal Cover as required.

Frame	Cable/Tray Assembly
G	LA468328U001
H	LA468328U002
J	LA468328U003

Wiring Scheme

Figure 4-1 Wiring Scheme for $\mathbf{8 9 0}$ Frame K

Key to " Wiring Scheme for 890 Frame K"			
$\mathbf{1}$	Master Drive (ALWAYS the right-hand drive)	10	Ribbon Cable
$\mathbf{2}$	Slave Drive (Slave 2 is optional)	11	AC Line Choke (mandatory)
$\mathbf{3}$	Brake Unit (optional - roof/internal mount)	12	Output Choke (mandatory)
4	Brake Resistor (optional)	13	AC Supply Filter (optional)
$\mathbf{5}$	Slave Power Board	14	AC Line Fuse - semiconductor type
6	Master Power Board	15	DC Fuse - semiconductor type
7	Speed Feedback Technology Box (optional)	16	Product Label
8	Comms Technology Box (optional)	17	Vent Kit and Exhaust Duct (recommended)
9	Cable Tray and Cover (mandatory)	18	Motor Thermistor Terminal

890SD Standalone Drive

Connections	
Power Terminations	
$\begin{aligned} & \text { L1, L2, L3 } \\ & \text { M1/W } \\ & \text { M2 } / \mathrm{N} \\ & \text { M3/U } \end{aligned}$	3-phase supply and output terminals Bus-bars with 2 off M12 holes, 25 mm separation. 2 off M12 bolt, nut and washer supplied. Tightening torque 97 Nm ($71.5 \mathrm{lb}-\mathrm{ff}$)
$\hat{*}$	Protective earth terminals - 4 positions 4 off M10 bolts with conical washers - supplied loose. These replace the liffing eyes. Do NOT earth to the liffing eyes. Tightening torque 55 Nm ($40.5 \mathrm{lb}-\mathrm{ff}$)
DC+, DC-	DC link terminals Bus-bars with 2 off M12 holes, 35 mm separation. Designed to accept semiconductor fuses directly mounted on terminals (eg. Gould Sawmut A100P). 2 off M12 bolt, nut and washer supplied. Tightening torque 97 Nm ($71.5 \mathrm{lb}-\mathrm{ff}$)
DBR	Dynamic brake terminal Bus-bars with 2 off M12 holes, 44 mm separation. 2 off M12 bolt, nut and washer supplied. Tightening torque 97 Nm ($71.5 \mathrm{lb}-\mathrm{ff}$)
Motor Thermistor Terminations (Master drive only)	
MOT/TEMP	Motor Thermistor terminal Tightening torque $0.6 / 0.8 \mathrm{Nm}(0.4 / 0.5 \mathrm{lb}-\mathrm{ft})$
Control Terminations (Master drive only)	
$\begin{array}{\|l\|} \hline \text { TB1 } \\ \text { TB2 } \\ \text { TB3 } \\ \hline \end{array}$	Removable screw connectors for 0.75 mm 2 wire (18 AWG). Terminals will accept up to $1.5 \mathrm{~mm}^{2}$ wire (16 AWG). Tightening torque $0.6 \mathrm{Nm}(0.4 \mathrm{lb}-\mathrm{ff})$

890SD Standalone Drive

Power Wiring and Protective Earth (PE) $\xlongequal[=]{ }$ Terminalls

890SD Standalone Drive

The unit must be permanently earthed. Protect the incoming mains supply using a suitable fuse or circuit breaker (circuit breaker types RCD, ELCB, GFCI are not recommended). Refer to Chapter 5: Circuit Breakers.

IMPORTANT The drive is only suitable for earth referenced supplies (TN) when fitted with an external ac supply EMC filter.

For installations to EN 60204 in Europe:

Permanent Earthing
 Each unit must be permanently earthed according to EN 50178. For permanent earthing, EN 50178 states that:
 A cross-section conductor of at least $10 \mathrm{~mm}^{2}$ is required. This can be achieved either by using a single conductor (PE) or by laying a second conductor though separate terminals (PE2 where provided) and electrically in parallel.
 Conductors must be sized in accordance with Local Wiring Regulations which always take precedence.
 As a guide, refer to the Input Current for the drive given in the Electrical Ratings tables.

Refer to Appendix C: "Certification for the Drive" - EMC Installation Options.

890SD Standalone Drive

Motor Thermistor Terminals

(Master drive only).
This input (terminal X16) is provided to detect over-temperature in motors fitted with an internal thermistor. There is no polarity to the thermistor connections.

IMPORTANT This input provides "Basic" insulation only to the SELV control circuits and assumes the motor has "Basic" insulation to the windings/mains circuits.

The thermistor type supported is PTC `Type A' as defined in IEC 34-11 Part 2. The drive uses the following resistance thresholds:

Rising temperature trip resistance: $\quad 1650$ to 4000Ω
Falling temperature trip reset resistance: 750 to 1650Ω
If the motor is not fitted with an internal thermistor, you should disable the thermistor trip function either by setting INVERT THERMIST to be TRUE, or by linking the thermistor terminals.

DC Link Terminals

Connect the de link terminals of the Master and Slave modules. This allows balancing currents to flow between the dc link capacitors. Protect each drive by fitting dc link fuses in both the DC + and DC- lines. Semiconductor fuses are preferred in order to limit any device failure to one drive. The fuse should be capable of breaking an 800 V dc supply.

890K Standalone Drive

In a stand-alone 890 K drive, the balancing currents are small. The fuse currents given in Appendix E: "Technical Specifications" - DC Link Fuses allow the use of a smaller wire gauge and have adequate headroom to accommodate transient events.

890SD Standalone Drive

Regen Supply Unit/ Common DC Link Connection

When a 890 K drive is used as a regen supply unit, or is a drive used in a common dc link scheme (i.e, supplied by the de link terminals) the fuses must be rated for the full dc link current. The rms value of dc link current in this case can be calculated as:

$$
\mathbf{I}_{\mathrm{DC}}=1.23 \times \mathbf{I}_{\mathrm{LINE}}(\mathrm{Arms})
$$

where $\mathbf{I}_{\text {LINE }}$ is the rms input current specified in the electrical ratings table in Appendix E.

Mandatory Equipment AC Line Choke (input)

IMPORTANT Each drive must be used with an AC Line Choke.

Note Refer to Appendix E: "Technical Specifications" for further information.

Caution

Failure to provide the correct line impedance will severely reduce the drives lifetime and could result in catastrophic failure of the drive.

Rating Guidelines for AC Line Chokes

Parker SSD Drives can supply the line chokes listed in Appendix E: "Technical Specifications" - Line Chokes.

If you wish to source your own line choke refer to the individual Electrical Rating tables in Appendix E for the relevant rms line currents. For constant torque applications refer to the AC Line Choke table for the peak instantaneous line current under overload conditions.

Note that the choke thermal design must accommodate the harmonic currents present in the supply waveform. These will vary according to supply impedance, but as a general guideline, the values used in the diagram below can be used.

890SD Standalone Drive

1. Number of supply phases: 3
2. Frequency of operation: $50-60 \mathrm{~Hz}$
3. Choke inductance during overload should be a minimum of 90% of nominal inductance.

Typical AC Line Current Waveform


```
Typical AC Line Harmonic Current Content
(Refer to Parker SSD Drives for exact information)
    fundamental90%
    5th harmonic 40%
    7th harmonic 15%
    11th harmonic 7%
    13th harmonic 3%
```

890SD Standalone Drive

480A, $50 \mu \mathrm{H}$ Input Choke Outline Drawing for Frames G \& H-220kW - Drawing No. SD12225
(refer to Appendix E : "Technical Specifications" - AC Line Choke)

890SD Standalone Drive

680A, 35μ H Input Choke Outline Drawing for Frames H-280kW \& J - Drawing No. SD12226
(refer to Appendix E : "Technical Specifications" - AC Line Choke)

Output Sharing Choke

The 690 K requires an output choke to be fitted to each Master and Slave drive. The following chokes are available from Parker SSD Drives:

Parker SSD Part Number	Frame Size
CO468314U420	G
CO468314U650	H, J

Output Sharing Choke for Frame G - CO468314U420

890SD Standalone Drive

Output Sharing Choke for Frame H \& J - CO468314U650

890SD Standalone Drive

Rating Guidelines for Output Sharing Chokes

Requirements

1. Supplier to advise Parker SSD Drives if they are unable to meet any part of this specification.
2. Supplier is responsible for performing and reporting all testing on these components, (see 4).
3. All Components purchased will be Installed outside of the AC drive according to EN60204-"Safety of Machinery. Electrical equipment of Machines"
4. Design and test evidence should be maintained for a 5 year period from date of last shipment.
5. Input and Output Terminal Identification :

Inputs A B C, Outputs AA BB CC.
6. Earth Stud Terminal Identification : International Grounding Symbol (IEC417 Symbol 5019) \Subset
7. Manufacturers Rating Label to display the following information :

- Voltage Rating : (460V)
- Frequency : $(0 \mathrm{~Hz}$ to 120 Hz$)$
- Current Rating : a) 420A RMS b) 650A RMS
- Inductance a) $7.5 \mu \mathrm{H}$ b) $5 \mu \mathrm{H}$
- Date Code : \qquad
- Parker SSD Part number - CO468314U420 (420A 7.5 $\mu \mathrm{H}$) , CO468314U650 (650A $5 \mu \mathrm{H}$).

8. Insulation resistance between winding and core $@>500 \mathrm{~V}$ DC : Should be $>100 \mathrm{M} \Omega$
9. Heat Output (to be advised to ED Ltd by Manufacturer) if $>10 \mathrm{Watts}$: \qquad Watts
10.To be suitable for horizontal mounting.
11.Packaging: Suitable for delivery to Parker SSD Drives Goods In Department without any damage and observing Parker SSD Drives Static Handling Precautions.

890SD Standalone Drive

12. Winding to winding and winding to earth must withstand 3 kV AC test voltage for 1 minute, to be applied to each choke/transformer.
13.RMS AC Supply Voltage (Vrms) : - 460 ($\pm 10 \%$).
14.Current Rating

Choke a) Continuous current $=420 \mathrm{~A} \mathrm{rms}$, overload 542A rms for 1 minute no saturation. Peak instantaneous current $=1175 \mathrm{~A}$ under trip conditions at which point the inductance should be $>85 \%$ of its' initial inductance.

Choke b) Continuous current $=650 \mathrm{~A} \mathrm{rms}$, overload 885 A rms for 1 minute no saturation.
Peak instantaneous current $=1920 \mathrm{~A}$ under trip conditions at which point the inductance should be $>85 \%$ of its' initial inductance.

Harmonic content : 10% at 2 KHz .
15.Supply Voltage Reference : Suitable for Earth Referenced (TN) and Non-Earth Referenced (IT) Supply Configurations.
16.Number of Supply Phases : 3
17.Environment of Pollution Degree : 2 (see IEC 664).
18.Overvoltage/Installation Category: III (see IEC 664).
19.Overload Capability: 150% of Irms for 60 seconds 1 min in every 10 min .
20.Maximum Ambient Operating Temperature (${ }^{\circ} \mathrm{C}$) : $50^{\circ} \mathrm{C}$
21.Maximum Terminal Temperature "Copper conductor" $\left({ }^{\circ} \mathrm{C}\right): 90^{\circ} \mathrm{C}$
22.Inductance $+/-5 \%$ nominal.

890SD Standalone Drive

Conformance Requirements

Component must meet the requirements of the following standards:-

1. UL 506
2. BS EN 60289
3. IEC 664

- Design must be CE marked to conform to the Low Voltage Directive by using the appropriate standards listed above. The supplier should maintain design evidence for a period of 5 years from the last shipment.
- Design to be UL recognised and marked UL recognised.
- UL506 : Eleventh Edition "Speciality Transformers" - used for all Wound components so they conform to North American Safety Requirements.
- IEC664-1 "Basic Safety Publication" Insulation co-ordination for equipment within low-voltage systems, Principles, requirements and tests should be used to determine Spacings for ALL wound components.
- BS 171:Part 1 Power transformers, General Specifications for power transformers.
- A minimum clearance of 15 mm must be maintained between any un-insulated conductor and any earthed metal parts.
- Two off earth studs required on opposite side to input/output leads. The area around the earth stud must be free from any varnish or insulating material to a minimum diameter of 19 mm .
- Plastics / Flammable Materials UL Rating : Must be Flame Retardant - UL94V-O min
- IP Rating IP00.

890SD Standalone Drive

Mechanical

Copper flags - no insulation within 25 mm of holes in copper.
Fixing/mounting points - Four off 13 mm slots to be free from any varnish or insulation material $30 \mathrm{~mm} x$ 30mm.

Input output leads $-2 \times 11 \mathrm{~mm}$ holes per lead.

Preferred Lead-Out
Any alternative lead out must be approved by Parker SSD Drives.
The following are to be advised to Parker SSD Drives by the Component Manufacturer :
Weight (In Kg) : \qquad .
Dimensions (in mm) : Length (L) \qquad Width (W) : \qquad Height (H) \qquad .

Mounting Requirement : Horizontal : \qquad Vertical : \qquad Foot Mounting : \qquad Other : \qquad .

890SD Standalone Drive

Step 3: Control Connections

(Master drive only).
WARNING
During commissioning, remove the fuses (or trip the circuit breaker) on your 3-phase supply. Make sure the power is OFF, and that it cannot be switched on accidentally whilst you are working.

Main Points

- The 890 is a system product and is designed for Remote mode operation using the analog \& digital inputs/outputs and/or FireWire ${ }^{\mathrm{TM}}$ connection. The use of the keypad (Local mode) is for configuration purposes.

Connecting 890SD Standalone Drives using the FireWire ${ }^{\mathrm{TM}}$ Option Cards is recommended for applications requiring high levels of accuracy. Otherwise, use I/O to transfer data from master to slave units.

- The control terminals will accept a single wire of size $1.5 \mathrm{~mm}^{2} / 16$ AWG. For two wires per terminal, use smaller gauge wire such as $0.5 \mathrm{~mm}^{2} / 22 \mathrm{AWG}$.
- Use screened control cables to comply with EMC requirements. All screens must be terminated at the base of the product using cable glands.
- The control board 0 V at X14/04 must be connected to protective (clean) earth outside of the product to meet EMC and safety requirements.
- Feed the control cables into the drive through the metal gland plate and connect to the control terminals. Cables must be secured together with a cable tie as close to the terminals as possible.

890SD Standalone Drive

Control Connection Diagram

890SD STANDALONE DRIVE

890SD Standalone Drive

890SD Minimum Control Connections

Minimum Connections

Speed Reference

- Connect a $10 \mathrm{k} \Omega$
potentiometer at terminal X12:

X12/01 : Low (CCW)
X12/04 : Wiper
X12/08 : High (CW)

- Connect the shield to earth/ground at the control bracket.

OR

- External 2-wire speed reference between:

X12/01 : negative
X12/04 : positive

- Connect the shield to earth/ground at the control bracket.

Sequencing

- RUN (maintained contact)

X14/03 : 24V
X15/02 : RUN

Motor Thermistor

- Recommended : Connect to a motor fitted with an internal motor thermistor (connections have no polarity)

OR

- Jumper the terminals

OR

- Disable the thermistor trip function by setting INVERT THERMIST to be TRUE

890SD Standalone Drive

Control Connections - 890SD Standalone Drive

The table below shows the factory defaults.

		Mini USB Port	
	Name	Range	Description
			This Mini USB port provides a serial C10
	USB	communications link to a host computer running the DSE 890 Configuration Tool.	
		Use an approved USB lead: A to mini-B.	

FUTURE USE
Name Range Description
01
02
03
04
Terminal X11 is for future use.

		Name	Range	Description
X12	01	0V		0 V reference for analog I/O
	02	AIN1	$0-10 \mathrm{~V}, \pm 10 \mathrm{~V}$	Analog Input $1($ default $=$ diff I/P +)
	03	AIN2	$0-10 \mathrm{~V}, \pm 10 \mathrm{~V}$	Analog Input 2 (default = diff I/P -)
	04	AIN3	$\begin{aligned} & \pm 10 \mathrm{~V}, 0-10 \mathrm{~V} \\ & 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} \end{aligned}$	Analog Input 3 (default = remote setpoint I/P) $-10 \mathrm{~V}=100.00 \%$ reverse,$+10 \mathrm{~V}=100.00 \%$ forward (\% maximum speed)
	05	AIN4	$\begin{aligned} & \pm 10 \mathrm{~V}, 0-10 \mathrm{~V} \\ & 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} \end{aligned}$	Analog Input $4($ default $=$ speed trim I/P)
	06	AOUT1	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & (10 \mathrm{~V}=100 \% \text { speed }) \end{aligned}$	Analog Output $1($ default $=$ speed feedback O/P)
	07	AOUT2	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & (10 \mathrm{~V}=200 \% \text { torque }) \end{aligned}$	Analog Output $2($ default $=$ torque feedback $\mathrm{O} / \mathrm{P})$
	08	+10 V REF	+10 V (output)	10 V reference for analog i / o. Load 10 mA maximum
	09	-10 V REF	-10V (output)	10 V reference for analog i/o. Load 10 mA maximum

Note AIN1 and AIN2 are fitted with a link to ensure no noise pick-up when not in use. These terminals can be used as a differential $\pm 10 \mathrm{~V}$ input (which we call AIN5), but AIN1 and AIN2 must remain within $\pm 10 \mathrm{~V}$ relative to 0V. AIN5 has a direct input into the Speed Loop providing a fast speed or torque demand for servos.

All analog inputs/outputs are configurable using the DSE 890 (Drive System Explorer) Configuration Tool supplied on disk. The table above shows the factory defaults. These analog connections require $\pm 10 \mathrm{~V}$ DC which is supplied at terminal X12/08 and X12/09 respectively. For further information refer to the DSE 890 Configuration Tool.

				FUTURE USE	
	Name			Range	Description
	01				
$\square{ }^{\square}$	X13	02			
		03			
		04			

Terminal X13 is for future use.

890SD Standalone Drive

			Name	Range	Description
O STATUS $X 11$		01	DOUT3A	0-24V DC	Relay Output: normally-open, volt-free, 24 V DC 1 A resistive load or use down to $1 \mathrm{~mA}, 12 \mathrm{~V}$ levels $($ DOUT3 closed $=$ HEALTH $)$
	X14	02	DOUT3B	0-24V DC	Relay Output: normally-open, volt-free, 24V DC 1A resistive load or use down to $1 \mathrm{~mA}, 12 \mathrm{~V}$ levels (DOUT3 closed = HEALTH)
\square		03	USER 24V	0-24V DC	24 V DC Output, 150 mA maximum load
$\square_{\text {OPTION }}$		04	0V	0-24V DC	0 V reference for USER 24 V output

Note The maximum permissible sum of currents from X14/03, X15/08, X15/09 is 150mA. An Alert message will be displayed if exceeded.

890SD Standalone Drive

DIGITAL I/O

	Name Range		Description
01	DIN1	0-24V DC	Digital Input $1($ default $=$ JOG)
02	DIN2	0-24V DC	Digital Input $2-($ default $=$ RUN $)$
03	DIN3	$0-24 \mathrm{~V}$ DC	Digital Input 3 - (default = STOP)
04	DIN4	0-24V DC	Digital Input 4 - (default = REVERSE)
X15	DIN5	0-24V DC	Digital Input 5 - (default = unassigned). Refer to I/O TRIPS::EXT TRIP MODE for special function
06	DIN6	0-24V DC	Digital Input 6 - (default = unassigned
07	DIN7	0-24V DC	Digital Input $7-($ default $=$ unassigned $)$
08	DIN8/DOUT1	0-24V DC	Digital Input/output 1 - (default = digital output: RUNNING)
09	DIN9/DOUT2	0-24V DC	Digital Input/output 2 - (default = digital output: ZERO SPEED)

All digital inputs/outputs are configurable using the DSE 890 (Drive System Explorer) Configuration Tool supplied on disk. The table shows the factory defaults. The digital inputs require 24 V DC which is supplied at terminal X14/03. For further information refer to the DSE 890 Configuration Tool.

Note The maximum permissible sum of currents from X14/03, X15/08, X15/09 is 150mA. The load on X15/08 \& X15/09 connects from these pins to $\mathrm{X14/04}(0 \mathrm{~V}$). An Alert message will be displayed if exceeded.

DIGITAL I/O

| | | | DIGITAL I/O |
| :--- | :--- | :--- | :--- | :--- |
| | Name | Range | Description |
| $\mathbf{0 1}$ | DOUT4A | open/closed | Normally-open relay contacts, A \& B. |
| $\mathbf{0 2}$ | DOUT4B | open/closed | Default function DOUT4 closed = healthy |
| $\mathbf{0 3}$ | DOUT5A | open/closed | Normally-open relay contacts, A \& B. |
| $\mathbf{0 4}$ | DOUT5B | open/closed | Default function DOUT5 closed = running |
| $\mathbf{0 5}$ | DOUT6A | open/closed | Normally-open relay contacts, A \& B. |
| $\mathbf{0 6}$ | DOUT6B | open/closed | No default function. |
| $\mathbf{0 7}$ | NC | | Not Connected - this terminal is unused |
| $\mathbf{0 8}$ | MTR THRM A | | Motor thermistor connection,
 or link to MTR THRM B |
| $\mathbf{0 9}$ | MTR THRM B | | Motor thermistor connection,
 or link to MTR THRM A |

All digital inputs/outputs are configurable using the DSE 890 (Drive System Explorer) Configuration Tool supplied on disk. The table shows the factory defaults. The digital inputs require 24 V DC which is supplied at terminal X14/03. For further information refer to the DSE 890 Configuration Tool.

Relay outputs are volt-free, normally open contacts. Rated to 240 V 3 A resistive load. Alternatively they may be used down to $1 \mathrm{~mA}, 12 \mathrm{~V}$ levels.

Step 4: Powering-up the Unit

Main Points

1. Complete all Pre-Operation Checks.
2. Ensure all the set-up parameter values for each 890SD Standalone Drive have been entered. Refer to "Set-up Parameters page 4-52.
3. Autotune each drive where necessary.
4. Save your Application.
5. Follow one of the Start-up Routines: Local Mode or Remote Mode.

890SD Standalone Drive

Pre-Operation Checks

Before Applying Power:

- Read the Safety section at the front of the Manual.
- Ensure that all local electric codes are met.
- Check for damage to equipment.
- Check for loose ends, clippings, drilling swarf etc. lodged in the drive and system.
- Check all external wiring circuits of the system - power, control, motor and earth connections.
- Ensure that unexpected rotation of the motor in either direction will not result in damage, bodily harm or injury. Disconnect the load from the motor shaft, if possible.
- Check the state of the Motor Thermistor and Brake Resistor connectors. Check external run contacts are open. Check external speed setpoints are all at zero.
- Ensure that nobody is working on another part of the system which will be affected by powering up.
- Ensure that other equipment will not be adversely affected by powering up.
- Check motor stator connections are correctly wired for Star or Delta as necessary for drive output voltage.

890SD Standalone Drive

4.1: Apply the 3-Phase Supply

1. Apply the 3-phase supply to the 890SD Standalone Drive.
2. Select LOCAL mode operation:

- The Keypad will display the Remote Setpoint parameter (\%).

3. You MUST carry out an Autotune if you intend to use the drive in Sensorless Vector Fluxing Mode or Closed-Loop Vector Mode - go to page 4-62. If you are using the drive in Volts/Hz Mode (OpenLoop Drive) an Autotune is not necessary - go to page 4-67.

890SD Standalone Drive

4.2: Configure the 890SD Standalone Drive

You must now configure each 890SD Standalone Drive to your application. This is done using the DSE 890 Configuration Tool supplied on the CD, or the keypad.

Using the DSE 890 Configuration Tool

The DSE 890 (Drive System Explorer) Configuration Tool has a full Help system. Insert the DSE 890 disk into your PC and follow the on-screen instructions. Use the tool to set-up the I/O connectivity so that it meets the requirements for each 890 SD Standalone Drive. When connected, enter the set-up parameters as discussed on page 5-52.

Connecting to a PC

Connect the 890SD Standalone Drive to your PC using an approved mini-USB lead. You can order this lead from Parker SSD Drives: part number CM471050 (3m long) or CM465778 (1m long).

Using the Keypad

Fit the keypad to the front of the unit, or connect remotely. The set-up parameters are stored in QUICK SETUP menu on the 6901 keypad.

How to Edit a Parameter

Press $@$ to enter the QUICK SETUP menu.
Scroll through the parameters using the \bigcirc and \circlearrowleft keys.
Pressto select a parameter for editing.
Increment/decrement the parameter value using the
 and
 keys.

Pressto exit the parameter.

Set-up Parameters

The drive has several control modes:

V/Hz	VOLTS / HZ	Control Modes Set-up as an Open-Loop Drive (V/F Fluxing) - low performance applications (fan, pump). Simplest method involving no speed feedback and no compensation for load changes. Autotune is not required.
SV	SENSORLESS	
VEC	Set-up using the Sensorless Vector Fluxing Mode - medium performance applications where the drive uses an electrical model of the motor to automatically compensate for load changes.	
The drive must be tuned to the motor in use by matching the motor parameters		
in the drive to those of the motor being controlled.		
You MUST use the Autotune feature after entering your parameter		
values.		

890SD Standalone Drive

Control Modes

| 4-Q | 4-Q REGEN \quadSet-up using 4Q Regen Active Front End (AFE) control mode.
 Refer to Chapter 7 to correctly set-up the drive for an $890 \mathrm{CD} / \mathrm{SD}$ 4-Q Regen
 AFE Application.
 Autotune is not required. |
| :---: | :---: | :--- |
| PMAC PMAC | Set-up using PMAC (Permanent Magnet AC) servo or torque motor control
 mode - a high performance application where the drive uses Resolver or
 Sin/Cos Encoder motor feedback. |
| In this mode, speed feedback signals from the motor shaft encoder are | |
| processed to determine the rotational speed of the shaft. A PI algorithm within | |
| the software uses this information to produce varying gate drive signals to the | |
| drive circuits. These signals cause the drive to output the required voltage and | |
| frequency for a particular motor speed. | |
| Autotune is not required. | |

890SD Standalone Drive

The following is a list of the Set-up parameters you may need to check before starting the drive. Set only the ones marked with "x" for the intended mode of operation.
Note Parameters whose values are "product code dependent" will have a typical value for the size of unit. Where possible (or required), enter an application-specific value for improved performance, otherwise use the typical value.

Note "PREF" is a parameter reference number used by the DSE 890 Configuration Tool.

SET-UP PARAMETERS								
PREF	6511/6901 Display	Default	Brief Description	V/Hz	sv	CLV	4-Q	PM
136.02	$5 \quad 1$ CONTROL MODE	0 : VOLTS / HZ 1 : SENSORLESS VEC 2 : CLOSED-LOOP VEC 3:4-Q REGEN 4 : PMAC*	Select the operating mode for the drive. * If PMAC control is required, the motor wizard feature in the 890 DSE Configuration Tool MUST be used to correctly set-up the motor and feedback device parameters. Failure to do so may result in damage to the servo motor.	(0)	(1)	(2)	$\begin{gathered} x \\ (3) \end{gathered}$	x (4)

SET-UP PARAMETERS								
PREF	$\begin{gathered} \text { 6511/6901 } \\ \text { Display } \end{gathered}$	Default	Brief Description	V / Hz	sv	Clv	4-Q	PMAC
101.08	$\begin{array}{cc} 5 & 2 \\ \text { MAX SPEED } \end{array}$	product code dependent	The maximum speed clamp and scale factor for other speed parameters (at full process speed)	x	x	x		x
100.02	$5 \quad \exists$ RAMP ACCEL TIME	10.0 s	Acceleration time from 0 rpm to MAX SPEED	x	x	x	x	x
100.03	$5 \quad 4$ RAMP DECEL TIME	10.0 s	Deceleration time from MAX SPEED to 0 rpm	x	x	x	x	x
102.01	$5 \quad 5$ RUN STOP MODE	0 : RUN RAMP 1 : COAST 2 : DC INJECTION 3 : STOP RAMP	Selects the stopping mode used by the drive	x	x	x	x	x
103.01	$\begin{array}{cc} 5 & 5 \\ \text { JOG SETPOINT } \end{array}$	10.0 \%	Drive speed setpoint whilst jogging (percentage of MAX SPEED)	x	x	x	x	x

SET-UP PARAMETERS								
PREF	6511/6901 Display	Default	Brief Description	V/Hz	sv	Clv	4-Q	PMAC
21.01	$5 \quad 7$ V/F SHAPE	$\begin{gathered} 0: \text { LINEAR LAW } \\ 1: \text { FAN LAW } \\ 2: \text { USER DEFINED } \end{gathered}$	Sets the type of volts to frequency template that is used to flux the motor	x				
70.01	$5 \quad 8$ QUADRATIC TORQUE	$\begin{gathered} 0: \text { FALSE } \\ 1: \text { TRUE } \end{gathered}$	$0 \text { : FALSE = Constant }$ Selects between Constant or Quadratic mode of operation	x	x	x		x
27.05	59 MOTOR CURRENT	product code dependent	Enter the motor full load current from the motor nameplate	x	x	x	x	
21.03	$\begin{array}{cc} 5 & 10 \\ \text { FIXED BOOST } \end{array}$	product code dependent	Boosts starting torque by adding volts at low speed	x				
82.01	$\begin{array}{cc} 5 & 11 \\ \text { CURRENT LIMIT } \end{array}$	150.00\%	Level of motor current as \% of FULL LOAD CALIB	x	x	x	x	
81.01	512 VOLTAGE MODE	None	Defines how volts Hz characteristic varies in response to changes in DC link voltage.	x	x	x	x	

SET-UP PARAMETERS								
PREF	$6511 / 6901$ Display	Default	Brief Description	V/Hz	SV	CLV	4-Q	PMAC
27.02	$\begin{array}{cc} 5 & 13 \\ \text { POWER } \end{array}$	product code dependent	Nameplate induction motor power	X	x	x		
27.03	$5 \quad 14$ MOTOR BASE FREQUENCY	product code dependent	Enter the motor nameplate base frequency	x	x	X		
27.04	$5 \quad 15$ MOTOR VOLTAGE	product code dependent	Enter the motor nameplate voltage at base frequency	x	x	x		
27.07	516 NAMEPLATE RPM	product code dependent	Enter the motor nameplate full-load rated speed. This is the motor speed in rpm at base frequency minus full load slip.	x	x	x		
27.09	$\begin{array}{cc} 5 \quad 17 \\ \text { MOTOR POLES } \end{array}$	product code dependent 0:2 pole 1:4 pole 2 : 6 pole 3 : 8 pole 4:10 pole 5 : 12 pole	Enter the number of motor poles from the motor nameplate	x	x	x		

SET-UP PARAMETERS								
PREF	6511/6901 Display	Default	Brief Description	V/Hz	sv	Clv	4-Q	PMAC
27.08	$5 \quad 1 日$ MOTOR CONNECTION	product code dependent 0 : DELTA 1 : STAR	Enter the type of motor connection		x	x		
71.01	$5 \quad 19$ PULSE ENC VOLTS	product code dependent	Set between 10-20V to match the encoder supply voltage			x		
71.02	$\begin{aligned} & 5 \quad 20 \\ & \text { ENCODER } \\ & \text { LINES } \\ & \hline \end{aligned}$	product code dependent	Set to the number of lines used by the encoder			x		
71.03	$\begin{gathered} 5 \text { こ } 1 \\ \text { ENCODER } \\ \text { INVERT } \end{gathered}$	$0:$ FALSE 1 : TRUE Rotating Autotune sets actual value	Encoder direction :when TRUE, changes the sign of the measured speed and the direction of the position count.			x		
80.01	5 22 AUTOTUNE ENABLE	$\begin{gathered} 0: \text { FALSE } \\ 1: \text { TRUE } \end{gathered}$	Set TRUE to enable Autotune. Resets to FALSE when complete.	x				

890SD Standalone Drive

SET-UP PARAMETERS								
PREF	6511/6901 Display	Default	Brief Description	V/Hz	SV	CLV	4-Q	PMAC
80.02	$5 \text { こコ }$ AUTOTUNE MODE	0 : ROTATING 1 : STATIONARY 2 : SPD LOOP ROTATING 3 : SPD LOOP STATIONARY	Set the type of Autotune.		X	X		
27.06	534 MAG CURRENT	product code dependent Rotating Autotune sets actual value	Enter the No-Load Amps from the motor nameplate	X	X	X		
27.14	$\begin{array}{cc} 5 & 35 \\ \text { STATOR RES } \end{array}$	product code dependent Autotune sets actual value	Motor per-phase stator resistance		x	X		
27.15	526 LEAKAGE INDUC	product code dependent Autotune sets actual value	Motor per-phase stator leakage inductance		X	X		
27.16	527 MUTUAL INDUC	product code dependent Autotune sets actual value	Motor per-phase stator mutual (magnetising) inductance		x	x		

SET-UP PARAMETERS								
PREF	$\begin{gathered} \text { 6511/6901 } \\ \text { Display } \end{gathered}$	Default	Brief Description	V/Hz	sV	Clv	4-Q	PMAC
27.17	520 ROTOR TIME CONST	product code dependent Autotune sets actual value	The motor model rotor time constant as determined by Autotune		x	x		
78.01	529 SPEED PROP GAIN	20.0	Sets the proportional gain of the loop		x	x		x
78.02		100 ms	The integral time constant of the speed loop		x	x		x
1.03	$5 \exists 1$ AIN1 TYPE	$\begin{gathered} 0:-10 . .+10 \mathrm{~V} \\ 1: 0 . .+10 \mathrm{~V} \end{gathered}$	Select the input range and type	x	x	x	x	x
2.03	532 AIN2 TYPE	$\begin{gathered} 0:-10 . .+10 \mathrm{~V} \\ 1: 0 . .+10 \mathrm{~V} \end{gathered}$	Select the input range and type	x	x	x	x	x
3.03	5 ヨヨ AIN3 TYPE	$\begin{gathered} 0:-10 . .+10 \mathrm{~V} \\ 1: 0 . .+10 \mathrm{~V} \\ 2: 0 . .20 \mathrm{~mA} \\ 3: 4 . .20 \mathrm{~mA} \end{gathered}$	Select the input range and type	x	x	x	x	x

SET-UP PARAMETERS								
PREF	6511/6901 Display	Default	Brief Description	V/Hz	sv	Clv	4-Q	PMAC
4.03	$\begin{gathered} 5 \quad 34 \\ \text { AIN4 TYPE } \end{gathered}$	$\begin{gathered} 0:-10 . .+10 \mathrm{~V} \\ 1: 0 . .+10 \mathrm{~V} \\ 2: 0 . .20 \mathrm{~mA} \\ 3: 4 . .20 \mathrm{~mA} \end{gathered}$	Select the input range and type	x	x	x	x	x
97.01	$5 \quad \exists 5$ DISABLED WORD 1	0700 >>	Indicates which trips have been disabled refer to Chapter 9	x	x	x	x	x
97.02	$\begin{array}{ll} 5 & 36 \\ \text { DISABLED } \\ \text { WORD } 2 \end{array}$	0840 >>	Indicates which trips have been disabled refer to Chapter 9	x	x	x	x	x
31.01	537 VIEW LEVEL	$\begin{gathered} \text { 0: BASIC } \\ 1: \text { OPERATOR } \\ 2: \text { ADVANCED } \end{gathered}$	Selects full menu for MMI display	x	x	x	x	x

890SD Standalone Drive

Step 5: Run the Motor

WARNING

Remove the fuses (or trip the circuit breaker) on your 3-phase supply.
Make sure the power is OFF, and that it cannot be switched on accidentally whilst you are working.

The Autotune Feature

Note The drive will not perform an Autotune when in Volts/Hz Mode (Open-Loop Drive.) An Autotune is not necessary in this control mode.

The Autotune feature identifies motor characteristics to allow the drive to control the motor. It loads the values into the parameters below, which are in the QUICK SETUP menu.

PREF	Parameter	Description	Note		
71.03	ENCODER INVERT	Encoder direction	Parameter is only set up if drive is configured to run as Closed-loop Vector Not measured by Stationary Autotune		
27.06	MAG CURRENT	Magnetising current	Not measured by Stationary Autotune		
27.14	STATOR RES	Per phase stator resistance			
27.15	LEAKAGE INDUC	Per phase stator leakage inductance			
27.16	MUTUAL INDUC	Per phase mutual inductance	Rotor time constant		This is identified from magnetising
:---					
current and motor nameplate rpm					

For further information on the functions of all parameters, refer to Appendix D: "Programming".

Stationary or Rotating Autotune?

Will the motor spin freely, i.e. not connected to a load, during the Autotune?

- If it can spin freely, use a Rotating Autotune (preferred)
- If it cannot spin freely, use a Stationary Autotune

	Action	Requirements		
Rotating Autotune	$\begin{array}{l}\text { Spins the motor up to the maximum } \\ \text { speed set by the user to identify all } \\ \text { necessary motor characteristics }\end{array}$	$\begin{array}{l}\text { Motor must spin freely during } \\ \text { Autotune }\end{array}$		
$\begin{array}{l}\text { Stationary Autotune } \\ \text { Only used when the motor } \\ \text { cannot spin freely during } \\ \text { the Autotune feature }\end{array}$	$\begin{array}{l}\text { Motor does not spin during } \\ \text { Autotune. A limited set of motor } \\ \text { characteristics are identified }\end{array}$	$\begin{array}{l}\text { You must enter the correct value of } \\ \text { magnetising current }\end{array}$		
Do not subsequently operate the drive				
above base speed			$\}$	In Closed-loop Vector Mode set up
:---				
the encoder direction parameter	,			
:---				

Necessary Data

You MUST enter values for the following parameters, found in the QUICK SETUP menu, before an Autotune can be carried out:

MOTOR CURRENT
MOTOR BASE FREQ
MOTOR VOLTAGE (maximum motor output voltage)
NAMEPLATE RPM (motor nameplate speed)
MOTOR POLES (the number of motor poles)
ENCODER LINES (if an encoder is fitted, enter the number of lines used by the encoder)

890SD Standalone Drive

Performing a Rotating Autotune

Note The drive will not perform an Autotune when in Volts/Hz Mode (Open-Loop Drive.) An Autotune is not necessary in this control mode.
Check that the motor can rotate freely in the forward direction. Ensure also that the motor is unloaded. Ideally, the motor shaft should be disconnected. If the motor is connected to a gearbox this is okay, provided that there is nothing on the output of the gearbox which could load the motor.

1. In the QUICK SETUP menu, set MAX SPEED to the maximum speed at which you will operate the drive in normal operation. The Autotune will characterise the motor up to 30% above this speed. If you later wish to run faster than this, you will need to carry out another Autotune.
2. Set AUTOTUNE ENABLE to TRUE, and start the drive 0 . The drive will carry out a Rotating Autotune (indicated by the Run and Stop led's flashing. This may take several minutes, during which the motor will be accelerated to maximum speed and then brought to a stop. When complete, the drive is returned to the stopped condition and the AUTOTUNE ENABLE parameter is reset to FALSE. In Closed-loop Vector mode (with an encoder) the encoder sign has been adjusted by the Autotune feature.

IMPORTANT Now perform a SAVE CONFIG to save your new settings. Refer to Chapter 7: "The Keypad"SAVE CONFIG.

890SD Standalone Drive

Performing a Stationary Autotune

Note The drive will not perform an Autotune when in Volts/Hz Mode (Open-Loop Drive.) An Autotune is not necessary in this control mode.
Before starting the stationary Autotune, you MUST enter the value of magnetising current for the motor. This may be available on the motor nameplate. If not, you may need to contact the motor supplier.

1. In the QUICK SETUP menu, set the AUTOTUNE MODE parameter to STATIONARY (0).
2. Set ENABLE to TRUE, and start the drive The drive will carry out a stationary Autotune, injecting current into the motor but not turning the shaft. The Run and Stop led's will flash. When complete, the drive is returned to the stopped condition and the AUTOTUNE ENABLE parameter is reset to FALSE.

IMPORTANT Now perform a SAVE CONFIG to save your new settings. Refer to Chapter 7: "The Keypad" SAVE CONFIG.

- If the drive is configured to run in Sensorless Vector mode, set-up is complete.
- If the drive is configured to run in Closed-loop Vector mode, i.e. using an encoder, then the encoder direction must be set up. Refer to "Setting the Encoder Sign".

Setting the Encoder Sign (Closed-Loop Vector Mode)

(Master drive only).
If you have performed a Stationary Autotune in Closed-loop Vector mode, you should check the encoder direction as follows:
Look and listen to the motion of the motor when the drive is running at a speed demand of between 5 10%.
As a test, use the $\mathbf{U p}(\mathbf{A})$ control key to increase the speed to about double the original figure. Change the direction of rotation using the FWD/REV control key.
If ENCODER INVERT is correct, the motor will rotate smoothly and will respond to the changes in speed demand and direction.

If ENCODER INVERT is incorrect, the motor will rotate in a jerky and/or noisy manner. Alternatively, it may rotate smoothly at a very low speed but not respond to changes in speed demand or direction.

- Change the setting of ENCODER INVERT to change the encoder sign.
- Change the direction of rotation back to the original direction. Re-set the speed demand.

The encoder sign is now correct for the original motor direction.
If however the direction of the motor is incorrect at this point, then power down the entire drive, wait for 3 minutes (for the dc link capacitors to discharge) and then swap the motor drive cables M1/U and M2/V. Change the setting of ENCODER INVERT.
The encoder sign is now correct for the new motor direction.

IMPORTANT Now perform a SAVE CONFIG to save your new settings. Refer to Chapter 7: "The Keypad" SAVE CONFIG.

890SD Standalone Drive

Initial Start-Up Routines

WARNING

Unpredictable motion, especially if motor parameters are incorrect.
Ensure no personnel are in the vicinity of the motor or any connected machinery.
Ensure that no machinery connected to the motor will be damaged by unpredictable motion.
Ensure that the emergency stop circuits function correctly before running the motor for the first time.
The Routines $1 \& 2$ below will run the drive in the default V/F fluxing control mode (VOLTS / HZ) to begin with using either the Keypad or the Control Terminals.

Routine 1: Local Mode

Note Refer to Chapter 7: "The Keypad" to familiarise yourself with the keypad and menu structure.
Local control has a use for commissioning a drive. It is not the expected way to operate a system drive.
On the 890SD Standalone Drive's keypad:

1. Select Local Mode (refer to Chapter 7: "The Keypad" for details).
2. The drive should be "healthy" now it is powered-up: no flashing trip messages displayed, and the 6901 keypad's HEALTH LED is lit (the RUN LED remains off). The keypad will display the Remote Setpoint parameter.
If the drive has tripped, the keypad will be flashing a trip message, and the 6901 keypad's HEALTH LED will flash. Refer to Chapter 9:"Trips and Fault Finding" to investigate and remove the cause of the trip.

890SD Standalone Drive

3. Press the Start key \square The 6901 keypad's RUN LED will light and the motor will rotate slowly (the RUN LED will flash if the setpoint is at zero).

Reverse the motor's direction of rotation either by pressing the FORWARD/REVERSE key on the 6901 keypad, or by swapping two of the motor phases (WARNING: Disconnect the mains supply first).
4. Control the value of the Local Setpoint parameter using the \square keys.
5. Press the Stop key

6901 Keypad

890SD Standalone Drive

Routine 2: Remote Mode

This routine assumes that the drive's control terminals are wired as shown in "Control Connection Diagram" on page 5-38.

IMPORTANT Ensure that the speed potentiometer is set to zero.

On the 890SD Standalone Drive:

1. The drive should be "healthy" now it is powered-up: no flashing trip messages displayed, and the 6901 keypad's HEALTH LED is lit (the RUN LED remains off).
If the drive has tripped, the keypad will be flashing a trip message, and the 6901 keypad's HEALTH LED will flash. Refer to Chapter 9: "Trips and Fault Finding" to investigate and remove the cause of the trip.
2. Select Remote Mode - refer to Chapter 7: "The Keypad" for details, or power-down and power up the unit to re-initialise in Remote mode.
3. To Start in Remote Mode, close the "Run" switch on your control panel (applying 24V to DIN2, terminal X15/02 - RUN).
4. Turn the speed potentiometer up a little to apply a small speed setpoint (applying a variable voltage to AIN3, terminal X12/04 - REMOTE SETPOINT). The 6901 keypad's RUN LED will light and the motor will rotate slowly (the RUN LED will flash if the setpoint is at zero).
Reverse the motor's direction of rotation either by pressing the FORWARD/REVERSE key on the 6901 keypad, or by swapping two of the motor phases (WARNING: Disconnect the mains supply first).
5. To Stop in Remote Mode, open the "Run" switch on your control panel (removing 24V from DIN2, terminal X15/02 - RUN).

890SD Standalone Drive

Reading the Status LEDs

The HEALTH and RUN LEDs indicate status. The LEDs are considered to operate in five different ways:

HEALTH	RUN	Drive State
\square	\square	Re-configuration, or corrupted non-volatile memory at power-up
\square	\bigcirc	Tripped
\square	\square	Auto Restarting, waiting for trip cause to clear
\square	\square	Auto Restarting, timing
	\bigcirc	Stopped
	0	Running with zero reference, enable false or contactor feedback false
		Running
	\square	Stopping
\square	\square	Braking and running with zero speed demand
\square		Braking and running
\square	\square	Braking and stopping

Figure 4-2 Blank Cover showing LED OperationOFF
\square SHORT FLASH
\square EQUAL FLASH
\square LONG FLASH
$\longrightarrow \mathrm{ON}$

Table 4-1 Status indications given by the Blank Cover Health and Run LEDs

Installation Drawings

Frame G Typical Cubicle Installation Outline Drawing (HG465731U003 Sheet 1)

890SD Standalone Drive

TYP ICAL CUB ICLE DETAIL SHOWING TOP PANEL AND
MOUNT ING PLATE HOLE POSITIONS FOR SIZE G

MOUNTING DIMENSIONS FOR SIZE G
(DRAWING NUMBER HG465731U003 ISSUE 3 30JUNO5 ECN18543)
SHEET 2 OF 2
Frame G Typical Cubicle Installation Outline Drawing (HG465731U003 Sheet 2)

890SD Standalone Drive

SHEET 1 OF
Frame H Typical Cubicle Installation Outline Drawing (HG465731U002 Sheet 1)

890SD Standalone Drive

TYPICAL CUBICLE DETAIL SHOWING TOP PANEL AND
MOUNTING PLATE HOLE POSITIONS FOR SIZE H
MOUNTING DIMENSIONS FOR SIZE H
DRAWING NUMBER HC465731
SHEET 2 OF 2
Frame H Typical Cubicle Installation Outline Drawing (HG465731U002 Sheet 2)

SHEET 1 OF 2
Frame H Typical Cubicle Installation Outline Drawing (HG465731U001 Sheet 1)

890SD Standalone Drive

$\frac{\text { TYPICAL CUBICLE DETAIL SHOWING TOP PANEL AND }}{\text { MOUNTING PLATE HOLE POSITIONS FOR SIZE J }}$
MOUNTING DIMENSIONS FOR SIZE
(DRAWING NUMBER HG465731U001 ISSUE 3 30JUNO5 ECN18543)
SHEET 2 OF 2
Frame H Typical Cubicle Installation Outline Drawing (HG465731U001 Sheet 2)

Associated Equipment

Chapter 5

Associated Equipment

Details for all the ancilliary parts of a system that can be used with the 890 .

- Main Points
- External Braking Resistors
- Drive Brake Unit
- 890SD Semiconductor Protection Fuses
- Circuit Breakers
- Filters

Associated Equipment

Main Points

Connect the associated equipment in the following order:

Associated Equipment

External Braking Resistors

Use the calculation on page 5-4 to help you select suitable resistors.

Main Points

- The 890SD unit must be fitted with external braking resistors if braking is required. Use the DSE 890 Configuration Tool to set the following parameters in the 890SD unit:

Set the INT DB RESISTOR parameter (PREF 31.75 in the DYNAMIC BRAKING function block) to FALSE. Also enter information about the external resistor being used in to this function block.

Enable the "Brake Resistor" and "Brake Switch" trips in the TRIPS STATUS function block (DISABLED WORD 1 parameter).
IMPORTANT The continuous rating quoted is not to be exceeded under repetitive loading.

Associated Equipment

Calculation

Brake resistor assemblies must be rated to absorb both peak braking power during deceleration and the average power over the complete cycle.

Peak braking power $\mathrm{P}_{\mathrm{pk}}=\frac{0.0055 \times \mathrm{J} \times\left(\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{2}\right)}{\mathrm{t}_{\mathrm{b}}}(\mathrm{W})$
J - total inertia (kgm^{2})
$\mathrm{n}_{1} \quad$ - initial speed (rpm)
Average braking power $P_{a v}=\frac{P_{p k}}{t_{c}} \mathrm{xt}_{\mathrm{b}}$
$\mathrm{n}_{2} \quad$ - final speed (rpm)
$\mathrm{t}_{\mathrm{b}} \quad$ - braking time (s)
$\mathrm{t}_{\mathrm{c}} \quad$ - cycle time (s)
Obtain information on the peak power rating and the average power rating of the resistors from the resistor manufacturer. If this information is not available, a large safety margin must be incorporated to ensure that the resistors are not overloaded.

By connecting these resistors in series and in parallel the braking capacity can be selected for the application.

IMPORTANT The minimum resistance of the combination and maximum dc link voltage must be as specified in Appendix E: "Technical Specifications" - Internal Dynamic Brake Switch.

Associated Equipment

Figure 3.1 Braking Resistor Derating Graph (Metal Clad Resistors)

Associated Equipment

Drive Brake Unit

Note Refer to Appendix E: "Technical Specifications" - Internal Dynamic Brake Switch for further details. The brake unit is optional. However, it is possible to retro-fit a brake unit should the need arise. There are three brake units, one for each drive frame size.

The brake units have the following specification -
Continuous duty: $\quad 30 \%$ of Constant Torque drive rating
Operating voltage: $\quad 750-820 \mathrm{~V}$ dc
Maximum duty cycle: 30%
Maximum on time: 20 seconds

Associated Equipment

The original exhaust duct supplied with the drive or the exhaust duct supplied with the brake unit may be used in the final installation.

The brake unit consists of the following parts:

- Exhaust Duct.
- Heatsink \& IGBT assembly.
- Control cable.
- Brake connection plates - 1 set for Frame G/H and 2 sets for Frame J.
- Heatsink fixings.
- Brake unit cover and retaining nuts.
- Earth bonding bracket.

The brake unit is shipped in a pre-assembled state (except for the connection plate(s)). It is recommended that this assembly is carefully studied prior to installation within the cubicle. We also recommend that the brake unit heatsink/IGBT assembly is removed from the exhaust duct before installing the unit within the cubicle.

Required tools

- M10 spanner
- \#3 posidrive or phillips torque screwdriver
- \#2 posidrive or phillips torque screwdriver

Installation Procedure

WARNING
 Follow the procedure carefully.
 Disconnect all electrical supplies before working on the drive - allow 15 minutes for the drive dc link capacitors to fully discharge.
 Do not drop any screws, nuts or extraneous parts into the drive.

Associated Equipment

Refer to Figure 5-2, page 5-11, for typical brake unit installation.

1. Remove the brake unit cover.
2. Remove the earth bonding bracket from the heatsink.
3. Loosen heatsink clamps.
4. Remove the heatsink/IGBT assembly and carefully place it on a clear flat surface - take care not to damage the heatsink fins.
5. If retro-fitting the brake unit to an existing exhaust duct then: Remove the exhaust duct aperture cover and screws. Transfer heatsink clamps and screws from shipping brake duct to existing drive duct.
6. Remove the drive's top front cover (plastic) via 2 off $1 / 4$ turn fasteners at top of drive.
7. Remove drive top cover which is attached via 4 off M5 screws on the side and 2 off M5 screws on the top. Care should be taken to prevent the cover from falling into the drive and damaging the internal components. If fitting a new exhaust duct assembly, fit the duct assembly in to the top panel and secure to drive with 4 off M5 screws. Secure to the mounting panel with M8 fixings.
8. Install brake unit IGBT/heatsink assembly within exhaust duct and tighten clamps. Take care not to damage components on the open PCB with handtools.
9. Connect brake unit control cable to the 14 way bulkhead connector at the top of the drive.
10. Secure the brake connecting plate(s) to the phase joining tabs of the drive top phase (M3/U) and the phase joining tabs on the brake unit with M5 screws provided. Tighten to $4 \mathrm{Nm}(3 \mathrm{ft} / \mathrm{lbs})$.
11. Fit earth bonding bracket to heatsink and duct connection/earthing screws (M5) to exhaust duct. Tighten to $4 \mathrm{Nm}(3 \mathrm{ft}-\mathrm{lb})$. NOTE - This connection must not be omitted as it is required for safety reasons.
12. Replace drive top cover, exercise care to not damage brake connection plates with the top cover as this will compromise the electrical insulation. Tighten 4 off M5 screws on side of drive and 2 off M5 screws on top of cover to $2.5 \mathrm{Nm}(1.84 \mathrm{ft}-\mathrm{lb})$.
13. Replace drive front top cover with 2 off $1 / 4$ turn fasteners.
14. Fit brake unit cover with M6 captive washer nuts.

Associated Equipment

Figure 3.2 Front View of Exhaust Duct/Brake Unit/Drive Assembly showing the Brake Connecting Plate and Snubber Capacitors fitted

Associated Equipment

890SD Semiconductor Protection Fuses

Short circuit protection Semiconductor Fuses should be installed in the 3-phase supply to the drive module to protect the input bridge. Circuit breakers or HRC fuses will not protect the input bridge.

Circuit Breakers

We do not recommend the use of circuit breakers (e.g. RCD, ELCB , GFCI), but where their use is mandatory, they should:

- Operate correctly with dc and ac protective earth currents (i.e. type B RCDs as in Amendment 2 of IEC755).
- Have adjustable trip amplitude and time characteristics to prevent nuisance tripping on switch-on.

When the ac supply is switched on, a pulse of current flows to earth to charge the internal/external ac supply EMC filter's internal capacitors which are connected between phase and earth. This has been minimised in Parker SSD Drives' filters, but may still trip out any circuit breaker in the earth system. In addition, high frequency and dc components of earth leakage currents will flow under normal operating conditions. Under certain fault conditions larger dc protective earth currents may flow. The protective function of some circuit breakers cannot be guaranteed under such operating conditions.

WARNING

Circuit breakers used with VSDs and other similar equipment are not suitable for personnel protection.
Use another means to provide personal safety. Refer to EN50178 / VDE0160 / EN60204-1

Associated Equipment

Filters

Note Follow the cabling requirements given in Appendix E: "Technical Specifications".

External AC Supply EMC Filter

WARNING!

The specified external filters are only suitable for use with TN supplies. Please check for suitability in Appendix E: "Technical Specifications" - External AC Supply (RFI) Filters.
Do not touch filter terminals or cabling for at least 5 minutes after removing the ac supply. Only use the ac supply filter with a permanent earth connection.

Mount the EMC filter and line choke as close as possible to the drive module. Take care not to obstruct the filter or drive ventilation ducts. Allow 40 mm spacing between filters.

Connections between the drive, choke and filter must always be as short as possible, and be segregated from all other cables. If this cable/busbar exceeds 1.0 m in length then it must be replaced with a screened/armoured cable, with the screen/armour earthed at both the filter, choke and drive ends with largearea contact surfaces, preferably with metal cable glands.

The routing of the connections between the filter, choke and drive module should be chosen to ensure their close proximity. Ensure that the filter output leads are separated from the filter input leads. Failure to achieve this will result in increased conducted emissions.

Caution

The filter flying leads may reach $100^{\circ} \mathrm{C}$ under normal operating conditions. These should be separated by at least one cable diameter and adequately ventilated.

Associated Equipment

The connection between the drive module and the motor must be installed away from all other cables or wires. Ideally the filter(s) and choke will be mounted onto the same metallic back panel as the drive. The RF connection between the drive, filter, choke and panel should be enhanced as follows:-

- Remove any paint/insulation between the mounting points of the EMC filter(s), choke, drive module and panel.
- Liberally apply petroleum jelly over the mounting points and securing threads to prevent corrosion. Alternately conducting paint could be used on mounting panels.
- If the proceeding is not possible, then the RF earth bond between the filter and drive module is usefully improved by making an additional RF earth connection using wire braid of at least $10 \mathrm{~mm}^{2}$ cross sectional area (due to skin effect).
Note Metal surfaces such as eloxized or yellow chromed (e.g. cable mounting or 35mm DIN rails, screws and bolts) have a high RF impedance which can be very detrimental to EMC performance.

A low RF impedance path must be provided between the motor frame and back panel on which the drive, choke and EMC filters are mounted. This low impedance RF path should follow the path of the motor cables in order to minimise the loop area. Failure to do so will result in increased conducted emissions.
This will normally be achieved by:-

1. Bonding the armour of the motor supply cables at one end to the motor frame and at the other to the cubicle back panel. Ideally 360° bonding is required, which can be achieved with cable glands.
2. Ensuring that conduit containing the motor supply cables is bonded together using braid. The conduit shall also be bonded to the motor frame and the cubicle back panel.

Associated Equipment

Dimensions are in millimetres

AC Supply Filter CO467843U340

Associated Equipment

Filter Mounting Details Using 1 off Part No. CO467843U340 for Type G

Associated Equipment

Typical Wiring Details Using 1 off Part No. CO467843U340 for Frame G

Associated Equipment

Filter Mounting Details using 2 off Part No. CO467843U340 Frames H \& J

Associated Equipment

Using 2 off Part No. CO467843U340 Frame H (2200) and Frame J

Note For 890 Frames G, H \& J, the specified line choke in table B-1 must still be fitted between the 890 and its filter. This is to ensure reliability of both the filter and drive.

Associated Equipment

EMC Motor Output Filter

This can help the drive achieve EMC and filter thermal conformance. It also ensures longer motor life by reducing the high voltage slew rate and overvoltage stresses. Mount the filter as close to the VSD as possible. Please refer to Parker SSD Drives for the selection of a suitable filter.

Operating the Drive

Chapter 6

Operating the Drive

Having turned the motor for the first time, now learn about the various ways you can start and stop the drive. This chapter also offers some application advice.

- Control Philosophy
- Start/Stop and Speed Control
- Starting and Stopping Methods
- Application Advice

Operating the Drive

Control Philosophy

There are four ways to control the drive using Remote and Local control:

Figure 3.1 Remote and Local Control Modes

Operating the Drive

Start/Stop and Speed Control

There are two forms of control in operation at any time: Start/Stop and Speed Control. Each can be individually selected to be under either Local or Remote Control.

- Local or Remote Start/Stop decides how you will start and stop the drive.
- Local or Remote Speed Control determines how you will control the motor speed.

In each case, Local and Remote control are offered by using the following:
Local: The Keypad
Remote: Analog and digital inputs and outputs, RS232 Port or Technology Options
Note Refer to Appendex D: "Programming"- LOCAL CONTROL.

Operating the Drive

Thus the drive can operate in one of four combinations of local and remote modes:

Figure 3.2 The Four Combinations of Local and Remote Control
Note Start/Stop is also known as "Sequencing".
Speed Control is also known as "Reference Generation".

Operating the Drive

The Start/Stop Mode Explained

The default configuration below shows the drive in Remote control, (using the analog and digital inputs and outputs). This example will be referred to in the following explanations.

Start/Stop Controlled Remotely

In the configuration shown, the reference value is obtained by summing ANALOG INPUT 1 and ANALOG INPUT 2. The direction of rotation is controlled by DIGITAL INPUT 4. When the RUN input (DIGITAL INPUT 1) is TRUE, the SPEED DEMAND ramps up to the reference value at a rate controlled by ACCEL TIME. The drive will continue to run at the reference value while the RUN input remains TRUE.

Similarly when the JOG input (DIGITAL INPUT 5) is TRUE, the SPEED DEMAND ramps up to the JOG SETPOINT at a ramp rate set by JOG ACCEL TIME (not shown in the diagram).
The drive will continue to run at the JOG SETPOINT while the JOG input remains TRUE.

Operating the Drive

Figure 3.3 Portion of the Shipping Configuration

Operating the Drive

Start/Stop Controlled Locally

The reference value is set by the SETPOINT (LOCAL) parameter. (The direction of rotation is controlled by the DIR key (forward/reverse) on the 6901 Keypad). When the RUN key is pressed the SPEED DEMAND ramps up to the reference value at a rate controlled by ACCEL TIME. The drive will continue to run at the reference value even when the RUN key is released. Press the STOP key to "stop" the drive.
When the JOG key is pressed and held, the SPEED DEMAND ramps up to the JOG SETPOINT at a ramp rate set by JOG ACCEL TIME (not shown in the diagram). Release the JOG key to "stop" the drive.

Interaction between RUN and JOG

Only one of these signals can be in effect at any one time; the other signal is ignored. The drive must be "stopped" to change from running to jogging, or vice versa.

Start/Stop Mode Diagnostics

In the configuration shown, Start/Stop mode provides two DIGITAL OUTPUT signals (RUNNING and HEALTH).
The RUNNING signal is TRUE from the time a start command is processed until a stop sequence is completed. This normally means the time between the drive starting until the power stack is quenched. Refer to Appendix B : "Sequencing Logic" for a more detailed description.
The HEALTH output is TRUE when the drive is not tripped.
Additional diagnostic parameters are available when using the Keypad. These are described in Chapter 8: "Keypad Menus".

Operating the Drive

Starting and Stopping Methods

Note Refer to Appendix D: "Programming" - REFERENCE, SEQUENCING LOGIC, REFERENCE STOP and REFERENCE RAMP, for explanations of parameters.

Normal Stopping Methods

The Shipping Configuration is set to "Ramp to Stop" (at STOP TIME, set to 10.0s).

- To "stop" the locally controlled drive press the STOP key on the Keypad
- To "stop" the remotely controlled drive remove the 24 V from the RUN input (terminal X15/02), and from the STOP input (terminal X15/03)
Using the Keypad or DSE Configuration Tool, the drive can be selected to "Ramp to Stop", or to "Coast to Stop" at one of two rates (STOP TIME or FAST STOP TIME). To do this, change the RUN STOP MODE parameter (PREF102.01) to the required selection.

Ramp to Stop

Set the SETUP::SEQ \& REF::REFERENCE STOP::RUN STOP MODE parameter to RUN RAMP.
When a stop command is received, the drive decelerates from its actual speed towards zero for the programmed DECEL TIME time. When this time has elapsed, SPEED TRIM is ramped to 0% in the programmed STOP TIME time.

Note If SPEED TRIM does not operate, SPEED DEMAND is reduced to 0\% in DECEL TIME.
The power stack remains energised until the STOP DELAY period has elapsed.

Operating the Drive

Figure 3.4 Ramp to Stop with a Remote Reference

Figure 3.5 Remote to Stop with a Remote Reference: DECEL TIME $=0.0 \mathrm{~s}$
A special case exists when the DECEL TIME is set to 0.0 seconds, or when the HOLD parameter is TRUE. In both these situations the SPEED DEMAND will ramp down to zero at the STOP TIME.

Operating the Drive

Coast to Stop

Set the SETUP::SEQ \& REF::REFERENCE STOP::RUN STOP MODE parameter to COAST.
In this mode the DECEL TIME ramp and the STOP TIME ramp are both ignored. Thus the SPEED DEMAND changes immediately to 0% as soon as the Stop command is given. The power stack is also immediately disabled at this time, causing the load to coast.

Figure 3.6 Coast to Stop with a Remote Reference

Operating the Drive

Advanced Stopping Methods

The drive can be selected to NOT FAST STOP or to NOT COAST STOP. The stopping procedure is unaffected by Local or Remote Sequencing options.

Forced Fast Stop

The Not Fast Stop mode overrides the RUN FORWARD, RUN REVERSE and JOG inputs in Remote mode, and the RUN and JOG Keypad keys in Local mode.

Select the SETUP::SEQ \& REF::REFERENCE STOP::FAST STOP MODE parameter to either RAMP or COAST. The stopping sequence starts when the NOT FAST STOP input goes FALSE, regardless of the state of the RUN input.

Figure 3.7 Forced Fast Stop RAMP Mode example

Operating the Drive

Forced Coast Stop

Using the Not Coast Stop mode immediately disables the power stack, causing the load to coast to a stop.
The drive gives priority to the NOT COAST STOP signal. The NOT FAST STOP signal is therefore ignored while NOT COAST STOP is active.

Figure 3.8 Forced Coast Stop example

Operating the Drive

The Trip Condition

When a trip condition is detected, a similar stopping method to NOT COAST STOP is used. The power stack cannot be re-enabled until the trip condition has been cleared and successfully reset.
Refer to Chapter 9: "Trips and Fault Finding" for further details.

Logic Stopping

The drive can be stopped by setting the NOT STOP to FALSE for a short time, (>100 ms). The stop sequence continues even if the NOT STOP signal goes inactive before the drive is stopped. Various combinations of stop logic are shown below.

Figure 3.9 Interaction between RUN FORWARD, RUN REVERSE and NOT STOP Parameters

Operating the Drive

Figure 3.10 Example of the Interaction between RUN FORWARD and JOG Parameters

Operating the Drive

Starting Methods

The methods below can be used when the drive has the following default configurations from DSE 890 installed: Closed Loop Vector, Sensorless Vector, Shaftless Printing, Shipping, Volts/Hertz.

IMPORTANT DRIVE ENABLE must be True in all cases.

Single Wire Logic Starting

Use just DIGITAL INPUT 2 when the motor direction will always be the same. The motor will run while the RUN switch is closed, and will stop when it is open.
Note that the SETUP::SEQ \& REF::SEQUENCING LOGIC::NOT STOP parameter is active (FALSE - not wired to), meaning that the drive will only run while the RUN parameter is held TRUE.

Figure 3.11 Wiring for Single Wire Starting (Default Configurations)

Operating the Drive

Two Wire Logic Starting

Re-configure the DSE 890 default configuration(s) by connecting SETUP::SEQ \& REF::SEQUENCING LOGIC::REMOTE REV OUT to SETUP::SEQ \& REF::REFERENCE: REMOTE REVERSE.
This uses two inputs; RUN and REVERSE. The drive can operate in forward and reverse depending upon which switch is closed. If both RUN and REVERSE are TRUE (24V) at the same time, both are ignored and the drive will stop.
Note that the SETUP::SEQ \& REF::SEQUENCING LOGIC::NOT STOP parameter is active (FALSE - not wired to), meaning that the drive will only run while the RUN parameter is held TRUE.

Figure 3.12 Wiring for Two Wire Logic Starting (Re-configured Default Configurations)

Operating the Drive

Three Wire Logic Starting

Re-configure the DSE 890 default configuration(s) by connecting SETUP::SEQ \& REF::SEQUENCING LOGIC::REMOTE REV OUT to SETUP::SEQ \& REF::REFERENCE::REMOTE REVERSE.

Figure 3.13 Wiring for Three Wire Logic Starting (Re-configured Default Configurations)

- Fit normally-open push button switches to RUN FORWARD and RUN REVERSE.
- Fit a normally-closed push button switch to NOT STOP, thus NOT STOP is held TRUE (24V). When TRUE, the action of NOT STOP is to latch the RUN FORWARD and RUN REVERSE signals. When FALSE, these signals are not latched.
For example, operating the RUN FORWARD switch starts the drive running forward. Operating the RUN REVERSE switch causes the drive to run in reverse. Operating the NOT STOP switch (making "NOT STOP" FALSE) at any time causes the drive to stop running.

Note The JOG parameter is never latched in this way. The drive only jogs while the JOG parameter is TRUE.

Starting Several Drives Simultaneously

IMPORTANT We do not recommend that the DRIVE ENABLE signal is used to start a drive in "normal" use.
Use the DRIVE ENABLE parameter to control the output power stack. When this parameter is FALSE, the power stack is disabled regardless of the state of any other parameters. In conjunction with the HEALTH output parameter, DRIVE ENABLE can synchronise several drives on power-up.

Operating the Drive

Application Advice

Application advice is available through our Technical Support Department, who can also arrange for on-site assistance if required. Refer to the back cover of this manual for the address of your local Parker SSD
Drives company.

- Always use gold flash relays, or others designed for low current operation (5 mA), on all control wiring.
- Remove all power factor correction equipment from the motor side of the drive before use.
- Avoid using motors with low efficiency and small $\cos ø$ (power factor) as they require a larger kVA rated drive to produce the correct shaft kW .

Brake Motors

Brake motors are used in applications requiring a mechanical brake for safety or other operational reasons. The motor can be a standard induction motor fitted with an electro-mechanical brake, or it could be a special conical rotor machine. In the case of a conical rotor machine the spring-loaded brake is controlled by the motor terminal voltage as follows:

- At rest the motor is braked.
- When the motor is energised an axial component of the magnetic field due to the conical air-gap overcomes the force of the brake spring and draws the rotor into the stator. This axial displacement releases the brake and allows the motor to accelerate like a normal induction motor.
- When the motor is de-energised the magnetic field collapses and the brake spring displaces the rotor, pushing the brake disc against the braking surface.
Drives can be used to control the speed of conical rotor brake motors since the linear V/F characteristic maintains the motor magnetic field constant over the speed range. It will be necessary to set the FIXED BOOST parameter to overcome motor losses at low speed (see the FLUXING menu on the Keypad).

Operating the Drive

Using Output Contactors

The use of output contactors is permitted. It is recommended that this type of operation be limited to emergency use only or in a system where the drive can be inhibited before closing or opening this contactor.

Using Motor Chokes (output)

Installations with long cable runs may suffer from nuisance overcurrent trips, refer to Appendix E: "Technical Specifications" - Cabling Requirements for maximum cable lengths. A choke may be fitted in the drive output to limit capacitive current. Screened cable has a higher capacitance and may cause problems in shorter runs.

Frame	Parker SSD Drives Part Number
G	CO466709U073
H	CO466709U083
J	CO466250U012

Contact Parker SSD Drives for recommended choke values.

Operating the Drive

Using Multiple Induction Motors on a Single Drive

A single large drive can be used to supply several smaller induction motors provided that each individual motor has overload protection.
Note Conventional V/F control strategy must be enabled for use with parallel motors. (Sensorless vector control strategy cannot be used). See the VECTOR ENABLE parameter under VECTOR SET-UP menu at level 2.
The drive must be rated to supply the total motor current. It is not sufficient to simply sum the power ratings of the motors, since the drive has also to supply the magnetising current for each motor.

Note that the overload device will not prevent the motor overheating due to inadequate cooling at low speed. Force vented motors may be required; consult your motor supplier.

Figure 3.14 Single Drives supplying Multiple Motors

WARNING

All motors should be connected to the drive output before the START command is given.

Caution

Restrict the total cable length on multiple motor installations as follows:
50 metres with no output choke fitted,
300 metres with choke.

Operating the Drive

High Starting Torque

Applications requiring high motor starting torque (greater than 100% of rated torque) need careful setup of the drive voltage boost feature. Gradually increase the FIXED BOOST parameter in 1% steps until the drive generates sufficient starting torque.
It is important to use the minimum level of FIXED BOOST necessary to accelerate the load. Using a level of FIXED BOOST higher than necessary will lead to increased motor heating and increased risk of drive overload.

Setting the FIXED BOOST parameter level too high can also cause the drive current limit feature to operate. If this occurs, the drive will be unable to ramp up in frequency. The IT LIMITING diagnostic (INVERSE TIME function block) will indicate TRUE when the inverse time current limit feature is operating. Simply reducing the level of the FIXED BOOST parameter will remove this problem.

Note Motor torques greater than 100\% require high currents to be drawn from the drive. Thus, the CURRENT LIMIT parameter (CURRENT LIMIT function block) will have to be set accordingly such that the drive current limit feature will not activate when accelerating the load.
The best motor starting performance can be achieved by setting up the SLIP COMP function block, refer to the Appendix D: "Programming" - SLIP COMP. Also setting the BASE VOLTS parameter (VOLTAGE CONTROL function block) to 115.4% and the FREQ SELECT parameter (PATTERN GEN function block) to 3 kHz , can help to start difficult loads in the most extreme cases.

Operating the Drive

890CD/SD 4-Q Regen AFE Applications

Introduction

A 4-Q REGEN (4 Quadrant Regenerative) control mode is available on all 890CD Common Bus Drives and 890 Standalone Drives, provided that:

- the drive uses Software Version 1.x (1.8 or greater), or Software Version 3.x (Software Version 2.x does not support 4Q mode)

AND

- for Frame B-D: the SETUP::MISCELLANEOUS::EMC CAPACITORS parameter is set to (1) NOT CONNECTED
- for Frame E-K: the drive displays " $/ 007$ " in Block 12 of the (Europe) Product Code indicating that Special Option 7 is applied ("Y" cap disconnection)

IMPORTANT All drives in a common DC link scheme using a 4-Q Regen front-end MUST have their internal EMC filter " Y " caps to earth (PE) removed.

The 4-Q REGEN control mode allows a single 890 to act as a 4-Q power supply unit that is capable of drawing (motoring) and supplying (regenerating) sinusoidal, near-unity power factor current from the supply.
The output from the 4-Q Regen drive acts as a DC supply which is used to power other drives on a common DC Bus system.

Operating the Drive

Advantages

Using the 890 as a 4-Q power supply in common DC Bus schemes provides the following advantages:

- Simplified approach to Common DC Link systems
- Allows standard 890 drive to act as 4-Q DC Link power supply unit
- Near-sinusoidal supply currents (Motoring and Regenerating)
- Near-unity power factor operation (0.99 or better)
- Low supply harmonics currents (helps to meet G5/4 and IEEE519)

WARNING!

890 drives operating in 4-Q REGEN control mode are NOT suitable for use on systems where the mains supply (L1, L2, L3) is provided by a generator
(where the supply cannot absorb the regenerated current).

Operating the Drive

4-Q Active Front End

The 4-Q Regen drive requires the following 4-Q Active Front End:

Notes:

Contactor CON1 is rated to match the 4-Q power supply drive current (AC1 rating)
The 3\% and 5\% line chokes are custom designed for this application. Refer to page 6-42.

Operating the Drive

Power Filter Panel				Frame
kW	Volts	Part Number 110V fans + control	Part Number 230V fans + control	
B	4	230	LA482467U004	LA482470U004
C	7.5	230	LA482467U011	LA482470U011
D	18.5	230	LA482467U018	LA482470U018
E	22	230	LA482467U030	LA482470U030
F	45	230	LA482467U055	LA482470U055
B	6	400	LA482468U006	LA482471U006
C	15	400	LA482468U018	LA482471U018
D	30	400	LA482468U037	LA482471U037
E	45	400	LA482468U055	LA482471U055
F	90	400	LA482468U110	LA482471U110
G	180	400	LA482468U220	LA482471U220
H	280	400	LA482468U315	LA482471U315
J	315	400	LA482468U355	LA482471U355
B	6	500	LA482469U006	LA482472U006
C	15	500	LA482469U018	LA482472U018
D	30	500	LA482469U037	LA482472U037
E	45	500	LA482469U055	LA482472U055
F	90	500	LA482469U110	LA482472U110
G	180	500	LA482469U220	LA482472U220
H	280	500	LA482469U315	LA482472U315
J	315	500	LA482469U355	LA482472U355

Operating the Drive

EMC Filtering

We recommend all 890 Regen systems meet the EMC product specific standard EN61800-3. To achieve this, an EMC filter is required. Refer to Chapter 5: "Associated Equipment" for details of suitable filters.

Contactor and Fusing

- Use AC Line Fuses to protect the 4-Q Regen drive. These fast, semiconductor protection fuses must be capable of withstanding the system AC supply voltage. Refer to Appendix E.
- The AC contactor, CON1, used in the external pre-charge circuit must have an AC1 or thermal rating of the constant torque current rating of the 4-Q Regen drive. Refer to page 6-39.
- Use DC Link fuses in both the DC+ and DC- lines to protect each drive connected to the common DC bus. The fuses must be of suitable current rating and capable of withstanding 1000 Vdc . Although HRC fuses would be adequate, the high DC voltage requirement $(1000 \mathrm{Vdc})$ may limit the choice to semiconductor fuses. Refer to page 6-37.
- The DC contactor used in the Brake Mode system (refer to page 6-35) must have an adequate thermal rating for the regen current required. Typically the regen rating of the system, and hence the rating of the DC contactor and fuses, will be less than motoring requirement as the contactor should not open under load.

Drive Set-up

The 890 Common Bus drive must be set-up correctly to work in a 4-Q Regen Control/Common DC Bus Application.
Typically the system will contain an 8904 -Q Regen drive providing the 4-Q power supply, and one or more 890 drives on the common DC bus.

Operating the Drive

Settings

All 890CD and 890SD Drives

ALL 890 drives in the system MUST have their internal EMC "Y" caps to earth disconnected.
Set the demanded boosted DC link voltage (DC VOLTS DEMAND) appropriately for the drive voltage rating. This is given in the separate table below.
Refer to Appendix D for a full description of the REGEN CONTROL function block parameters.

890 4-Q Regen Drive:

Create an application using the DSE 890 Configuration Tool.
Refer to page 6-29 for wiring details.

```
MM/ Menu Map
1 SETUP
2 MOTOR CONTROL
3 MOTOR DATA
    CONTROL MODE
    -LEAKAGE INDUC
```


Set the CONTROL MODE parameter to "4-Q REGEN".
Set the LEAKAGE INDUC parameter to the value of the total line choke inductance. Refer to page 6-43.

Operating the Drive

Other 890 Drives on the Bus

Set the ENABLE parameter in the SLEW RATE LIMIT function block to FALSE.
This disables ramp-hold during deceleration on high link volts feature.
MMI Menu Map
1 SETUP
2 MOTOR CONTROL
3 SLEW RATE LIMIT EnabLe

If in Volts/Hz motor control mode, the VOLTAGE MODE parameter in the VOLTAGE CONTROL function block MUST be set to FIXED. This will ensure the motor is not overfluxed by the boosted 720V DC Bus. Failure to do this may lead to motor overheating and possible burn out.

MMI Menu Map
SETUP
MOTOR CONTROL

3 yoltage control voltage mode

Setting for DC VOLTS DEMAND Parameter

Drive Voltage Rating (V)	Under Volts Trip Level (V)	Over Volts Trip Level (V)	Recommended DC VOLTS DEMAND
$380 \mathrm{~V}-460 \mathrm{~V}$	410 V	820 V	720 V
$220 \mathrm{~V}-240 \mathrm{~V}$	205 V	410 V	370 V

Operating the Drive

Create DSE 890 Application

Use the DSE 890 Configuration Tool to configure the drive for the 4Q Regen application. A suggested wiring diagram for the 890 control board is shown below.

Operating the Drive

| Connection Table | PREF | |
| :--- | :--- | :--- | :--- |
| DIN1 | to SETUP::MOTOR CONTROL::REGEN CNTRL::PRECHARGE CLOSED | 114.01 |
| DIN2 | to SETUP::SEQ \& REF::SEQUENCING LOGIC::NOT COAST STOP | 92.08 |
| DIN3 | to SETUP::SEQ \& REF::SEQUENCING LOGIC::RUN FORWARD | 92.01 |
| DIN7 | to SETUP::SEQ \& REF::SEQUENCING LOGIC::REM TRIP RESET | 92.10 |
| DOUT2 | to SETUP::MOTOR CONTROL::REGEN CNTRL::CLOSE PRECHARGE | 114.12 |

REGEN CONTROL Function Block, for example:

Operating the Drive

A Single Motor System

The simplest configuration for 4-Q Regen control is a single 890 Regen drive acting as the unity power factor supply, connected via the DC link to another 890 driving the application.

Applications of single motor 4-Q Regen systems include :

- Hoist and Elevators
- Dynamometer test rigs
- Unwind Stands
- Installations that would otherwise require a Harmonic Power Filter

In this system, the two 890 drives are matched in power. The 4-Q Regen drive supplies the full motoring and regenerating requirement of the load.

Operating the Drive

Additional external equipment required by the 4-Q Regen drive includes :

- EMC Filter
- AC Line Fuses
- DC Link Fuses

No extra hardware is required to detect the rotation, frequency and phase of the mains supply. Also, no dynamic braking resistor is required.
When mains power is applied to the 4-Q Regen drive, the DC link slowly charges through the external precharge circuit and the drive's internal power supply will start in the normal way. If the 4-Q Regen drive is healthy and the Run signal is applied, it will synchronise to the mains supply (phase, rotation and frequency). This process takes approximately 100 ms . After synchronisation, the DC link on the common bus is boosted to approximately 720 V (on a 400 V product). This high value of DC link volts is required for successful regen operation.

Operating the Drive

A Multi-Motor System

Operating the Drive

In many applications, the total power consumed by the system is less than the installed power of the drives.
This is because some drives are motoring (eg. winders) and some are regenerating (eg. unwinders). In these situations it is convenient to connect the drives on a common DC link.

In this system, the 4-Q Regen drive supplies the motoring and regenerating requirement of the load.
Additional external equipment required by the $4-\mathrm{Q}$ Regen drive includes :

- EMC Filter
- AC Line Fuses
- DC Link Fuses

No extra hardware is required to detect the rotation, frequency and phase of the mains supply. Also, no dynamic braking resistor is required.
The 4-Q Regen drive draws sinusoidal, unity power factor current from the supply and only has to be rated for either the power consumed or supplied by the system, or by the system braking requirements, whichever is the larger.
Dynamic Braking (eg. for Emergency Stopping purposes) can still be used in this control mode if required.

Operating the Drive

A Smart Brake System

IMPORTANT It is essential to use an isolation transformer on the supply to the Smart Brake drive, as shown above.

Operating the Drive

The 4-Q Regen drive can act as a Smart Brake:
4-Q Regen Drive:

- In addition to the settings given in "Drive Set-up", page 7-26, set the BRAKE MODE parameter in the REGEN CONTROL function block to TRUE.

In this system, the 4-Q Regen drive supplies the regenerating requirement of the load.

Additional external equipment required by the 4-Q Regen drive includes:

- EMC Filter
- AC Line Fuses
- DC Link Fuses

During motoring operation, the drives on the common link are supplied via their own internal 3-phase diode bridge. The 4-Q Regen drive tracks the mains supply but does not supply motoring power to the common DC Link.
During regeneration, the DC link voltage will rise and trigger the 4-Q Regen drive to return the excess power to the mains (sinusoidal current, unity power factor).

Thus, the 4-Q Regen drive acts as a smart, no loss, Dynamic Brake.
The BRAKE MODE allows the level of regeneration (braking) capacity in the system to be rated differently from the required motoring capacity.
When using the Brake Mode, each drive is responsible for pre-charging its own DC Link. When an individual drive is pre-charged and healthy, it connects itself on to the common DC Bus via a DC contactor.
The drives disconnect from the common bus if a trip occurs.

Operating the Drive

DC Link Fuses

Below is a list of parts for the DC Link Fuses. Refer to the Electrical Ratings tables for Quadratic Duty motor powers. Select the correct part for the drive's Motor Power.

Motor Power (Constant Duty @ 400V) (kW/Hp)	Frame Size	DC Fuse Rating (A)	DC Fuse Type	Fuse	Fuse Switch	Fuse Holder
$0.75 / 1$	B	15	CO89495J	CS481079	CS481099	CS481039
$1.5 / 2$	B	15	CO89495J	CS481079	CS481099	CS481039
$2.2 / 3$	B	15	CO89495J	CS481079	CS481099	CS481039
$4 / 5$	B	15	CO89495J	CS481079	CS481099	CS481039
$5.5 / 7.5$	C	40	SO86795J	CS481080	CS481099	CS481039
$7.5 / 10$	C	40	SO86795J	CS481080	CS481099	CS481039
$11 / 15$	C	40	SO86795J	CS481080	CS481099	CS481039
$15 / 20$	D	80	FWP 80BI	CS481081	CS481088	
$18.5 / 25$	D	80	FWP 80BI	CS481081	CS481088	
$22 / 30$	D	80	FWP 80BI	CS481081	CS481088	
$30 / 40$	E	150	IXL70F150	CS481082	CS481088	
$37 / 50$	E	150	IXL70F150	CS481082	CS481088	
$45 / 60$	E	150	IXL70F150	CS481082	CS481088	
$55 / 75$	F	300	IXL70F300	CS481083	CS481088	

Operating the Drive

Motor Power (Constant Duty @ 400V) (kW/Hp)	Frame Size	DC Fuse Rating (A)	DC Fuse Type	Fuse	Fuse Switch	Fuse Holder
$75 / 100$	F	300	IXL70F300	CS481083	CS481088	
$90 / 125$	F	300	IXL70F300	CS481083	CS481088	
$90 / 150$	F	300	IXL70F300	CS481083	CS481088	
$110 / 150$	G	350	IXL70F350	CS481084	CS481088	
$132 / 200$	G	600	IXL70F600	CS481085	CS481088	
$160 / 250$	G	600	IXL70F600	CS481085	CS481088	
$200 / 300$	H	600	IXL70F600	CS481085	CS481088	
$220 / 350$	H	800	FWP 800AI	CS481086	CS481088	
$250 / 400$	H	800	FWP 800AI	CS481086	CS481088	
$280 / 450$	H	800	FWP 800AI	CS481086	CS481088	
$315 / 500$	J	900	FWP 900AI	CS481087	CS481088	

Operating the Drive

Pre-Charge Sizing

The external pre-charge contactor is required to carry the full load current rating (including overload) of the 4-Q Regen drive. Thus, it must have an AC1 rating of the Constant Duty current rating of the drive. Refer to the Electrical Ratings tables for Constant Duty motor powers.

We recommend that standard SSD Dynamic Braking resistors are used for the external pre-charge circuit. The continuous and peak power capabilities of these resistors are given below:

SSD Part №	Resistance (Ω)	Continuous Power Rating (W)	Peak Power Rating (kW)
CZ389853	100	100	2.5
CZ463068	56	200	5
CZ388396	36	500	12.5

The recommended pre-charge resistor networks are shown in the table below. The table indicates the amount of total DC Link capacitance the network can charge for a given supply voltage.

External Pre-Charge Network	Continuous Power Rating (W)	Impulse Joule Rating (J)	Pre-Charge Capability ($\mu \mathrm{F}$) @ $240 \mathrm{~V}_{\text {rms }}+10 \%$	Pre-Charge Capability ($\mu \mathrm{F}$) @ $460 \mathrm{~V}_{\text {rms }}+10 \%$
- 100 Ohm 100W -	100	2,500	35,000	9,700
- 56 Ohm 200w -	200	5,000	71,000	19,500
036 Ohm 500 W -	500	12,500	179,000	48,800

Operating the Drive

The internal DC Link Capacitance for each drive in the 890 range is given in the table below:

Drive Power (kW/Hp)	230V Units Nominal		400V Units Nominal		500 V Units Nominal	
	Size	$\mu \mathrm{F}$	Size	$\mu \mathrm{F}$	Size	$\mu \mathrm{F}$
0.55/0.75	B	470			B	235
1.1/1.5	B	470			B	235
1.5/2	B	940			B	235
2.2/3	B	940			B	235
4/5	B	1410			B	470
5.5/7.5	C	4200			B	705
7.5/10	C	4200			B	705
11/15					C	1400
15/20					C	2100
18.5/25					D	2100
22/30					D	2100
30/40					D	2800
37/50			E	3000	E	3000
45/60			E	3500	E	3500
55/75			F	5600	F	5600
75/100			F	5600	F	5600

Operating the Drive

Drive Power (kW/Hp)	230V Units Nominal		400V Units Nominal		500V Units Nominal	
	Size	$\mu \mathrm{F}$	Size	$\mu \mathrm{F}$	Size	$\mu \mathrm{F}$
90/125			F	5600	F	5600
-/150				ada only	F	5600
110/150			G	6600		
132/200			G	9900		
160/250			G	13500		
180/300			G	13500		
200/300			H	14850		
220/350			H	14850		
250/400			H	20250		
280/450			H	20250		
315/500			J	19800		

Simply sum the DC Link capacitance for all the drives on the common DC Link and select the appropriate pre-charge network.
For example: a system comprising $5 \times 37 \mathrm{~kW}, 400 \mathrm{~V}$ Frame E drives would have a total DC Link capacitance of:
$C_{\text {Total }}=5 \times 3000 \mu F=18,000 \mu F$

This is less than $19,500 \mu \mathrm{~F}$ and thus a $56 \Omega, 200 \mathrm{~W}(\mathrm{CZ463068})$ resistor will be adequate.

Operating the Drive

3-Phase Choke Sizing

One of the benefits of the 890 4-Q Regen drive is the reduction in the levels of harmonic currents drawn from the supply. The total harmonic distortion (THD) of the mains current is related to the PWM switching frequency, the supply voltage, the supply frequency and the inductance of the 3-phase line choke. The maximum allowed PWM carrier frequency in non-overload conditions, for each frame size is given below:

890 Frame Size	PWM Carrier Frequency
B to F	3 kHz
G and H	2.5 kHz
J	2 kHz

The IEEE 519 standard (IEEE Standard Practices and Requirements for Harmonic Control in Electrical Power Systems) requires a THD of current of 5\%. The tables below show the recommended 3-phase line chokes (5% and 3% in series) and expected THD of current for 400 V and 230 V drives.
The PWM switching produces high levels of harmonic current in the 3% chokes. It is essential to have these properly rated to avoid significant overheating. Suitable chokes have been developed for Parker SSD Drives and their Part Numbers are provided below.

Operating the Drive

5\% Choke

Drive Frame Size	Motor Power (kW/Hp)	Input Voltage (V)	Choke	Inductance ($\mu \mathrm{H}$)	Currents			
					$\mathbf{5 0 H z}$	1kHz	2.5 kHz	Sum
B	4/5	230	CO468342U004	1424	14.85	0.30	2.72	16
C	7.5/10	230	CO468342U011	839	25.20	0.50	4.61	26
D	18.5/25	230	CO468342U018	346	61.20	1.22	11.20	63
E	22/30	230	CO468342U030	294	72.00	1.44	13.18	74
F	45/60	230	CO468342U055	153	138.60	2.77	25.36	141
B	6/10	400	CO468326U006	2918	12.60	0.25	2.31	13
C	15/20	400	CO468326U018	1362	27.00	0.54	4.94	28
D	30/40	400	CO468326U037	693	53.10	1.06	9.72	54
E	45/60	400	CO468326U055	470	78.30	1.57	14.33	80
F	90/150	400	CO468326U110	227	162.00	3.24	29.65	165
G	180/300	400	CO468326U220	114	324.90	6.50	59.46	331
H	280/450	400	CO468326U315	79	468.00	9.36	85.64	476
J	315/500	400	CO468326U355	70	531.00	10.62	97.17	540

Operating the Drive

3\% Choke

Drive Frame Size	Motor Power (kW/Hp)	Input Voltage (V)	Choke	Inductance$(\mu \mathrm{H})$	Currents			
					50Hz	1kHz	2.5 kHz	Sum
B	4/5	230	CO468341U004	854	14.95	0.39	0.00	15
C	7.5/10	230	CO468341U011	503	25.38	0.66	0.00	26
D	18.5/25	230	CO468341U018	208	61.63	1.59	0.00	62
E	22/30	230	CO468341U030	177	72.50	1.87	0.00	73
F	45/60	230	CO468341U055	92	139.57	3.60	0.00	140
B	6/10	400	CO468325U006	1750	12.69	0.33	0.00	13
C	15/20	400	CO468325U018	817	27.19	0.70	0.00	28
D	30/40	400	CO468325U037	416	53.47	1.38	0.00	54
E	45/60	400	CO468325U055	282	78.85	2.04	0.00	79
F	90/150	400	CO468325U110	137	163.13	4.21	0.00	164
G	180/300	400	CO468325U220	68	327.17	8.45	0.00	328
H	280/450	400	CO468325U315	48	471.28	12.17	0.00	472
J	315/500	400	CO468325U355	42	534.72	13.81	0.00	535

Lower values for THD of current can be achieved by adding extra line impedance.

Chapter 7

The Keypad

In this chapter, learn about the control keys and keypad indications. The main menu maps are shown here, but for details of sub-menus refer to Chapter 8.

- Introduction
- 6901 Keypad
- Remote Mounting the Keypad

The Keypad

Introduction

The 890SD unit is fitted with the 6901 Keypad.
The 6901 Keypad can be mounted up to 3 metres away from the 890 using the optional panel mounting kit with connecting lead: refer to "Remote Mounting the Keypad", page 7-27.

6901

The keypad displays the following information:

6901 Keypad

The 6901 Keypad (Man-Machine Interface, MMI) provides for local control of the drive, monitoring, and complete access for application programming.

To display the Software Version:
 version. Time-out or press

To Start in

 Local Mode:

To Stop in Local Mode:

Initial Power-Up Conditions

The Keypad will display the Operator menu on the 890SD Standalone Drive.

The Keypad

Control Key Definitions

Keys for Programming the Drive

UP	Navigation - Moves upwards through the list of parameters or menus Parameter - Increments the value of the displayed parameter. Command Acknowledge - Confirms action when in a command menu.
DOWN	Navigation - Moves downwards through the list of parameters or menus Parameter - Decrements the value of the displayed parameter.
ESCAPE	Navigation - Displays the previous level's Menu. Parameter - Returns to the parameter list. Trip Message - Clear the Trip or Error message from the display.
MENU	Navigation - Displays the next Menu level, or the first parameter of the current Menu. Parameter - Allows a writable parameter to be modified (this is indicated by \rightarrow appearing on the left of the bottom line). Hold to display the PREF.
PROG	Navigation - Toggles between current locations within the Operator menu and any other menu.
RROE	

Keys for Operating the Drive Locally

FORWARD/ REVERSE (3)	Control - Changes the direction of motor rotation. Only operates when the drive is in Local Speed Control mode.
JOG	Control - Runs the motor at a speed determined by the JOG SETPOINT parameter. When the key is released, the drive returns to "stopped". Only operates when the drive is "stopped" and in Local Start/Stop mode.
RUN	Control - Runs the motor at a speed determined by the LOCAL SETPOINT or REMOTE SETPOINT parameter. Trip Reset - Resets any trips and then runs the motor as above. Only operates when the drive is in Local Start/Stop (Seq) mode.
(1)	Control - Stops the motor. Only operates when the drive is in Local Sequence mode. Trip Reset - Resets any trips and clears displayed message if trip is no longer active.
STOP/RESET	
(

The Keypad

The L/R Key

The \mathbf{L} / \mathbf{R} key (LOCAL/REMOTE) toggles between Remote and Local Mode. In doing so, the view of the SETPOINT parameter in the OPERATOR menu toggles between SETPOINT (LOCAL) and SETPOINT (REMOTE). The default is for the SETPOINT (REMOTE) parameter to be displayed.

Note A different naming convention is applied in the OPERATOR menu for these parameters when displayed as the first parameter entry:

- REMOTE SETPOINT is displayed as SETPOINT (REMOTE)
- LOCAL SETPOINT is displayed as SETPOINT (LOCAL)
- COMMS SETPOINT is displayed as SETPOINT (COMMS)
- JOG SETPOINT is displayed as SETPOINT (JOG)

Pressing the L/R key when in Remote mode takes you directly to the SETPOINT (LOCAL) parameter with the Edit mode enabled. Press the PROG key to return to the previous display.

The Keypad

The PROG Key

The PROG key toggles between the OPERATOR menu and any other menu, remembering and returning to previous positions in each menu. As you press the PROG key, the title of the menu you are about to enter is displayed, i.e. OPERATOR or for example DIAGNOSTICS. Releasing the key clears the display and releases you into that menu.

Holding the PROG key for approximately three seconds takes you to the SAVE CONFIG menu. Refer to
"How to Save the Application", page 7-17.

The Keypad

LED Indications

There are seven LEDs that indicate the status of the drive. Each LED is considered to operate in three different ways:OFF
FLASH
$\longrightarrow \mathrm{ON}$
The LEDs are labelled HEALTH, LOCAL (as SEQ and REF), RUN, STOP, FWD and REV. Combinations of these LEDs have the following meanings:

HEALTH	RUN	STOP	Drive State
\bigcirc	\bigcirc	\bigcirc	Re-Configuration
\bigcirc	\longrightarrow	\longrightarrow	Tripped
\longrightarrow	\square	\longrightarrow	Stopped
\square	\square	\bigcirc	Stopping
\longrightarrow	\bigcirc	\bigcirc	Running with zero speed demand or enable false or contactor feedback false
\square	\longrightarrow	\longrightarrow	Running
D	D	\square	Running
D	\bigcirc	\bigcirc	Autotuning
\bigcirc	\bigcirc	-	Auto Restarting, waiting for trip cause to clear
\bigcirc	\bigcirc	\square	Auto Restarting, timing

The Keypad

FWD	REV	Forward / Reverse State
	\hookrightarrow	Requested direction and actual direction are forward
∞		Requested direction and actual direction are reverse
∞	\circlearrowleft	Requested direction is forward but actual direction is reverse
∞	∞	Requested direction is reverse but actual direction is forward

LOCAL SEQ	LOCAL REF	Local / Remote Mode
		Start/Stop (Seq) and Speed Control (Ref) are controlled from the terminals
		Start/Stop (Seq) is controlled using the RUN, STOP, JOG and FWD/REV keys. Speed Control (Ref) is controlled from the terminals
		Start/Stop (Seq) is controlled from the terminals Speed Control (Ref) is controlled using the up (s) and down (t) keys
	Start/Stop (Seq) and Speed Control (Ref) are controlled using the Keypad keys	

The Keypad

The Menu System

The unit will initialise in Remote Mode from factory conditions. The Keypad will display the Operator Menu. Each menu contains parameters.

Welcome Screen Displays the software version of the unit

From the Welcome Screen, the display times-out (alternatively you can press the $(\mathbb{M}$ key) to show the first of 4 menus:

A customised view of selected parameters

Operator

Diagnostics

Quick Setup

Setup

System
contained in the SETUP menu. Refer to Chapter 8.

A view of important diagnostic parameters contained in the SETUP menu. Refer to Chapter 8.

A quick-setup list of the most commonly used configuration parameters. Refer to Chapter 8.

Contains all the function blocks parameters for programming your application. Refer to Appendix D.

Application "save" and macro selection.

The Keypad

The Menu System Map

The Keypad
The Menu System Map continued

Navigating the Menu System

On power-up, the Keypad defaults into the OPERATOR menu, timing out from the Welcome screen. You can skip the timeout by pressing the M key immediately after power-up which will take you directly to the OPERATOR menu.
The menu system can be thought of as map which is navigated using the four keys shown opposite.

Keys \mathbf{E} and \mathbf{M} navigate through the menu levels.
The up $(\boldsymbol{\otimes})$ and down $(\boldsymbol{\nabla})$ keys scroll through the Menu and
 Parameter lists.

Refer to "The Menu System Map" to see how the full menu is mapped.
HINT: Remember that because the Menu and Parameter lists are looped, the $\boldsymbol{\Delta}$ key can quickly move you to the last Menu or Parameter in the loop.

The Keypad

Alert Message Displays

A message will be displayed on the Keypad when either:

- A requested operation is not allowed:

The top line details the illegal operation, while the bottom line gives the reason or cause. See example opposite.

- The drive has tripped:

The top line indicates a trip has occurred while the bottom line gives the reason

* KEY INACTIVE * REMOTE SEQ
*** TRIPPED *** HEATSINK TEMP for the trip. See example opposite.

Most messages are displayed for only a short period, or for as long as an illegal operation is tried, however, trip messages must be acknowledged by pressing the \mathbf{E} key.
Experience will show how to avoid most messages. They are displayed in clear, concise language for easy interpretation. Refer to Chapter 9: "Trips and Fault Finding" for trip messages and reasons.

Selecting Local or Remote Mode

The unit can operate in one of two ways:
Remote Mode: Remote control using digital and analog inputs and outputs
Local Mode: \quad Providing local control and monitoring of the drive using the Keypad
Local control keys are inactive when Remote Mode is selected.
Note You can only change between Local and Remote Mode when the unit is "stopped".
Remote to Local Mode:
To toggle
between Modes:
Press $\frac{L}{R}$

Local to Remote Mode:

To toggle between Modes:

Press $\frac{L}{R}$

Refer to "The L/R Key", page 7-6.

The Keypad

How To Change a Parameter Value

You can change the values of parameters stored in the OPERATOR, QUICK SETUP and SETUP menus. Refer to Chapter 8 for further information.

- View the parameter to be edited and press (M) to display the parameter's value.
- Select the digit to be changed (pressing the (M) key moves the cursor from right to left).
- Use the \bigcirc keys to adjust the value. Hold the key momentarily to adjust the value marginally, or hold the key to make rapid changes; the rate of change varies with the time held.
- Press \boldsymbol{E} to return to the parameter display.

How to Save the Application

The SAVE menu, available in all menu levels, is used to save any changes you make to the Keypad settings.

Press the UP key as instructed to save all parameters. Values are stored during power-down.

The Keypad

Special Menu Features

Selecting the Menu Level

For ease of operation there are three `viewing levels' for the Keypad. The setting for the VIEW LEVEL parameter decides how much of the menu system will be displayed. The choice of menu for each has been

MMI Menv Map
1 QUICK SETUP
VIEW LEVEL designed around a type of user, hence we have the Operator, Basic and Advanced viewing levels.
In the QUICK SETUP menu, press the key to quickly move to VIEW LEVEL, the last parameter in the menu.
Note The contents of the OPERATOR menu remains unchanged for all view levels.
Refer to "The Menu System Map", page 7-11 to see how VIEW LEVEL changes the menu.

Quick Save Feature

From anywhere in the menu system, hold down the PROG key for approximately 3 seconds to move quickly to the SAVE CONFIG menu. You can save your application and return conveniently to your original display.

The Keypad

Quick Tag Information

With a parameter displayed, hold down the \mathbf{M} key for approximately 3 seconds to display the parameter's tag number (a message may be displayed during this time).

The Keypad

Password Protection (6901 keypad)

When activated, the password prevents unauthorised parameter modification by making all parameters "read-only". If you attempt to modify a password protected parameter, you will be prompted for the password.
The password protection is activated/deactivated using the PASSWORD parameter.

MMI Menu Map

1 SETUP
2 MENUS
3 ACCESS CONTROL

To Activate Password Protection

By default the password feature is deactivated, i.e. 0000 .

1. Enter a new password in the PASSWORD parameter (anything other than the default value of 0000), for example 0002.
2. Press the \mathbf{E} key repeatedly until the Welcome screen is displayed. Pressing the \mathbf{E} key again activates password protection.

Note Perform a SAVE CONFIG if you need the password to be saved on power-down.

The Keypad

To De-activate Password Protection

If you try to change the value of a parameter with password protection activated, the PASSWORD screen is displayed for you to enter the current password. If you enter the password correctly password protection is temporarily de-activated.

To Re-activate Password Protection

Re-activate an existing password by pressing the \mathbf{E} key repeatedly until the PASSWORD LOCKED screen is displayed.

To Remove Password Protection (default status)

Navigate to the PASSWORD parameter and enter the current password. Press the E key. Reset the password to 0000 . Password protection is now removed.
You can check that password protection has been removed by repeatedly pressing the \mathbf{E} key until the Welcome screen is displayed. Pressing the E key again will NOT display the PASSWORD LOCKED screen.

Note Perform a SAVE CONFIG if you need "no password" to be saved on power-down.

Power-up Key Combinations

Resetting to Factory Defaults (2-button reset)

A special key combination restores to the drive the current product code default parameter values. This feature is only available at power-up as a security measure.

6901 Keypad Combination

Hold down the keys opposite:
Power-up the drive, continue to hold for at least 2 seconds

RESTORE DEFAULTS "UP" TO CONFIRM

On pressing "UP", the factory defaults will be restored. The keypad will display the RESTORE DEFAULTS menu. Press "E" to exit this menu.
If you decide not to update to factory defaults, press the "E" key twice to return to the menus at level 1.

The Keypad

Changing the Product Code (3-button reset)

On rare occasions it may be necessary to change the default settings by changing the Product Code. The Product Code is detailed in Appendix E.
A special key combination is required to change the product code. This feature is only available at powerup as a security measure.
The 3-button reset will take you to the POWER BOARD menu in the expanded SYSTEM menu (highlighted in the diagrams below).

6901 Keypad Combination

IMPORTANT We recommend the menus marked * above are only used by Parker SSD Drives or suitably qualified personnel.
Note The LANGUAGE menu currently contains selection for ENGLISH only.

POWER BOARD (6901 keypad)

The diagram above shows a 3-button reset when there is no power data stored in the drive. If the drive has power data stored, then the "Power Data Corrupt" and "Language Defaults Loaded" alert messages will not be displayed, also the display will show the current power board selection, instead of "????kW ???V".

The Keypad

DEFAULT TO 60HZ

The setting of this parameter selects the drive operating frequency. It affects those parameters whose values are dependent upon the default base frequency of the drive. Settings will only be updated following a "restore macro" operation.
The default is 50 Hz ($6511 \mathrm{keypad}=0,6901 \mathrm{keypad}=$ FALSE $)$.
Refer to Appendix D: "Programming" - Frequency Dependent Defaults.

RESTORE DEFAULTS

Refer to "Resetting to Factory Defaults (2-button reset)", page 7-23.

Remote Mounting the Keypad

Fitting the Remote 6901 Keypad

The 6052 Mounting Kit is required to remote-mount a 6901 Keypad. An enclosure rating of IP54 is achieved for the remote Keypad when correctly mounted using the 6052 Mounting Kit.

6052 Mounting Kit Parts for the Remote Keypad

Tools Required
No. 2 Posidrive screwdriver.

6052 Mounting Kit

1	\square	1	\square
4	$\square N o .6 \times 12 \mathrm{~mm}$	1	$3 \mathrm{~m}, 4$-way

The Keypad

Assembly Procedure

Figure 7.1 Mounting Dimensions for the Remote-Mounted 6901 Keypad

Keypad Menus

Chapter 8

Keypad Menus

This chapter details the Keypad menus available on the 6511 and 6901 Keypads when used on the 890CS Common Bus Supply, and the 6901 Keypad when used on the 890CD Common Bus Drive \& 890SD Standalone Drive.
The 6511 keypad displays a numbered menu, whilst the 6901 keypad displays information using concise text and allows access to more parameters.

- Menus for the 890CS Common Bus Supply
DIAGNOSTIC menu
- Menus for the
890 Common Bus/Standalone Drive
OPERATOR menu
DIAGNOSTIC menu
QUICK SETUP menu
SETUP menu
SYSTEM menu

Keypad Menus

890CS Common Bus Supply

The table below shows the parameters available using the 6511 Keypad. The full names as displayed by the 6901 Keypad and the DSE Configuration Tool are also provided. The list is shown in MMI order.

The DIAGNOSTIC Menu

DIAGNOSTIC MENU 890CS Common Bus Supply		
6511 Display	6901 Display	
0.10\%	OUTPUT POWER	As a percentage of nominal full power for the selected input voltage
[[HEATSINK TEMP	The heatsink temperature in Centrigrade
$0.0{ }^{\text {Hz }}$	SUPPLY FREQUENCY	The real-time output frequency in Hertz
0°	DC LINK VOLTS	Vac (rms) $\times \sqrt{ } 2=\mathrm{dc}$ link Volts (when motor stopped)
$0.0{ }^{\text {a }}$	INPUT CURRENT	The input current in Amps

Keypad Menus

890 Common Bus/890 Standalone Drive

The table below shows the parameter's full name, as displayed by the 6901 Keypad and the DSE Configuration Tool. The list is shown in MMI order.
Note Additional parameters are available using the 6901 Keypad and the DSE Configuration Tool. Refer to Appendix D for a full listing of all parameters.

Keypad Menus

6901 Keypad/DSE

OPERATORSETPOINT
SPEED DEMAND
_DRIVE FREQUENCY
MOTOR CURRENT A
_TORQUE FEEDBACK
DC LINK VOLTS
DIAGNOSTICS

```
        SPEED DEMAND
```

 REMOTE SETPOINT
 _COMMS SETPOINT
 _LOCAL SETPOINT
 JOG SETPOINT
 TOTL SPD DMD RPM
 _TOTAL SPD DMD \%
 SPEED FBK RPM
 SPEED FBK \%
 SPEED ERROR
 DRIVE FREQUENCY
 DIRECT INPUT
 TORQ DMD ISOLATE

Keypad Menus

Keypad Menus

6901 Keypad/DSE
_ACTUAL POS LIM
ACTUAL NEG LIM
__AUX TORQUE DMD
TORQUE DEMAND
_TORQUE FEEDBACK
FIELD FEEDBACK MOTOR CURRENT \% MOTOR CURRENT A
DC LINK VOLTS
_TERMINAL VOLTS
BRAKING
DRIVE FREQUENCY
ACTIVE WORD 1
ACTIVE WORD 2
FIRST TRIP
_TRIP 1 (NEWEST)
TRIP 2
TRIP 3
TRIP 4
TRIP 5
TRIP 6
TRIP 7
_TRIP 8
TRIP 9 __TRIP 10 (OLDEST)
ANALOG INPUT 1
\qquad ANALOG INPUT 2
ANALOG INPUT 3

Keypad Menus

Keypad Menus

```
6901 Keypad/DSE
    ANALOG INPUT 4
    _ANALOG INPUT 5
    DIGITAL INPUT 1
    DIGITAL INPUT 2
    DIGITAL INPUT }
    DIGITAL INPUT 4
    DIGITAL INPUT 5
    DIGITAL INPUT }
    DIGITAL INPUT }
    DIGITAL INPUT }
    DIGITAL INPUT }
    ANALOG OUTPUT }
    ANALOG OUTPUT 2
    DIGITAL OUTPUT 1
    DIGITAL OUTPUT 2
    DIGITAL OUTPUT }
QUICK SETUP
    CONTROL MODE
        MAX SPEED
    |__R
        RAMP ACCEL TIME
    |
        RAMP DECEL TIME
        RUN STOP MODE
        JOG SETPOINT
        V/F SHAPE
        QUADRATIC TORQUE
        MOTOR CURRENT
        FIXED BOOST
        CURRENT LIMIT
```


Keypad Menus

Keypad Menus

6901 Keypad/DSE
VOLTAGE MODE
_POWER
__MOTOR BASE FREQ
_MOTOR VOLTAGE
_NAMEPLATE RPM
__MOTOR POLES MOTOR CONNECTION _PULSE ENC VOLTS __ENCODER LINES
__ENCODER INVERT _AUTOTUNE ENABLE AUTOTUNE MODE MAG CURRENT STATOR RES _LEAKAGE INDUC
__MUTUAL INDUC _ROTOR TIME CONST _SPEED PROP GAIN SPEED INT TIME
_ AIN 1 TYPE
___AIN 2 TYPE
_AIN 3 TYPE
_AIN 4 TYPE
DISABLED WORD 1
DISABLED WORD 2
VIEW LEVEL
SYSTEM
_SAVE CONFIG

Keypad Menus

The OPERATOR Menu

OPERATOR MENU

890CD Common Bus Drive \& 890SD Standalone Drive

$$
\begin{aligned}
& 6901 \text { Display } \\
& \text { SETPOINT (xxxxxx) } \quad \text { Range: }-. x x \%
\end{aligned}
$$

(Fixed as PREF 101.10) Indicates target speed. This will be equal to either:
LOCAL SETPOINT, REMOTE SETPOINT, JOG SETPOINT,
COMMS SETPOINT or FIREWIRE SETPOINT.

SPEED DEMAND

(Refer to the REF
function blocks)
d. This is the input to the Drive.
(Refer to the REFERENCE function block)

$$
\begin{array}{ll}
\hline \text { DRIVE FREQUENCY } \quad \text { Range: }-. x x \mathrm{~Hz}
\end{array}
$$

(Default: PREF 73.04) The Drive output frequency.
(Refer to the REFERENCE function block)
MOTOR CURRENT A Range: -.xx A
(Default: PREF 70.13) This diagnostic contains the level of rms line current being drawn from the Drive.
(Refer to the REFERENCE function block)

TORQUE FEEDBACK

Range: -.xx \%
(Default: PREF 70.10) Shows the estimated motor torque, as a percentage of rated motor torque.
(Refer to the REFERENCE function block)

$$
\begin{array}{ll}
\hline \text { DC LINK VOLTS } \quad \text { Range: }-V
\end{array}
$$

(Default: PREF 70.02) This shows the voltage on the dc link capacitors.
(Refer to the REFERENCE function block)

Keypad Menus

The DIAGNOSTIC Menu

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
101.09	SPEED DEMAND Range: -. $x x$ \% Indicates actual speed demand. This is the input to the frequency controller. (Refer to the REFERENCE function block)
101.01	$\text { REMOTE SETPOINT } \quad \text { Range: }-. x x \%$ This is the target reference that the drive will ramp to in remote reference mode (not including trim), direction is taken from REFERENCE::REMOTE REVERSE and the sign of REMOTE SETPOINT. (Refer to the REFERENCE function block)
101.14	COMMS SETPOINT Range: -. $x x$ \% This setpoint is the target reference that the drive will ramp to in Remote Reference Comms mode (not including trim). The direction is always positive, i.e. forward. (Refer to the REFERENCE function block)
101.12	LOCAL SETPOINT Range: -.xx \% Indicates the Keypad setpoint. It is always a positive quantity; saved on power down. Direction is taken from LOCAL REVERSE. (Refer to the REFERENCE function block)
103.01	(JOG) SETPOINT Range: -. $x x \%$ The setpoint is the target reference that the drive will ramp to in Jog Reference mode. (Refer to the REFERENCE JOG function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
78.17	TOTL SPD DMD RPM Range: -.xx rpm The final value of speed demand obtained after summing all sources in rpm. (Refer to the SPEED LOOP function block)
78.18	$\text { TOTAL SPD DMD \% } \quad \text { Range: }-. x x \%$ The final value of speed demand obtained after summing all sources as a percentage of MAX SPEED CLAMP (REFERENCE function block). (Refer to the SPEED LOOP function block)
70.04	SPEED FBK RPM Range: -.xx rpm The mechanical speed of the motor shaft in revolutions per minute. (Refer to the FEEDBACKS function block)
70.06	$\text { SPEED FBK \% Range: -. } x x \%$ Shows the mechanical speed of the motor shaft as a percentage of MAX SPEED CLAMP (REFERENCE function block). (Refer to the FEEDBACKS function block)
78.19	SPEED ERROR Range: -.xx \% The difference between the demanded speed and the actual speed. (Refer to the SPEED LOOP function block)
73.04	DRIVE FREQUENCY Range: -.xx Hz Shows the drive output frequency in Hz . (Refer to the PATTERN GEN function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
78.21	DIRECT INPUT Range: -.xx \% The value of the direct input, after scaling and clamping. (Refer to the SPEED LOOP function block)
78.16	Speed Control mode and Torque Control mode selection. Torque Control mode = TRUE. (Refer to the SPEED LOOP function block)
83.05	ACTUAL POS LIM Range: -. $x x \%$ The final actual positive torque limit as a percentage of rated motor torque. (Refer to the TORQUE LIMIT function block)
83.06	ACTUAL NEG LIM Range: -. $x x \%$ The final actual negative torque limit as a percentage of rated motor torque. (Refer to the TORQUE LIMIT function block)
78.07	AUX TORQUE DMD Range: -. $x x \%$ The auxiliary motor torque as a percentage of rated motor torque as a percentage of rated motor torque. (Refer to the SPEED LOOP function block)
78.20	TORQUE DEMANDThe demanded motor torque as a percentage of rated motor torque.(Refer to the SPEED LOOP function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
70.10	TORQUE FEEDBACK Range: -.xx \% The estimated motor torque, as a percentage of rated motor torque. (Refer to the FEEDBACKS function block)
70.11	FIELD FEEDBACK Range: -.xx \% A value of 100% indicates the motor is operating at rated magnetic flux (field). (Refer to the FEEDBACKS function block)
70.12	MOTOR CURRENT \% Range: -.xx \% This diagnostic contains the level of rms line current being drawn from the drive and is seen as a $\%$ of the MOTOR CURRENT parameter setting in the MOTOR INDUCTION function block. (Refer to the FEEDBACKS function block)
70.13	$\text { MOTOR CURRENT A Range: -. } x A$ This diagnostic contains the level of rms line current being drawn from the drive. (Refer to the FEEDBACKS function block)
70.02	DC LINK VOLTS Range: -. V The internal dc voltage tested across the DC link capacitors. (Refer to the FEEDBACKS function block)
70.03	TERMINAL VOLTS Range: - V This shows the rms voltage, between phases, applied by the drive to the motor terminals. (Refer to the FEEDBACKS function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
99.06	A read-only parameter indicating the state of the dynamic brake switch. (Refer to the DYNAMIC BRAKING function block)
73.04	DRIVE FREQUENCY Range: - x Hz The drive output frequency in Hertz. (Refer to the PATTERN GEN function block)
97.05	ACTIVE WORD 1 Range: 0000 to FFFF Indicates which trips are currently active. These parameters are a coded representation of the trip status. (Refer to the TRIPS STATUS function block)
97.06	ACTIVE WORD 2 Range: 0000 to FFFF Indicates which trips are currently active. These parameters are a coded representation of the trip status. (Refer to the TRIPS STATUS function block)
97.09	FIRST TRIPRange: Enumerated - refer to block From when a trip occurs until that trip is reset, this parameter indicates the trip source. When several trips have occurred, this parameter indicates the first one that was detected. (Refer to the TRIPS STATUS function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
96.01	TRIP 1 (NEWEST)Range: Enumerated - refer to block(Refer to the TRIPS STATUS function block)
96.02	TRIP 21Range: Enumerated - refer to block(Refer to the TRIPS STATUS function block)
96.03	TRIP $3 \quad$Range: Enumerated - refer to block aused the drive to stop. (Refer to the TRIPS STATUS function block)
96.04	TRIP $4 \quad$Range: Enumerated - refer to block caused the drive to stop. (Refer to the TRIPS STATUS function block)
96.05	TRIP 5 cRange: Enumerated - refer to block(Refer to the TRIPS STATUS function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
96.06	TRIP $6 \quad$Range: Enumerated - refer to block caused the drive to stop. (Refer to the TRIPS STATUS function block)
Records the seventh most recent trip that caused the drive to stop. (Refer to the TRIPS STATUS function block)	TRIP 7Range: Enumerated - refer to block(Refer to the TRIPS STATUS function block)
96.08	TRIP 8 lRange: Enumerated - refer to blockcaused the drive to stop.(Refer to the TRIPS STATUS function block)
96.09	TRIP 9 lRange: Enumerated - refer to block(Refer to the TRIPS STATUS function block)
96.10	TRIP 10 (OLDEST)Range: Enumerated - refer to block(Refer to the TRIPS STATUS function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive		
PREF		6901 Display
1.06	(VALUE) The input reading.	
2.06	(VALUE) The input reading.	ANALOG INPUT 2 $\text { Range: -. } x x \%$ (Refer to the ANALOG INPUT function block)
3.06	(VALUE) The input reading.	ANALOG INPUT 3 $\text { Range: -. } x x \%$ (Refer to the ANALOG INPUT function block)
4.06	(VALUE) The input reading.	ANALOG INPUT 4 Range: -.xx \% (Refer to the ANALOG INPUT function block)
5.06	(VALUE) The input reading (ANIN1	ANALOG INPUT 5 Range: -. $x x \%$ IN2). (Refer to the ANALOG INPUT function block)
8.02	(VALUE) The TRUE or FALSE input.	(Refer to the DIGITAL INPUT function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive		
PREF		6901 Display
9.02	(VALUE) The TRUE or FALSE input.	
10.02	(VALUE) The TRUE or FALSE input.	(Refer to the DIGITAL INPUT function block)
11.02	(VALUE) The TRUE or FALSE input.	(Refer to the DIGITAL INPUT function block)
12.02	(VALUE) The TRUE or FALSE input.	
13.02	(VALUE) The TRUE or FALSE input.	DIGITAL INPUT $6 \quad$ Range: FALSE / TRUE (Refer to the DIGITAL INPUT function block)
14.02	(VALUE) The TRUE or FALSE input.	

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive	
PREF	6901 Display
15.02	(VALUE) The TRUE or FALSE input.
16.02	(VALUE) The TRUE or FALSE input. (Refer to the DIGITAL INPUT function block)
6.01	ANALOG OUTPUT 1 Range: -.xx \% (VALUE) The demanded value to output. (Refer to the ANALOG OUTPUT function block)
7.01	ANALOG OUTPUT 2 Range: -.xx \% (VALUE) The demanded value to output. (Refer to the ANALOG OUTPUT function block)
17.01	(VALUE) The TRUE or FALSE output demand. (Refer to the DIGITAL OUTPUT function block)
18.01	DIGITAL OUTPUT 2 Range: FALSE / TRUE (VALUE) The TRUE or FALSE output demand. (Refer to the DIGITAL OUTPUT function block)

Keypad Menus

DIAGNOSTIC MENU 890CD Common Bus Drive \& 890SD Standalone Drive		
PREF	6901 Display	
(VALUE) The TRUE or FALSE output demand. (Refer to the DIGITAL OUTPUT function		

Keypad Menus

The QUICK SETUP Menu

Note For more information about these and additional parameters accessible using the DSE Configuration Tool. Refer to Appendix D or the DSE Configuration Tool on the CD supplied with your drive.

The 890 menu system has been designed for use with the DSE Configuration Tool. Hence, the tool is the preferred method of programming, however it is possible to edit some parameters using the keypad.
The parameters most likely to require attention are contained in the QUICK SETUP menu at level 1.

Saving Your Modifications

When parameter values are modified the new settings must be saved. The drive will not retain new settings during power-down unless they have been saved. Refer to "Saving Your Application" if using the keypad.

Note The "Range" for a parameter value is given in the Configurable Parameters Table. Ranges for outputs are given as "-.xx \%", for example, indicating an indeterminate integer for the value, to two decimal places.

The Default values in the pages below are correct for when the UK country code is selected and a 400 V 30kW Frame E power board is fitted. Some parameters in the table are marked:

* Value dependent upon the Language field of the Product Code, e.g. UK

The values for these parameters may be different for your drive/application. Refer to Appendix D: "Programming" - Product Related Default Values.

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
136.02	CONTROL MODE	This parameter contains the main method of motor control used by the drive	$\begin{aligned} & \hline 0: \text { VOLTS / Hz } \\ & 1: \text { SENSORLESS VEC } \\ & 2: \text { CLOSED-LOOP VEC } \\ & 3: 4-Q ~ R E G E N ~ \\ & 4: \text { PMAC } \end{aligned}$	0
101.08	* MAX SPEED	The speed at which the 890 will run when maximum setpoint is applied. The default is Product Code dependent	0 to 32000 RPM	1500 RPM
100.02	RAMP ACCEL TIME	The time taken for the 890 output frequency to ramp up from zero to MAX SPEED	0.0 to 3000.0s	10.0s
100.03	RAMP DECEL TIME	The time taken for the 890 output frequency to ramp down from MAX SPEED to zero	0.0 to 3000.0s	10.0s

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
102.01	RUN STOP MODE	RUN RAMP : The motor speed is reduced to zero at a rate set by RAMP DECEL TIME (${ }^{5} 4$). A 2 second DC pulse is applied at end of ramp COAST : The motor is allowed to freewheel to a standstill DC INJECTION : On a stop command, the motor volts are rapidly reduced at constant frequency to deflux the motor. A low frequency braking current is then applied until the motor speed is almost zero. This is followed by a timed DC pulse to hold the motor shaft. STOP RAMP : The motor will decelerate at a rate set by STOP TIME (REFERENCE STOP function block).	0 : RUN RAMP 1 : COAST 2 : DC INJECTION 3 : STOP RAMP	0
103.01	JOG SETPOINT	Speed the 890 will run at if the Jog input is high, as a percentage of the MAX SPEED parameter	-100.00 to 100.00\%	10.00\%

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
21.01	V/F SHAPE	LINEAR LAW: This gives a constant flux characteristic up to the BASE FREQUENCY FAN LAW: This gives a quadratic flux characteristic up to the BASE FREQUENCY. This matches the load requirement for fan and most pump applications USER DEFINED: This gives a user defined flux characteristic up to the BASE FREQUENCY	0 : LINEAR LAW 1 : FAN LAW 2 : USER DEFINED	0

Keypad Menus

QUICK SETUP MENU890CD Common Bus Drive \& 890SD S				
PREF	6901 Display	Description	Range	Default
70.01	QUADRATIC TORQUE	\% OF RATED MOTOR CURRENT FALSE - CONSTANT: Inverse time allows 150% overload for 60s, then ramps back the current limit to 105% over a 10 s period. At a lower load, the overload area remains the same, e.g. at 127.5% load for 120 s - after 120s has expired, the output of the inverse time function is ramped back over a 10 s period from 150% as before. TRUE - QUADRATIC: current limit is set to 110\% motor current, inverse time delay is set to 30 s	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$ Note that 890 Frames $B, C \& D$ have no quadratic torque current rating.	0
70.13	MOTOR CURRENT	This parameter contains the motor nameplate full-load line current	0.01 to 999.99A	product code dependent

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
21.03	FIXED BOOST	Used to correctly flux the motor at low speeds. This allows the drive to produce greater starting torque for high friction loads. It increases the motor volts above the selected V / F characteristic at the lower end of the speed range $\mathrm{f}_{\mathrm{B}}=$ BASE FREQUENCY	0.00 to 25.00\%	product code dependent
82.01	CURRENT LIMIT	This parameter sets the level of motor current, as a \% of MOTOR CURRENT (S9) at which the drive begins to take current limit action.	0.00 to 300.00\%	150.00\%
81.01	VOLTAGE MODE	Defines how volts Hz characteristic varies in response to changes in DC link voltage.	0 : NONE 1 : FIXED 2 : AUTOMATIC	None

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
81.02	POWER	Nameplate motor power	0.0 kW to 3000.0 kW	product code depentent
27.03 (induction motor only)	MOTOR BASE FREQ	The output frequency at which maximum voltage is reached.	7.5 to 1000.0 Hz	50.0 Hz
27.04 (induction motor only)	* MOTOR voltage	This parameter contains the motor nameplate voltage at base frequency	0.0 to 575.0 V	product code dependent
27.07 (induction motor only)	* NAMEPLATE RPM	This parameter contains the motor nameplate full-load rated speed. This is the motor speed in rpm at base frequency minus full load slip	0.0 to 30000.0 RPM	product code dependent
27.09 (induction motor only)	MOTOR POLES	This parameter contains the number of motor poles, as supplied on the motor nameplate	$\begin{aligned} & 0=2 \text { pole } \\ & 1=4 \text { pole } \\ & 2=6 \text { pole } \\ & 3=8 \text { pole } \\ & 4=10 \text { pole } \\ & 5=12 \text { pole } \\ & \hline \end{aligned}$	1

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
27.08 (induction motor only)	*MOTOR CONNECTION	This parameter contains the motor nameplate connection.	$\begin{aligned} & 0=\text { DELTA } \\ & 1=\text { STAR } \end{aligned}$	1
71.01	PULSE ENC VOLTS	The voltage output from the encoder feedback card.	10 to 20 V	5.0
71.02	ENCODER LINES	The number of lines must be set to match the type of encoder being used. Incorrect setting of this parameter will result in an erroneous speed measurement.	250 to 32767	2048
71.03	ENCODER INVERT	When TRUE, changes the sign of the measured speed and the direction of the position count.	$\begin{aligned} & 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
80.01	AUTOTUNE ENABLE	Determines whether the Autotune sequence is operational or not. The Autotune sequence is operational when set to TRUE and the drive is run	$\begin{aligned} & \hline 0=\text { FALSE } \\ & 1=\text { TRUE } \end{aligned}$	0
80.02	AUTOTUNE MODE	Selects the Autotune operating mode.	0 : STATIONARY 1: ROTATING 2 : SPD LOOP ROTATING 3 : SPD LOOP STATIONARY	

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
27.06 (induction motor only)	MAG CURRENT	This parameter contains the motor model noload line current as determined by the Autotune, or taken from the motor nameplate	0.00 to 3276.70 A	product code dependent
27.14 (induction motor only)	STATOR RES	This parameter contains the motor model perphase stator resistance as determined by Autotune.	0.0000 to 250.0000Ω	product code dependent
27.15 (induction motor only)	LEAKAGE INDUC	This parameter contains the motor model perphase leakage inductance as determined by Autotune.	0.00 to 300.00 mH	product code dependent
27.16 (induction motor only)	MUTUAL INDUC	This parameter contains the motor model perphase mutual inductance as determined by Autotune.	0.00 to 3000.00 mH	product code dependent
27.17 (induction motor only)	ROTOR TIME CONST	This parameter contains the motor model rotor time constant as determined by Autotune.	10.00 to 3000.00 ms	product code dependent
78.01	SPEED PROP GAIN	Sets the proportional gain of the loop. Speed error (mechanical rev/s) x proportional gain $=$ torque percent.	0.0 to 3000.0	20.0

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
78.02	SPEED INT TIME	This is the integral time constant of the speed loop. A speed error which causes the proportional term to produce a torque demand T, will cause the integral term to also ramp up to a torque demand T after a time equal to "speed int time".	1 to 15000 ms	100
1.03	AIN 1 TYPE	Selects input range for Analog Input 1.	$\begin{aligned} & 0=-10 . .+10 \mathrm{~V} \\ & 1=0 . .+10 \mathrm{~V} \end{aligned}$	0
2.03	AIN 2 TYPE	Selects input range for Analog Input 2.	$\begin{aligned} & 0=-10 . .+10 \mathrm{~V} \\ & 1=0 . .+10 \mathrm{~V} \end{aligned}$	0
3.03	AIN 3 TYPE	Selects input range for Analog Input 3.	$\begin{aligned} & 0=-10 . .+10 \mathrm{~V} \\ & 1=0 . .+10 \mathrm{~V} \\ & 2=0 . .20 \mathrm{~mA} \\ & 3=4 . .20 \mathrm{~mA} \end{aligned}$	0
4.03	AIN 4 TYPE	Selects input range for Analog Input 4.	$\begin{aligned} & 0=-10 . .+10 \mathrm{~V} \\ & 1=0 . .+10 \mathrm{~V} \\ & 2=0 . .20 \mathrm{~mA} \\ & 3=4 . .20 \mathrm{~mA} \end{aligned}$	0
97.01	DISABLE TRIPS	Indicates which trips have been disabled. Not all trips may be disabled, the DISABLED TRIPS mask is ignored for trips that cannot be disabled. Refer to Chapter 10.	0000 to FFFF	0700

Keypad Menus

QUICK SETUP MENU 890CD Common Bus Drive \& 890SD Standalone Drive				
PREF	6901 Display	Description	Range	Default
97.02	DISABLE TRIPS+	Indicates which trips have been disabled. Not all trips may be disabled, the DISABLED TRIPS mask is ignored for trips that cannot be disabled. Refer to Chapter 10.	0000 to FFFF	0840
31.01	VIEW LEVEL	Selects the menu to be displayed by the keypad.	$\begin{aligned} & 0: \text { OPERATOR } \\ & 1: \text { BASIC } \\ & 2: \text { ADVANCED } \end{aligned}$	1

Keypad Menus

The SETUP Menu

This menu contains all the parameters available to you when using the DSE 890 Configuration Tool.
ADVANCED view level must be selected to view this menu. using the 6901 keypad on the 890CD Common Bus Drive and 890SD Standalone Drive.

Note We recommend that you program the 890 using the DSE Configuration Tool.

For details of the parameters in this menu, refer to Appendix D.

The SYSTEM Menu

SAVE CONFIG

The SAVE CONFIG menu saves your current settings.
To save an application press the \mathbf{M} key when displaying the SAVE CONFIG menu. Press the $\mathbf{\Delta}$ key to confirm, as instructed.
Saving again will overwrite the previous information.
Saved information is stored during power-down and is restored at power-up.
This does not save the link configuration. It saves information for MMI parameters.

Trips and Fault Finding

Chapter 9

Trips and Fault Finding

The drive may trip in order to protect itself. To restart the drive, you will need to clear the trip(s). This chapter provides a list of trips, as displayed by the 6511 keypad and 6901 keypad.

- Trips

What happens when a trip occurs
Resetting a trip condition
Trips table
Hexadecimal trip representations
Alert Messages

- Fault finding

Control board STATUS LED indications

Trips and Fault Finding

Trips

What Happens when a Trip Occurs

When a trip occurs, the drive's power stage is immediately disabled causing the motor and load to coast to a stop. The trip is latched until action is taken to reset it. This ensures that trips due to transient conditions are captured and the drive is disabled, even when the original cause of the trip is no longer present

Drive Indications

If a trip condition is detected the unit displays and performs the following actions.

1. The programming block SEQ \& REF::SEQUENCING LOGIC::TRIPPED signal is set to TRUE.
2. The FIRST TRIP parameter in the TRIPS STATUS function block displays the trip ID. Refer to Chapter 8: "Keypad Menus" - DISABLED WORD 1, DISABLED WORD 2 for a table of enumerated values..

Keypad Indications (when connected)

If a trip condition is detected the MMI displays and performs the following actions.

1. The trip source is displayed on the keypad.
2. 6901 keypad only: the HEALTH LED on the Keypad flashes indicating a trip condition has occurred and a trip message is displayed stating the cause of the trip.
3. The trip message(s) must be acknowledged by pressing the STOP key. The trip message may be cleared by pressing the E key. Refer to Chapter 7: "The Keypad" - Alert Message Displays.

Trips and Fault Finding

Resetting a Trip Condition

Before a trip can be reset, the trip condition must be removed.
Note A Heatsink Over-temperature trip may not reset immediately. The unit needs to cool sufficiently.
Local Mode
To reset a trip in Local Mode:
Remove the trip condition

Press the Stop key to clear the trip. You can now press Run to restart the system..

Remote Mode

To reset a trip in Remote Mode:
Remove the trip condition

Press the Stop key to clear the trip. You can now press Run to restart the system..

Remove the trip condition
Alternatively, remove and re-apply the 24 V supply at X 01 , or
toggle the ENABLE to 0 V and then 24 V to restart the system.

Trips and Fault Finding

Trips Table

The following trips may occur to protect the drive.

6511 Keypad Display	6901 Keypad Display	Description	Possible Reason for Trip
DCHI	OVERVOLTAGE	The drive internal dc link voltage is too high	- The supply voltage is too high - Trying to decelerate a large inertia load too quickly - The brake resistor is open circuit
DCLO	UNDERVOLTAGE	The drive internal dc link voltage is too low	- The supply voltage is too low - The supply has been lost - A supply phase is missing

Trips and Fault Finding

	$\begin{aligned} & \text { E" } \\ & 8.88 \\ & 880 \end{aligned}$		
6511 Keypad Display	6901 Keypad Display	Description	Possible Reason for Trip
OC	OVERCURRENT	The motor current being drawn from the drive is too high	- Trying to accelerate a large inertia load too quickly - Trying to decelerate a large inertia load too quickly - Application of shock load to motor - Short circuit between motor phases - Short circuit between motor phase and earth - Motor output cables too long or too many parallel motors connected to the drive - Fixed or auto boost levels are set too high
HOT	HEATSINK	The drive heatsink temperature is too high	- The ambient air temperature is too high - Poor ventilation or spacing between drives
ET	EXTERNAL TRIP	User trip caused via control terminals	- +24 V not present on external trip (terminal X15/05) - Check setting of EXT TRIP MODE parameter
IN 1	INPUT 1 BREAK	I/O TRIPS:: INPUT 1 BREAK has gone True	- Check configuration to determine source of signal
IN 2	INPUT 2 BREAK	I/O TRIPS:: INPUT 2 BREAK has gone True	- Check configuration to determine source of signal

Trips and Fault Finding

6511 Keypad Display	6901 Keypad Display	Description	Possible Reason for Trip
STLL	MOTOR STALLED	The motor has stalled (not rotating)	- Motor loading too great - Current limit level is set too low - Stall trip duration is set too low - Fixed or auto boost levels are set too high
IT	INVERSE TIME		- The inverse time current limit is active: motor loading is too great; fixed or autoboost levels are too high (Full Load Current $=150 \%$ for 60 seconds)
DB R	BRAKE RESISTOR	External dynamic braking resistor has been overloaded	- Trying to decelerate a large inertia load too quickly or too often
DB S	BRAKE SWITCH	Internal dynamic braking switch has been overloaded	- Trying to decelerate a large inertia load too quickly or too often
DISP	OP STATION	Keypad has been disconnected from drive whilst drive is running in local control	- Keypad accidentally disconnected from drive
SCI	COMMS BREAK		- COMMS BREAK parameter set to True (refer to I/O TRIPS menu at level 3)

Trips and Fault Finding

$\mathbf{6 5 1 1}$ Keypad Display	Keypad Display	Description

Trips and Fault Finding

6511 Keypad Display	6901 Keypad Display	Description	Possible Reason for Trip
I HI	CURRENT LIMIT	V / Hz mode only: If the current exceeds 180% of induction stack rated current for a period of 1 second, the drive will trip. This is caused by shock loads	- Remove the cause of the shock load
A24SC	24V FAILURE	The 24 V customer output has fallen below 17 V	- 24 V customer output is short circuited - Excessive loading
LSPD	LOW SPEED OVER I	The motor is drawing too much current ($>100 \%$) at zero output frequency	- FIXED BOOST and/or AUTO BOOST set too high (refer to FLUXING menu at level 3)
PHAS	PHASE FAIL		- One or more input phases not present
ENC 1	FBK ENCODER FAIL		- Encoder fault
SHRT	DESAT (OVER I)		- Instantaneous overcurrent. Refer to OVERCURRENT in this table
DCRP	VDC RIPPLE		- The dc link ripple voltage is too high. Check for a missing input phase.

Trips and Fault Finding

$\mathbf{6 5 1 1}$ Keypad Display	Keypad Display	Description

Trips and Fault Finding

6511 Keypad Display	6901 Keypad Display	Description	Possible Reason for Trip
ATN1	MAX SPEED LOW		- During Autotune the motor is required to run at the nameplate speed of the motor. If MAX SPEED RPM limits the speed to less than this value, an error will be reported. Increase the value of MAX SPEED RPM up to the nameplate rpm of the motor (as a minimum). It may be reduced, if required, after the Autotune is complete.
ATN2	MAINS VOLTS LOW		- The mains input voltage is not sufficient to carry out the Autotune. Re-try when the mains has recovered.
ATN 3	NOT AT SPEED		- The motor was unable to reach the required speed to carry out the Autotune. Possible reasons include: motor shaft not free to turn; the motor data is incorrect
ATN4	MAG CURRENT FAIL		- It was not possible to find a suitable value of magnetising current to achieve the required operating condition for the motor. Check the motor data is correct, especially nameplate rpm and motor volts. Also check that the motor is correctly rated for the drive.

Trips and Fault Finding

$\begin{aligned} & 0.00 \\ & 0.000 \\ & 0 \end{aligned}$			
6511 Keypad Display	6901 Keypad Display	Description	Possible Reason for Trip
ATN5	NEGATIVE SLIP F		- Autotune has calculated a negative slip frequency, which is not valid. Nameplate rpm may have been set to a value higher than the base speed of the motor. Check nameplate rpm, base frequency, and pole pairs are correct.
ATN6	TR TOO LARGE		- The calculated value of rotor time constant is too large. Check the value of nameplate rpm.
ATN7	TR TOO SMALL		The calculated value of rotor time constant is too small. Check the value of nameplate rpm.
ATN8	MAX RPM DATA ERR		- This error is reported when the MAX SPEED RPM is set to a value outside the range for which Autotune has gathered data. Autotune gathers data on the motor characteristics up to 30% beyond "max speed rpm". If MAX SPEED RPM is later increased beyond this range, the drive had no data for this new operating area, and so will report an error. To run the motor beyond this point it is necessary to re-autotune with MAX SPEED RPM set to a higher value.
STAC	STACK TRIP		- The drive was unable to distinguish between an overcurrent/desat or overvoltage trip

Trips and Fault Finding

$\mathbf{6 5 1 1}$ Keypad Display	Keypad Display	Description

	$\begin{aligned} & =0 \\ & 8.8 \\ & 980 \end{aligned}$		
6511 Keypad Display	6901 Keypad Display	Description	Possible Reason for Trip
FERR	FIRMWARE ERROR		- The firmware in the drive has stopped executing
RSLV	RESOLVER ERROR	See function block description	- Motor current is too high
MI2T	I2T MOTOR TRIP	See function block description	- Motor is undersized
STO	SAFE TORQUE OFF	-	- Function not implemented
REFC	REF ENCODER CAL	The drive has failed to set absolute position	- Check the encoder supports absolute position, and that the encoder is wired correctly.
REFF	REF ENCODER FAIL	-	- Function not implemented
DCFG	DRIVE CONFIG ERR	Drive configuration error	- The configuration defined in DRIVE CONFIG doesn't match the actual drive configuration.
CT1	CUST TRIP 1	See function block description	
CT2	CUST TRIP 2	See function block description	

Trips and Fault Finding

6511 Keypad Display	K901 Keypad Display	Description
CT3	CUST TRIP 3	See function block description
CT4	CUST TRIP 4	See function block description
CT5	CUST TRIP 5	See function block description
CT6	CUST TRIP 6	See function block description
CT7	CUST TRIP 7	See function block description

Trips and Fault Finding

Trip Groups

The DISABLE WORD, ACTIVE WORD, WARNINGS WORD and TRIGGERS WORD parameters use a four digit hexadecimal number to identify individual trips. Each trip has a unique corresponding number.

- Refer to Appendix D : TRIPS STATUS for a complete trip listing for DISABLE WORD, ACTIVE WORD, WARNINGS WORD.
- Refer to Appendix D : AUTO RESTART for information about TRIGGERS WORD.

Automatic Trip Reset (6901 keypad)

Using the Keypad, the drive can be configured to automatically attempt to reset a trip when an attempt is made to start driving the motor, or after a preset time once the trip condition has occurred. The following function blocks (MMI menus) are used to enable automatic trip resets.

```
Seq & Ref::Auto Restart (Auto-Reset)
Seq & Ref::Sequencing Logic
```


Setting Trip Conditions (6901 keypad)

The following function blocks (MMI menus) are used to set trip conditions:

```
Trips::I/O Trips
Trips::Trips Status
```


Trips and Fault Finding

Viewing Trip Conditions (6901 keypad)

The following function blocks (MMI menus) can be viewed to investigate trip conditions:

```
Seq & Ref::Sequencing Logic
    Trips::Trips History
    Trips::Trips Status
    Trips Status::Active Trips
    Trips Status::Active Trips+
    Trips Status::First Trip
    Trips History::Trip 1 (NEWEST) to Trip 10 (OLDEST)
```


Viewing Trip Conditions (6511 keypad)

The following function blocks (MMI menus) can be viewed to investigate trip conditions:

```
Trips Status::Active Trips
Trips Status::Active Trips+
Trips Status::First Trip
Trips History::Trip 1 (NEWEST) to Trip 10 (OLDEST)
```


Alert Messages

A message will be displayed on the Keypad when either:

- A requested operation is not allowed
- The drive has tripped

The table below lists the messages and the reason for each message.

Alert Message IDs			
ID	Message		Reason
	6901 Keypad	6511 Keypad	
0			No Alert
1	RUNTIME ALERT XXXX YYYYYYYY	XXXX	Runtime alert
2	SAVING	SAVE	Saving to flash
3	LOADING	LOAD	Loading from flash.
4	LIMIT REACHED	HI	High or low limit reached while editing.
5	KEY INACTIVE RUN FORWARD TRUE	RUN	Can't switch to remote mode.
6	KEY INACTIVE RUN REV TRUE	RUN	Can't switch to remote mode.
7	KEY INACTIVE JOG TRUE	JOG	Can't switch to remote mode.

Trips and Fault Finding

Alert Message IDs			
ID	Message		Reason
	6901 Keypad	6511 Keypad	
8	KEY INACTIVE REMOTE SEQ	SEQ	Run, Jog and direction keys inactive.
9	KEY INACTIVE REMOTE REF	REF	Direction key inactive.
10	KEY INACTIVE DRIVE RUNNING	RUN	Local/Remote and Jog keys inactive.
11	KEY INACTIVE COAST STOP FALSE	STOP	Run and Jog keys over ridden.
12	KEY INACTIVE FAST STOP FALSE	STOP	Run and Jog keys over ridden.
13	KEY INACTIVE ENABLE FALSE	ENBL	Run and Jog keys over ridden.
14	CONFIG MODE FAILED	ERR1	Unable to enter configuration mode.
15	KEY INACTIVE READ ONLY	READ	Can't edit read-only parameters
16	KEY INACTIVE PARAMETER LINKED	READ	Obsolete message

Trips and Fault Finding

Alert Message IDs			
ID	Message		Reason
	6901 Keypad	6511 Keypad	
17	PASSWORD LOCKED	PASS	Incorrect password entered Password activated, (by pressing E key at the top of the MMI tree)
18	CHECKSUM FAIL DEFAULTS LOADED	ERR2	Error reading data on power-up.
19	SUCCESS	GOOD	
20	FAILED	FAIL	
21	NEW PCODE FAILED	FAIL	Failed to save new product code or country data.
22	DEFAULTS LOADED	DATA	Loaded default fixed parameters.
23	KEY INACTIVE NO FREE LINKS	ERR3	Obsolete message
24	KEY INACTIVE LOCKED	ERR4	Obsolete message
25	QUADRATIC TORQUE UP TO CONFIRM	ND	Validate change to quadratic torque mode.
26	CONSTANT TORQUE UP TO CONFIRM	HD	Validate change to constant torque mode.

Trips and Fault Finding

Alert Message IDs			
ID	Message		Reason
	6901 Keypad	6511 Keypad	
27	USING BACKUP APPLICATION	ERR5	Failed to load most recently save application, using previous copy. This applies to: Fixed parameter file, (APP.CFG) Fixed motor data file, (MOTOR1.MOT) Fixed persistent data file, (APP.PST) Default frequency and language file, (COUNTRY.SYS) Drive ID file, (DRIVE_ID.SYS), now obsolete.
28	NEW PCODE SUCCESS	CODE	Saved new product code.
29	CONFIG MODE LOCKED	CONF	Exiting configuration mode.
30	FILE SYSTEM CORRUPT	FILE	The file store is corrupted. All saved files are lost.
31	USING BACKUP POWER DATA	CODE	At least one copy of the stack eeprom data has been corrupted.
32	POWER DATA CORRUPT	CODE	All copies of the stack eeprom data have been corrupted.

Trips and Fault Finding

Alert Message IDs			
ID	Message		Reason
	6901 Keypad	6511 Keypad	
33	NEW POWER DATA DEFAULTS LOADED	CODE	Power board data on the control board does not match that on the stack eeprom.
34	LANGUAGE DEFAULTS LOADED	LANG	Default language and frequency settings lost.
35	USING BACKUP LANGUAGE	LANG	Obsolete message
36	APPLICATION NOT FOUND	DATA	Attempt to save fixed parameter set before it is valid.
37	AUTOTUNE IN PROGRESS	ATN	
38	OPERATOR	OPER	Alert displayed while changing to the operator menu on pressing the PROG key.
39	DIAGNOSTIC	DIAG	Alert displayed while changing to the diagnostic menu on pressing the PROG key.
40	QUICK SETUP	SET	Alert displayed while changing to the quick setup menu on pressing the PROG key.
41	SETUP	PAR	Alert displayed while changing to the setup menu on pressing the PROG key.
42	SYSTEM	SYS	Alert displayed while changing to the system menu on pressing the PROG key.

Trips and Fault Finding

Alert Message IDs			
ID	Message		Reason
	6901 Keypad	6511 Keypad	
43	SUPER USER TRUE	SUPR	Reserved for Parker SSD Drives.
44	INCOMPATIBLE POWER BOARD	ERR6	Power board 500 v and/or underlap signals incompatible with selected product code.
45	CALIBRATION CHECKSUM FAIL	CAL	The control board calibration data is invalid.
46	INCOMPATIBLE PCB	PCB	Software is not compatible with this version of control card PCB.
47	INCOMPATIBLE POWER BOARD TYPE	TYPE	Stack has been marked as a 650 or Baldor stack
48	INCOMPATIBLE EEPROM FLAGS	FLGS	Reserved flags in stack eeprom are not zero. See comms command ri.
49	INCOMPATIBLE POWER BOARD CODE	CODE	Product code not compatible with this version of software.

Trips and Fault Finding

Fault Finding

Problem	Possible Cause	Remedy
Drive will not power-up	Fuse blown	Check supply details, replace with correct fuse. Check Product Code against Model No. Check all connections are correct and secure. Check cable continuity
	Faulty cabling	Check for problem and rectify before replacing with correct fuse Contact Parker SSD Drives
Drive fuse keeps blowing	Fannections wrong Faulty drive	Incorrect or no supply available
Cannock obtain HEALTH state	Motor jammed	Stop the drive and clear the jam
Motor will not run at switch-on	Motor becomes jammed	Stop the drive and clear the jam
Motor runs and stops	Encoder fault	Check encoder connections
Motor won't rotate or runs in reverse	Open circuit speed reference potentiometer	Check terminal

Table 10-1 Fault Finding

Control Board STATUS LED Indications

Colour	LED Indication	Description
OFF/GREEN	FLASH Off 95 : Green 5	Initialization, checking for network
GREEN/OFF	FLASH Green 50 : Off 50	OK - application running, no network
GREEN/OFF	FLASH Green 95 : Off 5	OK - application running, network OK
RED/GREEN	ALTERNATING Red 95 : Green 5	Node halted
RED/GREEN	ALTERNATING Red 5 : Green 95	Duplicate address in network
RED/OFF	FLASH Red 50 : Off 50	No configuration
RED/GREEN	ALTERNATNG Red 50 : Green 50	Application error

Chapter 10
 Routine Maintenance and Repair

- Routine Maintenance
- Repair

Spares List
Component Replacement

Routine Maintenance and Repair

Routine Maintenance

Periodically inspect the drive for build-up of dust or obstructions that may affect ventilation of the unit. Remove this using dry air.

Repair

The drives have been designed to be serviceable units. In the unlikely event of component failure, it is possible to replace the faulty item without having to replace the complete drive unit.
Replacement of components should only be carried out by electrically competent personnel with the knowledge/expertise required to perform the relevant operation.
i.e. in order to replace component parts; drive disassembly, rebuild and re-testing is required.

Saving Your Application Data

In the event of a repair, application data will be saved whenever possible. However, we advise you to copy your application settings before returning the unit.

Returning the Unit to Parker SSD Drives

Please have the following information available:

- The model and serial number - see the unit's rating label
- Details of the fault

Contact your nearest Parker SSD Drives Service Centre to arrange return of the item.
You will be given a Returned Material Authorisation. Use this as a reference on all paperwork you return with the faulty item. Pack and despatch the item in the original packing materials; or at least an anti-static enclosure. Do not allow packaging chips to enter the unit.

Routine Maintenance and Repair

Disposal

This product contains materials which are consignable waste under the Special Waste Regulations 1996 which complies with the EC Hazardous Waste Directive - Directive 91/689/EEC.
We recommend you dispose of the appropriate materials in accordance with the valid environmental control laws. The following table shows which materials can be recycled and which have to be disposed of in a special way.

Material	Recycle	Disposal
metal	yes	no
plastics material	yes	no
printed circuit board	no	yes

The printed circuit board should be disposed of in one of two ways:

1. High temperature incineration (minimum temperature $1200^{\circ} \mathrm{C}$) by an incinerator authorised under parts A or B of the Environmental Protection Act
2. Disposal in an engineered land fill site that is licensed to take aluminium electrolytic capacitors. Do not dispose of in a land fill site set aside for domestic waste.

Packaging

During transport our products are protected by suitable packaging. This is entirely environmentally compatible and should be taken for central disposal as secondary raw material.

Routine Maintenance and Repair

Spares List

Parker SSD Drives are able to provide guidance regarding the necessary component part to be replaced. The serviceable component parts are listed below.

Electro-Mechanical Parts

The selection of the following items are product/kW rating dependant.

Drive	Main Cooling Fan		Motor Start Capacitor for Main Cooling fan		Internal Extractor Fan	
	Fan Voltage		Fan Voltage		Fan Voltage	
	115 V	230 V	115 V	230 V	115 V	230V
Frame G 110-132kW	DL389775	DL464085	CY389841	CY464087	-	-
$\begin{aligned} & \text { Frame G } \\ & 160-180 \mathrm{~kW} \end{aligned}$	$\begin{gathered} \text { DL465651 } \\ \text { U115 } \end{gathered}$	$\begin{gathered} \text { DL465651 } \\ \text { U230 } \end{gathered}$	$\begin{gathered} \text { CY466780 } \\ \text { U300 } \end{gathered}$	$\begin{gathered} \text { CY466780 } \\ \text { U080 } \end{gathered}$	-	-
Frame H	$\begin{gathered} \text { DL389776 } \\ \text { U001 } \end{gathered}$	$\begin{array}{\|c} \text { DL464086 } \\ \text { U001 } \end{array}$	CY389842	CY464088	-	-
Frame J	$\begin{gathered} \text { DL389776 } \\ \text { U001 } \end{gathered}$	$\begin{gathered} \text { DL464086 } \\ \text { U001 } \end{gathered}$	CY389842	CY464088	DL049612*	DL049612*
* 2 fans wired in series for 230V rating						

Routine Maintenance and Repair

Drive	Phase Assembly	Brake Unit Assembly
Frame G 110KW	LA465082U001	LA464083U001
Frame G 132KW	LA465082U002	
Frame G 160KW	LA465082U003	
Frame G 180KW	LA465082U004	
$\begin{aligned} & \text { Frame H } \\ & 200-220 \mathrm{KW} \end{aligned}$	LA465082U005	LA465083U002
$\begin{aligned} & \text { Frame H } \\ & 250-280 \mathrm{KW} \end{aligned}$	LA465082U006	
Frame J 315KW	LA465082U007	LA465083U003

Printed Circuit Boards

The printed circuit boards listed below are common within the 890 range of drives.

Description	Part Number
Switch Mode Power Supply PCB	AH464883U101
Power Control PCB	AH464871U000
Line Suppression PCB	AH389192U001

Routine Maintenance and Repair
 Component Replacement

Having identified the faulty component part and taken delivery of replacement part(s) the following replacement procedure should be carefully adhered to.

```
WARNING
    FAILURE TO FOLLOW PROCEDURE MAY RESULT IN DAMAGE TO THE DRIVE AND
    POSSIBLE ELECTRICAL SHOCK HAZARD! PERSONNEL PERFORMING COMPONENT
REPLACEMENT PROCEDURES MUST BE ELECTRICALLY COMPETENT AND POSSESS THE
    KNOWLEDGE /EXPERTISE REQUIRED TO PERFORM THE RELEVANT OPERATION
    BEFORE PERFORMING MAINTENANCE ON THIS UNIT, ENSURE ISOLATION OF THE
            MAIN SUPPLY TO TERMINALS L1, L2 AND L3.
    WAIT FOR AT LEAST 5 MINUTES FOR THE DC LINK TERMINALS (DC+ AND DC-) TO
DISCHARGE TO SAFE VOLTAGE LEVELS (<50V), FAILURE TO DO SO CONSTITUTES AN
                            ELECTRICAL SHOCK HAZARD.
```


Caution

This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product.

Routine Maintenance and Repair

Printed Circuit Board (PCB) Replacement

Observe all electrical warnings and static handling precautions at the front of this section - 'Component Replacement'

Power Control PCB and CALIBRATION Card Replacement

To Access the Boards

1. Remove the drive's top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.
2. Remove drive front cover (metal) which is attached via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover).
3. It is now possible to view the power control PCB and Cal Card as shown in figure 10.1.
4. Take note of PCB connectivity when removing and replacing PCBs, ensuring that PCB is re-connected correctly.

Note Refer to Appendix A to access the Control Board and fit/remove Option Cards.

Routine Maintenance and Repair

Figure 10.1 View under the Lower Terminal Cover

Routine Maintenance and Repair

SMPS PCB Replacement

1. Follow steps 1 to 3 of procedure 'Power Control PCB and CALIBRATION Card Replacement'. Release hinged panel fixing - 1 off $1 / 4$ turn fastener as shown in Figure 10.1.
2. The SMPS PCB may now be viewed on reverse side of hinged panel as shown below.

AH464883U101
Figure 10.2 SMPS PCBs
3. Take note of PCB connectivity and carefully remove and replace PCB, ensuring that PCB is reconnected correctly. Correctly refit any insulating parts that may be present.
4. Re-fit hinged panel and $1 / 4$ turn fastener as shown in figure 10.1.
5. Replace drive front cover (metal) which is attached via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover).
6. Re-connect 4-way op-station cable to LED PCB (see figure 10.1).
7. Re-fit drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.

Routine Maintenance and Repair

Line Suppression AH389192 PCB Replacement

1. Remove drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.
2. Disconnect 4-way op-station cable from LED PCB (see figure 10.1).
3. Remove drive front cover (metal) which is attached via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover).
4. Release hinged panel fixing - 1 off $1 / 4$ turn fastener as shown in figure 10.1.
5. The line suppression PCB is located inside drive enclosure beneath the hinged panel and can be visually identified as shown below.
6. Take note of PCB connectivity and carefully remove and replace PCB , ensuring that PCB is re-connected correctly.

Figure 10.3 Line Suppression PCB
7. Re-fit hinged panel and $1 / 4$ turn fastener as shown in figure 10.1.
8. Replace drive front cover (metal) which is attached via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover).
9. Re-connect 4-way op-station cable to LED PCB (see figure 10.1).
10.Re-fit drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.

Routine Maintenance and Repair

Fan Replacement

Observe all electrical warnings and static handling precautions at the front of this section - 'Component Replacement'.

It is possible to replace the drive main cooling fan should the need arise. Having replaced the main cooling fan, ensure that the wiring loom routing/fixing is preserved. This is an electrical safety requirement.

WARNING

Remove all power to drive, mains and auxiliary and lock out supplies.

Frame G $\mathbf{2 5 0} \mathbf{- 3 0 0 H P} / \mathbf{1 6 0 - 2 0 0} \mathbf{k W}$ Drive Main Cooling Fan
 Replacement

Kit LA471343U115 is for 115 VAC auxiliary supplies
Kit LA471343U230 is for 230VAC auxiliary supplies

Application

The fan incorporates a built-in capacitor, an adaptor plate, and a cable assembly with connectors. When fitting the new fan assembly and bracket, mount the fan on the fan-mounting studs using the $4 \times$ M4 plain nuts as spacers. A new grommet and cable clips are supplied to lead the fan cable along the inside of the suppression board-mounting bracket prior to fitting the fan.

Procedure

Required Tools
A. \#3 Phillips or posidrive screwdriver
B. \#2 Phillips or posidrive screwdriver
C. 8 mm hex nut driver or socket wrench with 150 mm (6 ") extension

Routine Maintenance and Repair

Fan Removal

1. Remove drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive (B).
2. Disconnect 4-way op-station cable from the LED PCB.
3. Remove drive front cover (metal) which is attached via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover) (B).
4. Open control door assembly, 1 x quarter turn.
5. Remove lower fan housing with 6 x M6 sem screws $4 \mathrm{Nm}(\mathrm{A})$.
6. Detach cable assembly from fan.
7. Remove fan and bracket from drive $-4 \times \mathrm{M} 5$ sem nuts (C).

Installation of New Fan

1. Fit 4 x M5 plain hex nuts (supplied in kit) on chassis studs to 4 Nm as spacers (C). Refer to Figure 10-4.
2. Fit new $1 / 2 "$ grommet to left-hand bracket hole if required. Refer to Figure 10-5. This will require removing the 3 wires from the from the left hand terminal block. Refer to Figures 10-8 and 10-9. Feed the cable through cable clip (Figure 10-7).
3. Attach cable assembly to fan. Fit fan and bracket to drive with $4 x$ M5 sem nuts from original fan; tighten to 4 Nm (C).
4. Check that fan spins freely and that nothing has fallen into the blades
5. Reattach lower fan housing with 6 x M6 sem screws $4 \mathrm{Nm}(\mathrm{A})$.
6. Close control door assembly, 1 x quarter turn.
7. Refit drive front cover (metal), $4 x$ quarter turn screws (B).
8. Re-attach op-station cable to LED PCB.
9. Refit top and bottom terminal covers with the 2 x quarter-turn fasteners.
10.Apply auxiliary supply and check that fan is functioning
11.Apply mains supply and return drive to service.

Routine Maintenance and Repair
Illustrations : Frame G Drive Main Cooling Fan Replacement

Figure 10-4

Figure 10-7

Figure 10-6

Figure 10-8

Figure 10-9

Routine Maintenance and Repair

Frame H Drive Main Cooling Fan and Fan Start Capacitor Replacement

1. Remove drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.
2. Disconnect 4-way op-station cable from LED PCB (see figure 10.1).
3. Remove drive front cover (metal) which is attached via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover).
4. Remove Main Fan housing (see figure 3.1).
5. Release hinged panel fixing - 1 off $1 / 4$ turn fastener as shown in figure 10.1 .
6. Take note of fan and fan start capacitor wiring. Disconnect fan and fan start capacitor wiring.
7. Remove fan mounting nuts. Remove fan start capacitor mounting nuts(s). Remove fan and fan start capacitor taking care not to damage other components within drive.
8. Replace fan and fan start capacitor taking care not to damage other components within drive.
9. Re-connect fan wiring loom and ensure that electrical safety isolation is preserved. (refer to wiring diagram HJ463151D001 at the end of this section.)
10. Re-fit fan housing (see figure 3.1).
11. Re-fit drive front cover (metal) via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover).
12. Re-connect 4-way op-station cable to LED PCB (see figure 10.1).
13. Re-fit drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.

Routine Maintenance and Repair

Frame J Drive Main Cooling Fan, Internal Extractor Fan and Main Fan Start Capacitor Replacement

In addition to the main cooling fan, the Frame J drive also has two internal 120 mm square fans. The main cooling fan, internal cooling fans and main cooling fan start capacitor are mounted on the bottom panel of the drive (See drawing HG 463009G001 - Chapter 4). Having replaced the fan, ensure that the fan wiring loom routing/fixing is preserved. Refer to wiring diagram HJ463151D002 at the end of this section. This is an electrical safety requirement.

Replacement of Fan Start Capacitor

1. Disconnect fan start capacitor wiring (two faston connectors at top of capacitor).
2. Remove fan start capacitor mounting nuts(s).
3. Replace and reconnect start capacitor, taking care not to damage other components within drive.

Replacement of Main Cooling Fan Only

1. Disconnect fan supply wire loom at terminal block on bottom panel of drive. Note the colour coding of the connections to the terminal block
2. Remove fan mounting nuts. Remove fan and fan start capacitor taking care not to damage other components within drive.
3. Re-connect fan wiring loom and ensure that electrical safety isolation is preserved.
4. Refit the lower panel assembly to the drive.

Replacement of Internal $1 \mathbf{2 0 m m}$ Square Cooling Fans

1. While supporting the fan, remove the 6 M 6 screws on the very bottom of the drive.
2. Lower the fan and panel assembly out of the drive.
3. Remove the lower panel assembly.
4. Disconnect supply cable at faulty fan.
5. Replace fan.
6. Reconnect supply cable.
7. Re-fit lower panel assembly.

Routine Maintenance and Repair

Routine Maintenance and Repair

Routine Maintenance and Repair

Phase Assembly Replacement

The drive power stage consists of 3 identical phase assemblies. Each phase assembly consists of heatsink, IGBT module plus gate drive pcb, $1 / 3$ of the input bridge, DC link capacitors and PCB 'AH389193'. It is intended that the whole phase assembly be carried as a spare part and replaced as a unit. Spare phase assemblies are available for each of the three drive frame sizes. The spare phase assembly comes with a 'service tray' which is designed to assist in phase assembly replacement. It also protects the other delicate components within the drive during the replacement procedure.

Observe all electrical warnings and static handling precautions at the front of this section - 'Component Replacement'.

Supplied Parts

- \quad Service plate.
- M5 screws (2 off)
- Heatsink clamps (2 off 890 frame G, 4 off 890 frames H \& J) - used to retain phase assembly in packaging. They are to be reused in the replacement assembly if the original clamps are excessively distorted.
- Insulating caps - 3 off

Required Tools

- Drive ratchet wrench, 300 mm extension, $8 \mathrm{~mm} \& 10 \mathrm{~mm}$ socket.
- Drive No. 2 \& 3 Posidrive bits.

Phase Assembly Removal Procedure

Refer to Figure 10.10 - 'Power Component Identification' at the end of this section.

1. Remove drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.

Routine Maintenance and Repair

2. Disconnect 4-way op-station cable from LED PCB (see figure 10.1).
3. Remove drive front cover (metal) which is attached via 4 off $1 \frac{1}{4}$ turn fasteners (take care not to damage PCBs beneath cover).
4. Remove DC+ and DC- bus bars at the top of the drive. - remove 2 M6 captive nuts at the capacitor joining plate assembly and 2 M 6 captive nuts at the external connection busbars. (300 mm long extension recommend for this step).
5. Remove capacitor joining plate assembly via M6 captive washer nuts. Note that the nuts on the left hand side of the M2 phase are covered with plastic insulating caps. These caps are a safety requirement and must be fitted.
6. If removing the M3 phase limb from an drive which has a Brake unit fitted, it will be necessary to remove the brake connecting plate. (Refer to Chapter 5).
7. Remove 2 M6 captive nuts from input busbar on phase limb to be replaced. (300 mm long extension recommended for this step).
8. Remove 2 M6 hex bolts and washers from output busbar on phase limb to be replaced (300 mm long extension recommended for this step).
9. Disconnect cable(s) from printed circuit board on phase limb to be replaced. Take note of PCB connectivity.
10. Disconnect earth wire on phase limb to be replaced by removing 1 off M5 captive nut at chassis.
11. Insert service plate underneath phase limb to be removed. Secure to side panels of drive using the two M5 screws supplied.
12. 890 frame G : Remove heatsink clamp screws (3 per phase assembly) and remove clamp plates. 890 frames H \& J : Loosen heatsink clamps (4 per phase assembly) and rotate through 90°.
13. Carefully remove phase limb assembly.

Routine Maintenance and Repair

Phase Assembly Replacement Procedure

1. Replace any badly distorted heatsink clamps with spare clamps provided. (Clamps used in packaging).
2. Carefully slide replacement phase limb assembly into position making sure that the studs on the input busbars (left-hand side) located in the holes provided on the phase limb busbar. Re-fit nuts and washers, but do not tighten.
3. Re-fit output busbar bolts and washers and tighten to 6.8 NM torque.
4. Secure phase limb assembly to chassis using heatsink clamps.
5. Remove service plate.
6. Tighten input busbar nuts to 6.8 NM torque.
7. Secure earth wire to chassis -4 NM torque.
8. Reconnect cable(s) to phase limb assembly printed circuit board.
9. Refit capacitor joining plate with M6 captive nuts to 6.8 NM torque.
10. Refit insulating caps to M2 (middle) left-hand side capacitor joining plate nuts.
11. Refit DC busbars 2 off M6 captive nuts on capacitor joining plate tightened to 6.8 NM torque and 2 off M6 captive nuts at the external connection busbars tightened to 6.8 NM torque.
12. Refit brake connection plate and top cover if required (refer to Chapter 5)
13. Refit drive front cover (metal) via 4 off $1 / 4$ turn fasteners (take care not to damage PCBs beneath cover).
14. Reconnect 4-way op-station cable to LED PCB (see figure 10.1).
15. Refit drive top and bottom terminal cover (plastic) via 2 off $1 / 4$ turn fasteners at top and bottom of drive.

Routine Maintenance and Repair

Figure 10.10 Power Component Identification (Frame G)

Routine Maintenance and Repair

Options

Appendix A
 Options

This Chapter contains information about various options that can be fitted to the 890 range.

- Option Cards

Options

Option Cards

There are a range of Option Cards that may come factory-fitted to the 890SD drive, or are available for customer fitting.

The options provide for fieldbus communications and speed feedback and are mounted on to the Control Board.

Refer to the Technical Manual suppled with each Option Card for detailed instructions.

Option Card A slot

Fieldbus communications option cards for all major protocols

Option Card B slot

Fieldbus communications option cards for all major protocols (FireWire is currently fitted to this slot only)

Option Card F slot
Speed feedback option cards

Options

Removing the Control Board

WARNING!

Disconnect all sources of power before attempting installation. Injury or death could result from unintended actuation of controlled equipment.

Caution

This option contains ESD (Electrostatic Discharge) sensitive parts. Observe static control precautions when handling, installing and servicing this option.

Options

1. Remove the lower front cover from the drive.
2. Undo the captive screws (A) securing Option A and Option B, if fitted.
3. Undo the captive screws (B) located in the handles of the control board. Gently pull down on the handles to withdraw the board from the drive, supporting any attached option boards. Note that the boards are sliding in slots.
4. Refer to the Option Card Technical Manual for fitting/wiring details.
5. Fit the control board (with attached options) into the drive. Push the board gently to engage the connectors on the rear edge of the control board with the drive's connectors.
6. Tighten the Option A and Option B screws, if fitted.
7. Tighten the captive screws (B) located in the handles of the control board.
8. Fit the lower front cover to the drive.

Figure 2 Control board with an Option Card correctly mounted

Sequencing Logic

Appendix B

Sequencing Logic

The 890SD Standalone Drive's reaction to commands is defined by a state machine. This determines which commands provide the demanded action, and in which sequence.

- Main sequencing states
- State outputs of the SEQUENCING LOGIC function block
- Transition of states
- State diagram
- External control of the drive

Sequencing Logic

Principle State Machine

Main Sequencing States

The main sequencing state of the unit is indicated by an enumerated value given by the parameter SEQUENCER STATE under SEQUENCING LOGIC menu.

Enumerated Value	Main Seq State	Standard Name	Description
0	START DISABLED	Switch On Disabled	The Drive will not accept a switch on command
1	START ENABLED	Ready To Switch On	The Drive will accept a switch on command
2	SWITCHED ON	Switched On	The Drive's stack is enabled
3	READY	Ready	Waiting for Contactor to be closed
4	ENABLED	Enabled	The Drive is enabled and operational
5	F-STOP ACTIVE	Fast-Stop Active	Fast stop is active
6	TRIP ACTIVE	Trip Active	The Drive is processing a trip event
7	TRIPPED	Tripped	The Drive is tripped awaiting trip reset

Table B-1 Enumerated Values for the SEQUENCING LOGIC Function Block

Sequencing Logic

State Outputs of the SEQUENCING LOGIC Function Block

The following table shows the states of individual parameters for the SEQUENCING LOGIC function block required to produce the condition of the MAIN SEQ STATE parameter.

	START DISABLED	START ENABLED	SWITCHED ON	READY	ENABLED	F-STOP ACTIVE	TRIP ACTIVE	TRIPPED
Tripped	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE
Running	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
Jogging	FALSE	FALSE	FALSE	FALSE	Note 1	FALSE	FALSE	FALSE
Stopping	FALSE	FALSE	FALSE	FALSE	Note 2	TRUE	FALSE	FALSE
Output Contactor	Depends on previous state	Depends on previous state	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE
Switch On Enable	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE
Switched On	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE
Ready	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE
Healthy	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE Note 3

Table B-2 Parameter States for the MAIN SEQ STATE Parameter

Sequencing Logic

Note 1. JOGGING is set TRUE once the jog cycle has started, and remains TRUE until the jog cycle has finished which is when either the stop delay has finished or another mode is demanded.
2. STOPPING is set TRUE during the stopping cycles commanded by either RUNNING going low, JOGGING going low or if Fast Stop is active, i.e. SEQUENCING LOGIC is F-STOP ACTIVE.
3. Once Run and Jog are both FALSE, HEALTHY O/P will be set TRUE.

Transition of States

The transition matrix describes what causes the transition from one state to another, for example see number 4 below: the transition from "Ready To Switch On" to "Trip Active" is triggered by "TRIP" going TRUE. Note - where a state has more than one exit transition, the transition with the lowest number has priority.

Refer to the following table and state diagram.

	Current State	Next State	Cause (FALSE to TRUE)
1	Power Up	Switch On Disabled	Power-Up, Restore Configuration or exit from Configuration mode.
2	Switch On Disabled	Trip Active	Trip
3	Switch On Disabled	Ready To Switch On	RUN = FALSE, JOG = FALSE, NOT FAST STOP = TRUE and NOT COAST STOP = TRUE
4	Ready To Switch On	Trip Active	Trip
5	Ready To Switch On	Switch On Disabled	NOT COAST STOP = FALSE or NOT FAST STOP = FALSE
6	Ready To Switch On	Switched On	RUN = TRUE or JOG = TRUE

Sequencing Logic

	Current State	Next State	Cause (FALSE to TRUE)
7	Switched On	Trip Active	Trip (includes CONTACTOR CLOSED = FALSE after 10 seconds)
8	Switched On	Switch On Disabled	NOT COAST STOP = FALSE or NOT FAST STOP = FALSE
9	Switched On	Ready To Switch On	RUN = FALSE and JOG = FALSE
10	Switched On	Ready	CONTACTOR CLOSED = TRUE and defluxed
11	Ready	Trip Active	Trip (includes CONTACTOR CLOSED = FALSE)
12	Ready	Switch On Disabled	NOT COAST STOP = FALSE or NOT FAST STOP = FALSE
13	Ready	Ready To Switch On	RUN = FALSE and JOG = FALSE
14	Ready	Enabled	ENABLE = TRUE
15	Enabled	Trip Active	Trip (includes CONTACTOR CLOSED = FALSE)
16	Enabled	Switch On Disabled	NOT COAST STOP = FALSE
17	Enabled	Fast Stop Active	NOT FAST STOP = FALSE
18	Enabled	Ready To Switch On	RUN = FALSE, JOG = FALSE and stopping complete
19	Enabled	Ready	ENABLE = FALSE

Sequencing Logic

	Current State	Next State	Cause (FALSE to TRUE)
20	Fast Stop Active	Trip Active	Trip (includes CONTACTOR CLOSED = FALSE)
21	Fast Stop Active	Switch On Disabled	Fast Stop timer expired or FAST STOP MODE $=$ Coast Stop OR Drive at zero setpoint
22	Trip Active	Tripped	Stack quenched
23	Tripped	Switch On Disabled	Trip = FALSE and TRIP RESET 0-> 1 transition

Table B-3 Transition Matrix

State Diagram

Sequencing Logic

External Control of the Drive

Communications Command

When sequencing is in the Remote Comms mode, the sequencing of the Drive is controlled by writing to the COMMS COMMAND (PREF 95.05).
The COMMS COMMAND parameter is a 16-bit word based on standard fieldbus drive profiles. Some bits are not implemented in this release (see "Supported" column of the table below).

Bit	Name	Description	Supported	Required Value
0	Switch On	OFF1 Operational	\checkmark	
1	(Not) Disable Voltage	OFF2 Coast Stop	\checkmark	
2	(Not) Quick Stop	OFF3 Fast Stop	\checkmark	
3	Enable Operation		\checkmark	
4	Enable Ramp Output	$=0$ to set ramp output to zero		1
5	Enable Ramp	$=0$ to hold ramp		1
6	Enable Ramp Input	$=0$ to set ramp input to zero		1
7	Reset Fault	Reset on 0 to 1 transition	\checkmark	
8				0
9				0
10	Remote	$=1$ to control remotely		1
11				0
12				0
13				0
14				0
15				0

Sequencing Logic

Switch On

Replaces the RUN FWD, RUN REV and NOT STOP parameters of the SEQUENCING LOGIC function block. When Set $(=1)$ is the same as :

RUN FWD	$=$ TRUE
RUN REV	$=$ FALSE
NOT STOP	$=$ FALSE

When Cleared $(=0)$ is the same as :

RUN FWD	$=$ FALSE
RUN REV	$=$ FALSE
NOT STOP	$=$ FALSE

Sequencing Logic

(Not) Disable Voltage

ANDed with the NOT COAST STOP parameter of the SEQUENCING LOGIC function block. When both Set $(=1)$ is the same as:

```
NOT COAST = TRUE
STOP
```

When either or both Cleared $(=0)$ is the same as :

```
NOT COAST = FALSE
STOP
```


(Not) Quick Stop

ANDed with the NOT FAST STOP parameter on the SEQUENCING LOGIC function block. When both Set $(=1)$ is the same as:

```
NOT FAST STOP = TRUE
```

When either or both Cleared $(=0)$ is the same as :

```
NOT FAST STOP = FALSE
```


Enable Operation

ANDed with the DRIVE ENABLE parameter on the SEQUENCING LOGIC function block. When both Set $(=1)$ is the same as:

DRIVE ENABLE $=$ TRUE

When either or both Cleared $(=0)$ is the same as :
DRIVE ENABLE $=$ FALSE

Sequencing Logic

Enable Ramp Output, Enable Ramp, Enable Ramp Input

Not implemented. The state of these bits must be set $(=1)$ to allow this feature to be added in the future.

Reset Fault

Replaces the REM TRIP RESET parameter on the SEQUENCING LOCIC function block. When Set (=1) is the same as:

```
REM TRIP = TRUE
RESET
```

When Cleared $(=0)$ is the same as :

```
REM TRIP = FALSE
RESET
```


Remote

Not implemented. It is intended to allow the PLC to toggle between local and remote. The state of this must be set $(=1)$ to allow this feature to be added in the future.

Example Commands

047F hexadecimal to RUN
047E hexadecimal to STOP

Sequencing Logic

Communications Status

The COMMS STATUS parameter (PREF 95.08) in the COMMS CONTROL function block monitors the sequencing of the Drive. It is a 16-bit word based on standard fieldbus drive profiles. Some bits are not implemented in the initial release and are set to 0 (see "Supported" column of the table below).

Bit	Name	Description	Supported
0	Ready To Switch On		\checkmark
1	Switched On	Ready for operation (refer control bit 0)	\checkmark
2	Operation Enabled	(refer control bit 3)	\checkmark
3	Fault	Tripped	\checkmark
4	(Not) Voltage Disabled	OFF 2 Command pending	\checkmark
5	(Not) Quick Stop	OFF 3 Command pending	\checkmark
6	Switch On Disable	Switch On Inhibited	\checkmark
7	Warning		
8	SP / PV in Range		
9	Remote	$=1$ if Drive will accept Command Word	\checkmark
10	Setpoint Reached	$=1$ if not ramping	\checkmark
11	Internal Limit Active	= if current limit active or speed loop is in torque limit	\checkmark
12			
13			
14			
15			

Sequencing Logic

Ready To Switch On

Same as the SWITCH ON ENABLE output parameter of the SEQUENCING LOGIC function block.

Switched On

Same as the SWITCHED ON output parameter of the SEQUENCING LOGIC function block.

Operation Enabled

Same as the RUNNING output parameter of the SEQUENCING LOGIC function block.

Fault

Same as the TRIPPED output parameter of the SEQUENCING LOGIC function block.

(Not) Voltage Disabled

If in Remote Comms mode, this is the same as Bit 1 of the COMMS COMMAND parameter. Otherwise it is the same as the NOT COAST STOP input parameter of the SEQUENCING LOGIC function block.

(Not) Quick Stop

If in Remote Comms mode, this is the same as Bit 2 of the COMMS COMMAND parameter. Otherwise it is the same as the NOT FAST STOP input parameter of the SEQUENCING LOGIC function block.

Switch On Disable

Set (=1) only when in START DISABLED state, refer to Table B-1.

Remote

This bit is set $(=1)$ if the Drive is in Remote mode AND the parameter REMOTE COMMS SEL of the COMMS CONTROL function block is Set (=1).

Sequencing Logic

Setpoint Reached

This bit is set $(=1)$ if the Reference Ramp is not ramping.

Internal Limit Active

This bit is set $(=1)$ if, while in vector control mode, the speed limit has reached the torque limit; or, while in Volts/Hz mode, the open loop current limit is active.

Certification

Appendix C
 Certification

This Chapter outlines the additional steps that may be required to achieve EMC conformance.

- What is the EMC Directive?

Who is Responsible?

- Definition of Working Environments
- EMC Considerations
- European Directives and the CE Mark
- Certificates

Certification

What is the EMC Directive? (2004/108/EC)

The EMC ${ }^{1}$ Directive is one of a series of directives created to allow manufacturers to trade freely within the EEC territory. This is done by creating the CE mark C Θ, a "trade symbol" showing that requirements for safety and health are met. These requirements (called "essential requirements") are those apparatus has to meet to obtain the "presumption of conformity".
The aim of the EMC Directive 2004/108/EC is to ensure that any electric, or electronic, device will create no more then a limited amount of RF interference so that other apparatus are not affected from functioning correctly. Also to ensure that an electric, or electronic, device will withstand a certain amount of Electro Magnetic interference from other equipment.

History

Historically each European drives manufacture and importer interpreted the EMC directive and 'CE' marking requirements differently.
To provide a unified approach the European machines and drives manufactures, via their national trade associations have formed the 'European Committee of Manufacturers of Electrical Machines and Power Electronics', termed CEMEP. Recommendations were produced by this committee for the application of the European Council Directives to power drive systems. These are to be followed by all major European Drives manufacturers.
The "EMC Drive Product Specific Standard" EN 61800-3 was listed in the Official Journal of Europe on January 1st 1997. This standard takes precedence over the Generics Standards. Working to the product standard is a sensible approach to take to show EMC conformance. However many of our customers are tied to the Generic standards for the final application of our drives; we therefore continue to design, test and certify our drives to these standards.

[^0]
Certification

Who is Responsible?

Within a system the drive is considered to be a component. It remains the responsibility of the system manufacturer to verify that the goals as defined in the EMC directive (essential requirements) are being met. In practice this means that compliance to harmonised standards is sufficient to show compliance with the directive
All Parker SSD Drives' products are tested to ensure compliance with the harmonised standards. However it must be remembered that there is no guarantee that combinations of compliant components will result in a compliant system. This means that compliance to harmonised standards will have to be demonstrated for the system as a whole to ensure compliance with the directive

n Relevant Apparatus - Parker SSD Drives Responsibility

Occasionally, say in a case where an existing fixed speed motor - such as a fan or pump - is converted to variable speed with an add-on drive module (relevant apparatus), it becomes the responsibility of Parker SSD Drives to apply the CE mark and issue an EC Declaration of Conformity for the EMC Directive. This declaration and the CE mark is included at the end of this chapter.
n Component - Customer Responsibility
The majority of Parker SSD Drives' products are classed as components and therefore we cannot apply the CE mark or produce an EC Declaration of Conformity in respect of EMC. It is therefore the manufacturer/supplier/installer of the higher system/apparatus or machine who must conform to the EMC directive and CE mark.

Note When two or more EMC compliant components are combined to form the final machine/system, the resulting machine/system may no longer be compliant, (emissions tend to be additive, immunity is determined by the least immune component). Understand the EMC environment and applicable standards to keep additional compliance costs to a minimum.

Certification

Definition of Working Environments

There are subtle differences in the environments defined in the standards. However, where there is any doubt as to the appropriate classification, we will be glad to advise on a case-by-case basis.

Certification

General Installation EMC Considerations

Earthing Requirements

IMPORTANT Protective earthing always takes precedence over EMC screening.

Protective Earth (PE) Connections

Note In accordance with installations to EN60204, only one protective earth conductor is permitted at each protective earth terminal contacting point.
Local wiring regulations tale precedence and may require the protective earth connection of the motor to be connected locally, i.e. not as specified in these instructions. This will not cause shielding problems because of the relatively high RF impedance of the local earth connection.

EMC Earth Connections

For compliance with EMC requirements, we recommend that the " $0 \mathrm{~V} /$ signal ground" be separately earthed. When a number of units are used in a system, these terminals should be connected together at a single, local earthing point.
Control and signal cables for the encoder, all analogue inputs, and communications require screening with the screen connected only at the VSD (Variable Speed Drive) end. However, if high frequency noise is still a problem, earth the screen at the non-VSD end via a $0.1 \mu \mathrm{~F}$ capacitor.

Note Connect the screen (at the VSD end) to the VSD protective earth point \oplus, and not to the control board terminals.

Certification

Cabling Requirements

Note Refer to Appendix E: "Technical Specifications" for additional Wire Sizes.

Planning Cable Runs

- Use the shortest possible motor cable lengths.
- Use a single length of cable to a star junction point to feed multiple motors.
- Keep electrically noisy and sensitive cables apart.
- Keep electrically noisy and sensitive parallel cable runs to a minimum. Separate parallel cable runs by at least 0.25 metres. For runs longer than 10 metres, separation should be increased proportionally. For example if the parallel runs were 50 m , then the separation would be ($50 / 10$) $\times 0.25 \mathrm{~m}=1.25 \mathrm{~m}$.
- Sensitive cables should cross noisy cables at 90°.
- Never run sensitive cables close or parallel to the motor, dc link and braking chopper circuit for any distance.
- Never run supply, dc link or motor cables in the same bundle as the signal/control and feedback cables, even if they are screened.
- Ensure EMC filter input and output cables are separately routed and do not couple across the filter.

Increasing Motor Cable Length

Because cable capacitance and hence conducted emissions increase with motor cable length, conformance to EMC limits is only guaranteed with the specified ac supply filter option up to a maximum cable length as specified in Appendix E: "Technical Specifications".
This maximum cable length can be improved using the specified external input or output filters.
Screened/armoured cable has significant capacitance between the conductors and screen, which increases linearly with cable length (typically $200 \mathrm{pF} / \mathrm{m}$ but varies with cable type and current rating).

Certification

Long cable lengths may have the following undesirable effects:

- Tripping on `overcurrent' as the cable capacitance is charged and discharged at the switching frequency.
- Producing increased conducted emissions that degrade the performance of the EMC filter due to saturation.
- Causing RCDs (Residual Current Devices) to trip due to increased high frequency earth current.
- Producing increased heating inside the EMC ac supply filter from the increased conducted emissions.

These effects can be overcome by adding chokes or output filters at the output of the VSD.

Emissions

All VSDs potentially produce electrical emissions which are radiated into the environment and conducted back into the ac supply. The following information is provided to maximise the Electro Magnetic Compatibility (EMC) of VSDs and systems in their intended operating environment, by minimising their emissions.
The standards are concerned with two types of emission

- Radiated Those in the band $30 \mathrm{MHZ}-1000 \mathrm{MHz}$ which radiate into the environment
- Conducted Those in the band $150 \mathrm{kHz}-30 \mathrm{MHz}$ which are injected into the supply.

Certification

Radiated

The standards have common roots (CISPR $11 \&$ CISPR14) so there is some commonality in the test levels applied in different environments.

Relationship between standards

Limits (interpreted for 10m measurement)	Standards			
	Product Specific		Generic	
$30-230 \mathrm{MHZ}$ $30 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$ Category C1 Table 15 $230-1000 \mathrm{MHz}$ $37 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$ Unrestricted Distribution $30-230 \mathrm{MHZ}$ $40 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$ Category C2 Table 15 Equivalent Restricted Distribution	N/A			
$330-1000 \mathrm{MHz}$	$47 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$	N/A	EN61000-6-4	
$30-230 \mathrm{MHZ}$	$50 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$	Category C3 Table 18	These limits have no equivalent within the Generic Standards. They are taken from CISPR 11 group 2 Class A	
$230-1000 \mathrm{MHz}$	$60 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})$	Equivalent		

Certification

Reducing Radiated Emissions

To show compliance with the Adjustable Speed Electrical Power Drive Systems Standard BSEN61800-3, and the Generic Standards BSEN61000-6-3 \& BSEN61000-6-4; radiated emission measurements are made between 30 MHz and 1 GHz in the far field at a distance of 10 to 30 metres. Limits lower than 30 MHz or in close proximity are not specified.

Emissions from individual components tend to be additive. To reduce the emissions:

- The equipment must be mounted in a metal cubicle. The unit is installed for Category C 1 operation when mounted inside a cubicle giving 10 dB attenuation between 30 and 100 MHz (typically the attenuation provided by a metal cabinet with no aperture of dimension greater than 0.15 m), using the recommended ac supply filter and having met all cabling requirements. The cubicle should be as free of openings as is practical. Vent systems suitable for EMC applications are available from cubicle suppliers and should be used.

Note Radiated magnetic and electric fields inside the cubicle will be high and any components fitted inside must be sufficiently immune.

- All cable entry and exits (power, control, and communication) should use screened cable
- Use of screened/armoured cable between VSD/cubicle and motor containing the motor protective earth (PE) connection is most important. If shielded cable is not available, lay unshielded motor cables in a metal conduit which will act as a shield. The conduit must be continuous with a direct electrical contact to the VSD and motor housing. If links are necessary, use braid with a minimum cross sectional area of $10 \mathrm{~mm}^{2}$.
- Use 360° screen terminations.

Certification

- Earth screen at both ends connecting to the motor frame and cubicle.

Note Some hazardous area installations may preclude direct earthing at both ends of the screen, in this case earth one end via a $1 \mu \mathrm{~F} 50 \mathrm{Vac}$ capacitor, and the other as normal.

- Keep unshielded cable as short as possible inside the cubicle.
- Always maintain the integrity of the shield. If the cable is interrupted to insert contactors etc., re-connect the screen using the shortest possible route. Some motor gland boxes and conduit glands are made of plastic, if this is the case, then braid must be connected between the screen and the chassis. In addition at the motor end, ensure that the screen is electrically connected to the motor frame since some terminal boxes are insulated from the frame by gasket/paint
- Keep the length of screen stripped-back as short as possible when making screen connections.

Certification

Conducted Emission

The various standards have common roots (CISPR $11 \&$ CISPR14) so there is some commonality in the test levels applied in different standards and environments.

Relationship between standards

Limits			Standards		
Frequency (MHz)	DB ($\mu \mathrm{V}$)		Product Specific EN 61800-3	Generic	
	Quasi Peak	Average		EN61000-6-3	EN61000-6-4
$\begin{gathered} 0.15-0.5 \\ 0.5-5.0 \\ 5.0-30.0 \\ \hline \end{gathered}$	$\begin{aligned} & 79 \\ & 73 \\ & 73 \\ & \hline \end{aligned}$	$\begin{array}{r} 66 \\ 60 \\ 60 \\ \hline \end{array}$	Category C2 Table 14 Restricted Distribution	N/A	Equivalent
0.15-0.5 decreasing with log of frequency to: $\begin{gathered} 0.5-5.0 \\ 5.0-30.0 \end{gathered}$	$\begin{aligned} & 66 \\ & 56 \\ & 60 \end{aligned}$	$\begin{aligned} & 56 \\ & \\ & 46 \\ & 50 \end{aligned}$	Category C1 Table 14 Unrestricted Distribution	Equivalent	N/A
$\begin{gathered} \text { where } \mathrm{I} \leq 100 \mathrm{~A} \\ 0.15-0.5 \\ 0.5-5.0 \\ 5.0-30.0 \end{gathered}$ decreasing with log of frequency to:	$\begin{gathered} 100 \\ 86 \\ 90 \\ 70 \\ \hline \end{gathered}$	$\begin{array}{r} 90 \\ 76 \\ 80 \\ 60 \\ \hline \end{array}$	Category C3 Table 17	These limits have no equivalent within the Generic Standards. They are taken from CISPR 11 group 2 Class A	
$\begin{gathered} \text { where } \mathrm{I} \geq 100 \mathrm{~A} \\ 0.15-0.5 \\ 0.5-5.0 \\ 5.0-30.0 \end{gathered}$	$\begin{aligned} & 130 \\ & 125 \\ & 115 \end{aligned}$	$\begin{aligned} & 120 \\ & 115 \\ & 105 \end{aligned}$			

Certification

Screening \& Earthing

Note The installation requirements of local safety standards must be achieved regarding the safety of electrical equipment for machines.. Refer to Chapter 4: Connecting Power.

The VSD, external filter and associated equipment are mounted onto a conducting, metal mounting panel. Do not use cubicle constructions that use insulating mounting panels or undefined mounting structures. Cables between the VSD and motor must be screened or armoured and terminated at the VSD or locally on the back panel.

Star Point Earthing

A star-point earthing policy separates 'noisy' and 'clean' earths. Four separate earth busbars (three are insulated from the mounting panel) connect to a single earth point (star point) near the incoming safety earth from the main supply. Flexible, large cross-section cable is used to ensure a low HF impedance. Busbars are arranged so that connection to the single earth point is as short as possible.

1. Clean Earth Busbar (insulated from the mounting panel)

Used as a reference point for all signal and control cabling. This may be further subdivided into an analog and a digital reference busbar, each separately connected to the star earthing point. The digital reference is also used for any 24 V control.
2. Dirty Earth Busbar (insulated from the mounting panel)

Used for all power earths, i.e. protective earth connection. It is also used as a reference for any 110 or 220 V control used, and for the control transformer screen.
3. Metal Work Earth Busbar

The back panel is used as this earth busbar, and should provide earthing points for all parts of the cubicle including panels and doors. This busbar is also used for power screened cables which terminate near to $(10 \mathrm{~cm})$ or directly into a VSD - such as motor cables, braking choppers and their resistors, or between VSDs - refer to the appropriate product manual to identify these. Use U-clips to clamp the screened cables to the back panel to ensure optimum HF connection.

Certification

4. Signal/Control Screen Earth Busbar (insulated from the mounting panel)

Used for signal/control screened cables which do not go directly to the VSD. Place this busbar as close as possible to the point of cable entry. 'U' clamp the screened cables to the busbar to ensure an optimum HF connection.

Sensitive Equipment

The proximity of the source and victim circuit has a large effect on radiated coupling. The electromagnetic fields produced by VSDs falls off rapidly with distance from the cabling/cubicle. Remember that the radiated fields from EMC compliant drive systems are measured at least 10 m from the equipment, over the band $30-1000 \mathrm{MHz}$. Any equipment placed closer than this will see larger magnitude fields, especially when very close to the drive.
Do not place magnetic/electric field sensitive equipment within 0.25 metres of the following parts of the VSD system:

- Variable Speed Drive (VSD)
- EMC output filters
- Input or output chokes/transformers
- The cable between VSD and motor (even when screened/armoured)
- Connections to external braking chopper and resistor (even when screened/armoured)
- AC/DC brushed motors (due to commutation)
- DC link connections (even when screened/armoured)
- Relays and contactors (even when suppressed)

From experience, the following equipment is particularly sensitive and requires careful installation:

- Any transducers which produce low level analogue outputs ($<1 \mathrm{~V}$) , e.g. load cells, strain gauges, thermocouples, piezoelectric transducers, anemometers, LVDTs
- Wide band width control inputs (>100Hz)
- AM radios (long and medium wave only)
- Video cameras and closed circuit TV

Certification

- Office personal computers
- Capacitive devices such as proximity sensors and level transducers
- Mains borne communication systems
- Equipment not suitable for operation in the intended EMC environment, i.e. with insufficient immunity to new EMC standards

Single VSD - Multiple Motors

If connecting multiple motors to a single VSD, use a star junction point for motor cable connections. Use a metal box with entry and exit cable glands to maintain shield integrity.

European Directives and the CE Mark

The following information is supplied to provide a basic understanding of the EMC and low voltage directives CE marking requirements. The following literature is recommended for further information:

- Recommendations for Application of Power Drive Systems (PDS), European Council Directives CE Marking and Technical Standardisation - (CEMEP)

Available from your local trade association or Parker SSD Drives office
The European machines and drives manufacturers via their national trade associations have formed the European Committee of Manufacturers of Electrical Machines and Power Electronics (CEMEP). Parker SSD Drives and other major European drives manufacturers are working to the CEMEP recommendations on CE marking. The CE mark shows that a product complies with the relevant EU directives, in our case the Low Voltage Directive and, in some instances, the EMC Directive.

CE Marking for Low Voltage Directive

When installed in accordance with this manual, the 890 product is CE marked by Parker SSD Drives in accordance with the low voltage directive (S.I. No. 3260 implements this LVD directive into UK law). Refer to page C-16 for the "EC Declaration of Conformity" (low voltage directive).

Certification

Legal Requirements for CE Marking

IMPORTANT: Before installation, clearly understand who is responsible for conformance with the EMC directive.

 Misappropriation of the CE mark is a criminal offence.It is important that you have now defined who is responsible for conforming to the EMC directive, either:

n Parker SSD Drives Responsibility

You intend to use the unit as relevant apparatus.
When the specified EMC filter is correctly fitted to the unit following EMC installation instructions, it complies with the relevant standards indicated in the following tables. The fitting of the filter is mandatory for the CE marking of this unit to apply.

The relevant declarations are to be found at the end of this chapter. The CE mark is displayed on the EC Declaration of Conformity (EMC Directive) provided at the end of this chapter.
n Customer Responsibility
You intend to use the unit as a component, therefore you have a choice:

1. To fit the specified filter following EMC installation instructions, which may help you gain EMC compliance for the final machine/system.
2. Not to fit the specified filter, but use a combination of global or local filtering and screening methods, natural migration through distance, or the use of distributed parasitic elements of the existing installation.

Certification

Certificates

890 SYSTEM	
EC DECLARATIONS OF CONFORMITY	
EMC Directive	Low Voltage Directive
In accordance with the EEC Directive 2004/108/EC We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment) is in accordance with the relevant clauses from the following standards:- BSEN61800-3 (2004)	$\begin{aligned} & \text { In accordance with the EEC Directive } \\ & 2006 / 95 / \mathrm{EC} \end{aligned}$ We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment), is in accordance with the following standard :- EN50178 (1998)
MANUFACTURERS DecLarations	
EMC Declaration	Machinery Directive
We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment) is in accordance with the relevant clauses from the following standards:- BSEN61800-3 (2004)	The above Electronic Products are components to be incorporated into machinery and may not be operated alone. The complete machinery or installation using this equipment may only be put into service when the safety considerations of the Directive 89/392/EEC are fully adhered to. Particular reference should be made to EN60204-1 (Safety of Machinery - Electrical Equipment of Machines). All instructions, warnings and safety information of the Product Manual must be adhered to.
Parker Hannifin Ltd., Automation Group, SSD Drive WEST SUS TELEPHONE: +44 (0) 190373 Registered Number 4806503 England. Registered Office:	in Payn (Conformance Officer) s Europe, NEW COURTWICK LANE, LITTLEHAMPTON, X BN17 7RZ 0, FAX: +44 (0) 1903737100 55 Maylands Avenue, Hemel Hempstead, Herts HP2 4SJ

Appendix D

Programming

This Appendix provides an introduction to programming the 890 . It describes the 890 Function Blocks and the parameters they contain. We recommend that you program the 890 using the DSE Configuration Tool.

- Programming with block diagrams
- Modifying a block diagram
- Function block descriptions
- Parameter specification tables
- Product related default values

Programming

Programming with Block Diagrams

You can program the drive to your specific application. This programming simply involves changing parameter values. For instance, parameter ${ }^{\mathrm{S}} 1$ selects the main method of motor control used by the drive: Volts/Hz or Sensorless Vector.
Block diagram programming provides a visual method of planning the software to suit your application. The blocks described here are those blocks used by the Shipping Configuration(s) in the DSE 890 Configuration Tool. A typical block diagram as seen in the DSE 890 Configuration Tool is shown below.
The processes performed by the shipping configuration are represented as a block diagram, consisting of function blocks and links:

- Each function block contains the parameters required for setting-up a particular processing feature. Sometimes more than one instance of a function block is provided for a feature, i.e. for multiple digital inputs.
- Software links are used to connect the function blocks. Each link transfers the value of an output parameter to an input parameter of another (or the same) function block.

Each individual block is a processing feature, i.e. it takes the input parameter, processes the information, and makes the result available as one or more output parameters.

Programming

Modifying a Block Diagram

- Using the keypad you can modify the parameter values within a function block.
- Using the DSE Configuration Tool, you can modify the parameter values within a function block, and also make and break links within the shipping configuration. The Help in the DSE Configuration Tool explains this process.

Programming Rules

The following rules apply when programming:

- Function block output parameter values cannot be changed (because they are a result of the function block's processing)
- Function block input parameter values that receive their values from an internal link in the Block Diagram cannot be changed (as they will change back to the value they receive from the link when the Drive is running).

Saving Your Modifications

If parameter values have been modified, the new settings must be saved. The Drive will then retain the new settings during power-down. Refer to Chapter 8: "The Keypad" - Saving Your Application.

Programming

Function Block Descriptions

Note To view the SETUP Menu, ADVANCED view level must be selected - SETUP::VIEW LEVEL.

Understanding the Function Block Description

The following function blocks show the parameter information necessary for programming the Drive.
The Default values in the pages below are correct for when the UK country code is selected and a 230 V 2.2 kW Frame B power board is fitted. Some parameters in the table are marked:

* Value dependent upon the Language field of the Product Code, e.g. UK
** Value dependent upon the overall "power-build", e.g. $230 \mathrm{~V}, 2.2 \mathrm{~kW}$
The values for these parameters may be different for your drive/application. Refer to Appendix D:
"Programming" - Product Related Default Values.

Parameter Descriptions Table: Sub-titles	
PREF	Unique identification normally used for communications
Default	The default value.
Range	The range for the parameter value. Ranges for outputs are given as "-.xx \%", for example, indicating an indeterminate integer for the value, to two decimal places.
$*$	Parameters marked with "*" are set to a value depending upon the "operating frequency" of the drive. Refer to "Parameter Specification" - Frequency Dependent Defaults; and Chapter 8: "The Keypad" - Changing the Product Code (3-button reset).

Function Blocks Alphabetically

The function block descriptions in this chapter are arranged alphabetically, however, they are also listed below by Category. ADVANCED view level must be selected to see all the function blocks listed

Page	Block	Page	Block	Page	Block
I/O Hardware Configuration					
8	ANALOG INPUT	23	DIGITAL INPUT		
11	ANALOG OUTPUT	24	DIGITAL OUTPUT		
Sequencing/Referencing					
12	AUTO RESTART	115	REFERENCE	129	REFERENCE STOP
148	COMMS CONTROL	125	REFERENCE JOG	139	SEQUENCING LOGIC
70	LOCAL CONTROL	126	REFERENCE RAMP		
Motor Control					
14	AUTOTUNE	66	INVERSE TIME PMAC	134	RESOLVER
20	CURRENT LIMIT	68	INVERSE TIME	131	SKIP FREQUENCIES
29	DYNAMIC BRAKING	72	MOT PMAC PROTECT	148	SLEW RATE LIMIT
36	ENCODER	74	MOT POLARISATION	150	SLIP COMP
41	ENERGY METER	79	MOTOR INDUCTION	153	SPEED LOOP
43	FEEDBACKS	82	MOTOR PMAC 1	161	SPEED LOOP 2
52	FLUXING	88	MOTOR PMAC 2	163	STABILISATION
57	FLYCATCHING	97	PATTERN GEN	187	TORQUE LIMIT
62	INERTIA COMP	110	POSITION LOOP	185	VOLTAGE CONTROL
64	INJ BRAKING	131	REGEN CONTROL	186	ZERO SPEED
Communications					
22	COMMS PORT	169	FIREWIRE		

Programming

Trips					
21	CUSTOM TRIPS	152	SPEED FBK TRIP	171	TRIPS STATUS
60	I/O TRIPS	164	STALL TRIP		
94	OVER SPEED TRIP	169	TRIPS HISTORY		
Menus					
7	ACCESS CONTROL	92	OP STATION	142	SETPOINT DISPLAY
29	DISPLAY SCALE	94	OPERATOR MENU		
Phase Control					
25	DRIVE CONFIG	101	PHASE MOVE	119	REFERNCE ENCODER
49	FIREWIRE REF	104	PHASE MOVE ABS	165	SYNTHETIC ENCODER
90	MOVE TO MASTER	106	PHASE OFFSET	187	VIRTUAL MASTER
99	PHASE INCH	107	PHASE TUNING		
Drive Setup					
		35	EMC CAPACITORS		
Miscellaneous					
		25	DRIVE CONFIG		

ACCESS CONTROL

SETUP::MENUS::ACCESS CONTROL
This function block contains options associated with keypad password protection, view levels, setpoint display and initial Operator Menu selection.

Parameter Descriptions

VIEW LEVEL PREF:31.01 Default:1 Range: See below

Sets the level of menu to be displayed by the keypad.

> Enumerated Value $:$ View Level
> $0:$ OPERATOR
> $1:$ BASIC
> $2:$ ADVANCED
PASSWORD PREF:31.02 Default: 0000 Range: 0x0000 to 0xFFFF

Setting a non-zero value enables the password feature.
CONFIG NAME PREF:31.05 Default: Range: See below

The maximum length is 16 characters. When not blank, the string is displayed as the top line of the Welcome screen.
STARTUP SCREEN PREF:31.06 Default: $0 \quad$ Range: See below

Selects which of the Operator Menu parameters will be displayed after the Welcome screen.
Enumerated Value : Startup Screen
0 : selects REMOTE SETPOINT or LOCAL SETPOINT
1 : selects parameter defined by OPERATOR MENU 1
2 : selects parameter defined by OPERATOR MENU 2
: etc.
32 : selects parameter defined by OPERATOR MENU 32

Programming

ANALOG INPUT

SETUP::INPUTS \& OUTPUTS::ANALOG INPUT

The analog input block converts the input voltage or current into a value expressed as a percentage of a configurable range.

Parameter Descriptions

TYPE

PREF: 1.03, 2.03, 3.03, 4.03 Default: $-10 . .+10 V$
Range: See below
The input range and type.

- ANALOG INPUT 1 and ANALOG INPUT 2 are used for voltage measurement only.
- ANALOG INPUT 3 and ANALOG INPUT 4 support all types.
- ANALOG INPUT 5 is the differential of ANIN1 and ANIN2, see the Functional Description.
- ANALOG INPUT 6 is $-10 . .+10 \mathrm{~V}$. and its type is not user selectable.

Enumerated Value : Type

$$
\begin{aligned}
& 0:-10 . .+10 \mathrm{~V} \\
& 1: 0 . .+10 \mathrm{~V} \\
& 2: 0 . .20 \mathrm{~mA} \\
& 3: 4 . .20 \mathrm{~mA}
\end{aligned}
$$

BREAK ENABLE PREF: 3.04, 4.04 Default: FALSE Range: FALSE/TRUE

Only available on ANIN3 and ANIN4. For input types that support sensor break detection (see Functional Description below), this parameter may be used to disable sensor break detection. For input types that do not support break detection, this parameter is FALSE.
BREAK VALUE PREF: 3.05, $4.05 \quad$ Default: $-100.00 \% \quad$ Range: -300.00 to 300.00%

Only available on ANIN3 and ANIN4. The value that will appear as the VALUE output when BREAK is TRUE.

Parameter Descriptions

VALUE

PREF: 1.06, 2.06, 3.06, 4.06, Default: -.xx \%
Range: -.xx \%
5.06, 179.06

The input reading. (PREF 5.06 is ANIN5, PREF 179.06 is ANIN6, see the Functional Description).
FITTED PREF: 179.08 Default: Range: FALSE/TRUE

Only available on ANIN6. This diagnostic indicates if the 8903/AI option board is fitted on the drive. Diagnostic is FALSE if the board is not fitted, otherwise it is TRUE.
When FITTED $=$ FALSE, the ANIN6 VALUE is reset to 0.0000%.

Functional Description

The Drive has four analog inputs. There is an analog input function block for each:
AIN1 is associated with the signal on terminal X12/02
AIN2 is associated with the signal on terminal X12/03
AIN3 is associated with the signal on terminal X12/04
AIN4 is associated with the signal on terminal X12/05
Analog input 5 is a special case: terminals AIN1 and AIN2 can be used as a differential $\pm 10 \mathrm{~V}$ input (which we call AIN5).
All analog 6 is also a special case. It is a high resolution differential analog input (15-bit + sign) located on the 8903/AI option board. The input type is $-10 .+10 \mathrm{~V}$.

All analog inputs can be configured as a direct input into the Speed Loop providing a fast speed or torque demand for servos.
The input voltage is pre-processed and converted into a numeric value by the analog input electronics of the Drive. The analog input function blocks further process this reading so that a value of 0.00% represents an input equal to the low input range, while a value of 100.00% represents an input equal to the high input range.

The break detect facility may only be used in conjunction with the $4 . .20 \mathrm{~mA}$ hardware range. An input break is defined as an input reading less than 0.45 mA . When an input break has been detected, the VALUE output is forced to be the BREAK VALUE.

Programming

ANALOG OUTPUT

SETUP::INPUTS \& OUTPUTS::ANALOG OUTPUT

The analog output blocks converts the demand percentage into a form suitable for driving the analog output electronics of the Drive.

Parameter Descriptions

VALUE

PREF: 6.01, 7.01
Default: -.xx \%
Range: - 300.00 to 300.00%
The demanded value to output.
TYPE
PREF: 6.05, 7.05
Default:0.. +10 V
Range: See below
The output hardware Voltage type. An incorrect selection will force the VALUE to be set to zero.

$$
\begin{aligned}
& \text { Enumerated Value : Type } \\
& \qquad \begin{array}{l}
0:-10 . .+10 \mathrm{~V} \\
1: 0 . .10 \mathrm{~V}
\end{array}
\end{aligned}
$$

Functional Description

The Drive has two analog outputs. There is an ANALOG OUTPUT function block associated with each of these:
AOUT1 is associated with terminal X12/06
AOUT2 is associated with terminal X12/07

Programming

AUTO RESTART

SETUP::SEQ \& REF::AUTO RESTART

Auto Restart provides the facility to automatically reset a choice of trip events and restart the Drive with a programmed number of attempts, after which, a manual or remote trip reset is required if the Drive is not successfully restarted. The number of attempted restarts are recorded. This count is cleared after a trip-free period of operation (5 minutes or $4 \times$ ATTEMPT DELAY 1, whichever is the longer), or after a successful manual or remote trip reset, or by removing the Run signal, or by setting the ENABLE input to this block FALSE.

Parameter Descriptions

ENABLE

PREF: 93.01
Default: FALSE
Range: FALSE / TRUE
Enables operation of the auto restart feature. TRUE $=$ enabled.
ATTEMPTS PREF: 93.02 Default: $5 \quad$ Range: 1 to 10

Determines the number of restarts that will be permitted before requiring an external fault reset.
INITIAL DELAY 1 PREF: 93.03 Default: —. $x \mathrm{~s}$ Range: 0.0 to 600.0 s

Determines the delay for the first restart attempt when the trip is included in TRIGGER 1 WORD 1.
The delay is measured from all error conditions clearing.
ATTEMPT DELAY $1 \quad$ PREF: 93.04 Default: - $x \mathrm{~s} \quad$ Range: 0.0 to 600.0 s

Determines the delay between restart attempts for a trip included in TRIGGER 1 WORD 1. The delay is measured from all error conditions clearing.
TRIGGER 1 WORD 1 to PREF:93.05, 93.06, 93.15, Default: 0000 Range: 0x0000 to 0xFFFF
TRIGGER 1 WORD 6 93.16, 93.19, 93.20
Allows Auto Restart to be enabled for a selection of trip conditions. Refer to TRIPS STATUS, page D-171, for an explanation of the four-digit codes.

Parameter Descriptions

INITIAL DELAY 2 PREF: 93.07 Default:-x $s \quad$ Range: 0.0 to 600.0 s

Determines the delay for the first restart attempt when the trip is included in TRIGGER 2.
The delay is measured from all error conditions clearing.
ATTEMPT DELAY $2 \quad$ PREF: $93.08 \quad$ Default:-x $s \quad$ Range: 0.0 to 600.0 s

Determines the delay between restart attempts for a trip included in TRIGGER 2. The delay is measured from all error conditions clearing.

```
TRIGGER 2 WORD 1 to PREF:93.09,93.10,93.17, Default:0000 Range:0x0000 to 0xFFFF
TRIGGER 2 WORD 6 93.18,93.21,93.22
```

Allows Auto Restart to be enabled for a selection of trip conditions.
If a trip is included in both TRIGGER 1 WORD 1 and TRIGGER 2 WORD 1 for instance, then the times associated with TRIGGER 1 WORD 1 will take priority.
Refer to page D-180: "Hexadecimal Representation of Trips" for an explanation of the four-digit codes.
PENDING PREF:93.11 Default: FALSE Range: FALSE/TRUE

Indicates that an auto restart will occur after the programmed delay.
RESTARTING PREF:93.12 Default: FALSE Range: FALSE/TRUE

Indicates that an auto restart is occurring. TRUE for a single block diagram execution cycle.
ATTEMPTS LEFT PREF:93.13 Default:5 Range: -.

Indicates the number of attempts left before an external fault reset is required.
TIME LEFT PREF:93.14 Default:-x $s \quad$ Range:-xs

When in the Restarting state, this parameter indicates the time left before an auto restart attempt will be permitted. When nonzero, this value is unaffected by changes to ATTEMPT DELAY 1.

Programming

AUTOTUNE

SETUP::MOTOR CONTROL::AUTOTUNE

Designed for SENSORLESS VEC and CLOSED-LOOP VEC Motor Control Modes.

The autotune is an automatic test sequence performed by the Drive to identify motor model parameters. The motor model is used by the Sensorless Vector and Closed-Loop Vector control modes. You MUST perform an autotune before operating the Drive in either of the Vector control modes.

Refer to the Chapter 4/5: The Autotune Feature.

Parameter Descriptions

ENABLE
PREF: 80.01
Default: FALSE
Range: FALSE / TRUE
Determines whether the Autotune sequence is operational or not. The Autotune sequence is operational when set to TRUE and the Drive is run. Refer to Chapter 4/5: The Autotune Feature.

```
MODE PREF:80.02
Default: ROTATING
Range: See below
```

Selects the Autotune operating mode. Refer to Chapter 4/5: - The Autotune Feature.

Enumerated Value : Mode
0 : STATIONARY determine motor parameters

1 : ROTATING
2 : SPD LOOP ROTATING
3 : SPD LOOP STATIONARY
determine motor parameters determine speed loop tuning dependent on motor inertia determine speed loop tuning dependent on motor inertia

Parameter Descriptions

TEST DISABLE

This parameter expands on the MMI to show five tests. Each test can be individually disabled by setting to TRUE.
Enumerated Value : Test
0 : STATOR RES
1: LEAKAGE IND
2 : ENCODER DIR
3 : MAG CURRENT
4 : ROTOR TIME CONST
SPD LOOP BNDWDTH PREF: $80.20 \quad$ Default: 2.0 Hz Range: 0.0 to 500.0 Hz

Sets the target bandwidth for the speed loop autotune. After the speed loop autotune, this will display the actual bandwidth corresponding to the speed loop gains. \qquad
SPD MAX TORQUE PREF: 80.23 Default: $50.0 \% \quad$ Range: 0.0 to 500.0%

Sets the maximum torque that will be used in the speed loop autotune test.
SPD MAX SPEED PREF: $80.24 \quad$ Default: $50.0 \% \quad$ Range: 15.0 to 100.0%

Sets the maximum speed that will be used in the speed loop autotune test
ACTIVE PREF:80.09 Default: Range: FALSE/TRUE

This indicates the current state of the Autotune sequence. The Autotune sequence is operational when displaying TRUE.

Programming

Functional Description

IMPORTANT You MUST carry out an Autotune if you intend to use the drive in either of the two vector control modes. If you are using it in Volts/ Hz control an Autotune is not necessary.
Autotune can only be initiated from the "stopped" condition. When the test is complete, the stack is disabled and ENABLE is set to FALSE.

Note Refer to the Chapter 4/5: The Autotune Feature for details on how to perform an Autotune.
Standard Autotune (MODE = 0 or 1)
The Standard Autotune feature identifies and loads values into the parameters below. These are in the MOTOR INDUCTION function block and also accessible via the QUICK SETUP menu (ENCODER INVERT is in the ENCODER function block). Autotune will overwrite any previous entry made for these parameters.

Parameter	Description	Note
ENCODER INVERT	Encoder direction	Parameter is only set up if drive is configured to run as Closed-loop Vector Not measured by Stationary Autotune
MAG CURRENT	Magnetising current	Not measured by Stationary Autotune
STATOR RES	Per phase stator resistance	
LEAKAGE INDUC	Per phase stator leakage inductance	
MUTUAL INDUC	Per phase mutual inductance	
ROTOR TIME CONST	Rotor time constant	This is identified from magnetising current and motor nameplate rpm

- The Stationary autotune sequence does not rotate the motor and requires the correct value of MAG CURRENT to be entered.
- The Rotating autotune sequence rotates the motor up to the user-programmed MAX SPEED (SETPOINT SCALE function block) in order to identify these parameters.

Speed Loop Autotune (MODE = 2 or 3)

For these additional tests, the motor is connected to the load.

- The Stationary autotune will calculate the speed loop gains without rotating the motor. You must know the total inertia of the system and enter it into the TOTAL INERTIA parameter in the MOTOR INDUCTION function block.
- The Rotating autotune applies a sequence of torque steps to the motor and load to determine the total inertia of the system. This value is entered into the TOTAL INERTIA parameter in the MOTOR INDUCTION function block.

The maximum speed and torque that can be reached during this test is set by the SPD MAX SPEED and SPD MAX TORQUE parameters.
The value of total inertia, together with SPD LOOP BNDWDTH, is then used to calculate values for the SPEED PROP GAIN and SPEED INT TIME parameters in the SPEED LOOP function block. The model used to calculate this is a simple 2 nd order closed-loop system with critical damping.
The maximum value of SPEED PROP GAIN is limited to a value of 20.00 in Sensorless Vector mode. In Closed-Loop Vector mode, it is limited such that the torque ripple due to encoder quantisations is less than 10%. If either of these limits is reached, then the SPD LOOP BNDWDTH parameter is re-calculated. After the test, this parameter will display the bandwidth achieved.

Programming

COMMS CONTROL

SETUP::SEQ \& REF::COMMS CONTROL

This block switches between Remote Terminal and Remote Comms operating modes.
The Drive must be in Remote mode for selection to be made - REMOTE mode is enabled in the LOCAL CONTROL function block (REF MODES) and selected by the keypad. Refer to the outputs of the LOCAL CONTROL function block for the mode in use.

Parameter Descriptions

REMOTE COMMS SEL PREF: 95.01
Default: FALSE
Range: FALSE / TRUE
Selects the type of remote communications mode:
0 : FALSE, and in REMOTE mode then control is from the terminals.
1 : TRUE, and in REMOTE mode then control is from the communications.
FIREWIRE REF SEL PREF: 95.10 Default: FALSE Range: FALSE / TRUE

This parameter selects Firewire Ref as the active reference.
REMOTE SEQ MODES PREF: 95.02 Default: $0 \quad$ Range: Enumerated - see below

Selects the type of remote sequencing mode:
Enumerated Value: Mode
0 : TERMINALS/COMMS
1 : TERMINALS ONLY
2: COMMS ONLY
REMOTE REF MODES PREF: 95.03 Default:0 Range: See below

Selects the type of remote reference mode:

> | Enumerated Value : Mode |
| :--- |
| $0:$ TERMINALS/COMMS |
| $1:$ TERMINALS ONLY |
| $2:$ COMMS ONLY |

Programming

Parameter Descriptions

COMMS COMMAND
PREF: 95.09
Default: 0000
Range: 0 x 0000 to 0 xFFFF
16-bit Command. Refer to Appendix B: "Sequencing Logic".
COMMS SEQ PREF:95.06 Default: FALSE Range: FALSE/TRUE

Diagnostic indicating if operating in Remote Sequencing Comms Mode.
If FALSE (0), the Drive may be in Local Sequencing mode or Remote Sequencing Terminal mode.
COMMS REF PREF: 95.07 Default: FALSE Range: FALSE / TRUE
Diagnostic indicating if operating in Remote Reference Comms Mode.
If FALSE (0), the Drive may be in Local Reference mode or Remote Reference Terminal mode.
FIREWIRE REF PREF: $95.11 \quad$ Default: FALSE Range: TRUE / FALSE

This diagnostic indicates if Firewire Ref is the active reference.
COMMS STATUS PREF: $95.08 \quad$ Default: $0000 \quad$ Range: 0x0000 to 0xFFFF

Diagnostic showing the 16 -bit Status word as seen by the communications.
Refer to Appendix B: "Sequencing Logic".

Programming

CURRENT LIMIT

SETUP::MOTOR CONTROL::CURRENT LIMIT

Designed for all Motor Control Modes, except PMAC control mode.

This function block allows you to set the maximum level of motor rated current (as a $\%$ of the user-set MOTOR CURRENT) which is allowed to flow before current limit action occurs. If the measured motor current exceeds the current limit value with a motoring load, the motor speed is reduced to shed the excess load. If the measured motor current exceeds the current limit value with a regenerating load, the motor speed is increased up to a maximum of MAX SPEED (REFERENCE function block).

Note The maximum value of current limit for a particular motor is limited by the 890 current rating. If a motor of larger rating than the 890+ is connected, then the current limit applies to the 890 and not the motor. In this case, the maximum value of the CURRENT LIMIT parameter is $\mathbf{1 5 0 . 0 0 \%}$.

Parameter Descriptions

CURRENT LIMIT PREF: 82.01 Default: 150.00% Range: 0.00 to 300.00%

This parameter sets the level of motor current, as a $\%$ of MOTOR CURRENT (refer to the MOTOR INDUCTION function block) at which the Drive begins to take current limit action.
REGEN LIM ENABLE PREF: 82.02 Default: TRUE Range: FALSE / TRUE

This parameter enables or disables regenerative current limit action.
Note that this parameter only works in open-loop VOLTS / Hz motor control mode.

CUSTOM TRIPS

SETUP::TRIPS::CUSTOM TRIPS

This function block may be used to generate a trip or an alarm. The text for the trip message on the MMI may be customised.

Parameter Descriptions

CUSTOM ALARM 1-7 PREF: 165.01 to 165.07
Default: FALSE
Range: FALSE / TRUE
When TRUE, this causes an alarm message to appear on the display/keypad. This message may be cleared from the display by pressing the E key. An alarm does not cause the drive to stop. The corresponding bit in the TRIPS STATUS::WARNINGS WORD 5 parameter will be match this input.
CUSTOM TRIP 1-7 PREF: 165.08 to $165.14 \quad$ Default: FALSE Range: FALSE / TRUE

When TRUE this causes the drive to trip, which causes the drive to stop. The corresponding bit in the TRIPS STATUS::ACTIVE WORD 5 parameter will remain TRUE until the trip is reset. Refer to the "Trips and Fault Finding" chapter.
CUSTOM NAME 1-7 PREF: 165.15 to $165.21 \quad$ Default: CUSTOM TRIP Range: max length 16 chars

Text entered here will be shown on the 6901 display/keypad when the corresponding alarm or trip becomes active. If no text is entered then the default trip text will be shown. Refer to the CUSTOM TRIPS 1-7 shown in the "Trips and Fault Finding" chapter.

Programming

COMMS PORT

SETUP:: SEQ \& REF::COMMS PORT

Designed for all Motor Control Modes.
This function block allows you to set the mode for the P3 Comms Port (keypad port)

Parameter Descriptions

MODE
PREF: 129.01
Default: AUTOMATIC Range: Enumerated - see below
This parameter
Enumerated Value : Mode
0 : AUTOMATIC (senses if either 6511 or 6901 operator station is present)
1:6511 OP STATION
2 : 6901 OP STATION
3 : TS8000 HMI

DIGITAL INPUT

SETUP::INPUTS \& OUTPUTS::DIGITAL INPUT
The digital input block converts the physical input voltage to TRUE or FALSE control signals.

Parameter Descriptions

VALUE
PREF: 8.02, 9.02, 10.02, 11.02, Default: FALSE
Range: FALSE / TRUE
12.02, 13.02, 14.02, 15.02,
16.02

The TRUE or FALSE input.

Functional Description

There is a DIGITAL INPUT function block associated with each of the following terminals:
The Control Board has nine configurable digital inputs:
DIN1 is associated with terminal X15/01
DIN2 is associated with terminal X15/02
DIN3 is associated with terminal X15/03
DIN4 is associated with terminal X15/04
DIN5 is associated with terminal X15/05
DIN6 is associated with terminal X15/06
DIN7 is associated with terminal X15/07
DIN8 is associated with terminal X15/08
DIN9 is associated with terminal X15/09
Terminals X1508 and X15/09 act as inputs by default. These terminals can also be set as outputs. Refer to DIGITAL OUTPUT, page D-24.

Programming

DIGITAL OUTPUT

SETUP::INPUTS \& OUTPUTS::DIGITAL OUTPUT
The digital output block converts a logic TRUE or FALSE demand to a physical output signal.

Parameter Descriptions

VALUE
PREF: 17.01, 18.01, 19.01
Default: FALSE
Range: FALSE / TRUE
The TRUE or FALSE output demand.

Functional Description

There is a DIGITAL OUTPUT function block associated with each of the following terminals:
The Control Board has 2 configurable digital inputs/outputs. These share terminals X15/08 and X15/09. Also refer to CUSTOM TRIPS, page D-21.

DOUT1 is associated with terminal X15/08
DOUT2 is associated with terminal X15/09
The default status for these 2 DOUTs is to act as inputs. Setting VALUE to TRUE will individually configure the block to be an output
The Control Board has one digital output (volt-free relay contacts):
DIGITAL OUTPUT 3 is associated with the "HEALTH" outputs, DOUT3A \& DOUT3B. These are terminals X14/01 and X14/02 respectively.

Programming

DRIVE CONFIG

SETUP::DRIVE SETUP::DRIVE CONFIG

This block contains general drive set-up parameters and also determines what hardware can be plugged in the A, B and F slots. These parameters must be set correctly in order for the drive to run correctly.

Parameter Descriptions

DRIVE NAME
Default: 890 DRIVE
Range:
Enter a user name for the drive.

```
CONTROL MODE PREF:136.02 Default:0 Range: See below
```

This parameter defines how the drive will control the motor. If PMAC control is required, the motor wizard feature in the 890 DSE Configuration Tool MUST be used to correctly set-up the motor and feedback device parameters. Failure to do so may result in damage to the servo motor.

Enumerated Value : CONTROL MODE
0 : VOLTS / Hz
1 : SENSORLESS VEC
2 : CLOSED-LOOP VEC
3 : 4-Q REGEN
4 : PMAC
Used to control Permanent-Magnet AC brushless motors.

	$4:$ PMAC	Used to control Permanent-Magnet AC brushless motors.
SUPPLY VOLTAGE	PREF: 136.19	Default: 380 V to 460 V

Changes the dynamic braking threshold on expected supply voltage range.
Enumerated Value : Supply Voltage
$0: 230 \mathrm{~V}$
$1: 380 \mathrm{~V}$ to 480 V
2:500V
$3: 575 \mathrm{~V}$
4: 690V

Programming

Parameter Descriptions

FBK FITTED PREF:136.06 Default: $0 \quad$ Range: See below

This diagnostic defines what kind of feedback board is currently fitted in slot F .
Enumerated Value $:$ FBK FITTED
$0:$ NONE
$1: 8903 / \mathrm{RE} 8902 / \mathrm{RR}$
$2: 8902 / \mathrm{EQ}$
$3: \mathrm{RS} 485 \mathrm{INC}$. ENC.
$4: 8902 / \mathrm{E} 1$
$5: 8902 / \mathrm{LS}$
$6: \mathrm{UNKNOWN}$
$7: 8902 / \mathrm{M} 1$
$8: 8902 / \mathrm{EP}$
$9:$ VMASTER SIM.
$10:$ HTTL ENC. REG.
$11:$ RS485 ENC. REG.

Parameter Descriptions

SLOT A FITTED PREF: 136.09 Default: 0 Range: See below

This diagnostic indicates which kind of option board is currently fitted in slot A.

Enumerated Value $:$ SLOT A FITTED	
$0:$ NONE	$11:$ ANYBUS CC
$1: 8903 / \mathrm{FA}$	$12: 8903 / \mathrm{SP}$
$2: 8903 / \mathrm{PB}$	$13: 8903 / \mathrm{IM}$
$3: 8903 / \mathrm{CN}$	$14: 8903 / \mathrm{PN}$
$4: 8903 / \mathrm{CB}$	$15: 8903 / \mathrm{IP}$
$5: \mathrm{UNKNOWN}$	$16: 8903 / \mathrm{CT}$
$6: 8903 / \mathrm{EQ}$	$17: 8903 / \mathrm{M} 1$
$7: \mathrm{RS} 485 \mathrm{INC} . \mathrm{ENC}$.	$18: 8903 / \mathrm{EP}$
$8: 8903 / \mathrm{E} 1$	$19: 8903 / \mathrm{RS}$
$9: 8903 / \mathrm{DN}$	$20: 8903 / \mathrm{FB}$
$10: 8903 / \mathrm{AI}$	

Programming

Parameter Descriptions

SLOT B FITTED PREF:136.12 Default: $0 \quad$ Range: See below
This diagnostic defines what kind of option board is currently fitted in slot B.
Enumerated Value : SLOT B FITTED

$0:$ NONE	$11:$ ANYBUS CC
$1: 8903 / \mathrm{FA}$	$12: 8903 / \mathrm{SP}$
$2: 8903 / \mathrm{PB}$	$13: 8903 / \mathrm{IM}$
$3: 8903 / \mathrm{CN}$	$14: 8903 / \mathrm{PN}$
$4: 8903 / \mathrm{CB}$	$15: 8903 / \mathrm{IP}$
$5:$ UNKNOWN	$16: 8903 / \mathrm{CT}$
$6: 8903 / \mathrm{EQ}$	$17: 8903 / \mathrm{M} 1$
$7: \mathrm{RS} 485$ INC. ENC.	$18: 8903 / \mathrm{EP}$
$8: 8903 / \mathrm{E} 1$	$19: 8903 / \mathrm{RS}$
$9: 8903 / \mathrm{DN}$	$20: 8903 / \mathrm{FB}$
$10: 8903 / \mathrm{AI}$	

DISPLAY SCALE

SETUP::MENUS::DISPLAY SCALE
These function blocks, 1 to 4 , can be used to display any floating point parameter with an applied scaling factor, formulae and your preferred units.
PREF 65.xx is DISPLAY SCALE 1, PREF 66.xx is DISPLAY SCALE 2, etc.

Parameter Descriptions

DECIMAL PLACE PREF: 65.01, 66.01, 67.01, Default: 0 Range: Enumerated - see below
Select the position of the decimal point.
Enumerated Value : Position
0 : DEFAULT
1: X.XXXX
2: X.XXX
3: X.XX
4: X.X
5 : X.
FORMULA PREF: 65.02, 66.02, 67.02, Default: 0 Range: Enumerated - see below 68.02

Select a formula where A, B and C are the coefficients listed below, and X is the value to modify.
Enumerated Value : Formula
$0: \mathrm{A} / \mathrm{B} * \mathrm{X}+\mathrm{C}$
$1: \mathrm{A} / \mathrm{B} *(\mathrm{X}+\mathrm{C})$
2: $\mathrm{A} /(\mathrm{B} * \mathrm{X})+\mathrm{C}$
$3: A /(B *(X+C))$

Programming

Parameter Descriptions

COEFFICIENT A

Coefficient used as defined by the formula.
COEFFICIENT B PREF: 65.04, 66.04, 67.04, Default: 1.00 Range: -300.00 to 300.00

Coefficient used as defined by the formula.

COEFFICIENT C	
	PREF: 65.05
	68.05, 66.05, 67.05, Default: 0.00

Coefficient used as defined by the formula.

HIGH LIMIT	PREF: 65.06, 66.06, 67.06,	Default: 0.00	Range: -300.00 to 300.00

Use high limit to set a maximum value for the modified parameter on the keypad. Setting the HIGH LIMIT lower than or equal to the LOW LIMIT makes the parameter "read-only".

| LOW LIMIT | PREF: 65.07, 66.07, 67.07, Default: 0.00 | 68.07 |
| :--- | :--- | :--- | :--- |

Use low limit to set a minimum value for the modified parameter on the keypad. Setting the HIGH LIMIT higher than or equal to the HIGH LIMIT makes the parameter "read-only".

UNITS	PREF: 65.08, 66.08, 67.08, Default:	68.08

A 6 character label that is displayed as the parameter units.

Functional Description

The DISPLAY SCALE blocks are selected in the ACCESS CONTROL and OPERATOR MENU function blocks for use with the Speed Setpoint and Operator Menu respectively.

For display purposes, the parameter is modified according to the formula chosen:

When adjusting parameters, the inverse of the formula is applied to the displayed value:

Programming

Character Sets

The table below lists the characters supported by the software in decimal and hexadecimal.

	HEX	DEC															
	20	32	0	30	48	@	40	64	P	50	80	'	60	96	p	70	112
!	21	33	1	31	49	A	41	65	Q	51	81	a	61	97	q	71	113
"	22	34	2	32	50	B	42	66	R	52	82	b	62	98	r	72	114
\#	23	35	3	33	51	C	43	67	S	53	83	C	63	99	S	73	115
\$	24	36	4	34	52	D	44	68	T	54	84	d	64	100	\dagger	74	116
\%	25	37	5	35	53	E	45	69	U	55	85	e	65	101	U	75	117
\&	26	38	6	36	54	F	46	70	V	56	86	f	66	102	v	76	118
'	27	39	7	37	55	G	47	71	W	57	87	9	67	103	w	77	119
1	28	40	8	38	56	H	48	72	X	58	88	h	68	104	x	78	120
)	29	41	9	39	57	I	49	73	Y	59	89	i	69	105	y	79	121
*	2A	42	:	3A	58	J	4A	74	Z	5A	90	i	6A	106	z	7A	122
+	2B	43	;	3B	59	K	4B	75	[5B	91	k	6B	107	\{	7B	123
,	2C	44	<	3 C	60	L	4C	76				1	6C	108	1	7C	124
-	2D	45	$=$	3D	61	M	4D	77]	5D	93	m	6D	109	\}	7D	125
	2E	46	>	3 E	62	N	4E	78	\wedge	5E	94	n	6E	110			
/	2 F	47	?	3F	63	O	4F	79	-	5 F	95	0	6F	111	\square	0	0

DYNAMIC BRAKING

SETUP::MOTOR CONTROL::DYNAMIC BRAKING

Designed for all Motor Control Modes.

The dynamic braking function block controls the rate at which energy from a regenerating motor is dumped into a resistive load. This dumping prevents the de link voltage reaching levels which would cause an Overvoltage trip.

Parameter Descriptions

ENABLE PREF:99.01 Default: TRUE Range: FALSE/TRUE
Enables operation of the dynamic braking block.
BRAKE RESISTANCE PREF: 99.03 Default: 100.00 Ohm Range:0.01 to 300.00 Ohm

The value of the dynamic braking load resistance.

| BRAKE POWER PREF: 99.04 | Default: 0.1 kW | Range: 0.1 to 510.0 kW |
| :--- | :---: | :---: | :---: |

The power that the load resistance may continually dissipate.

1SEC OVER RATING PREF:99.05 Default: 25 Range: 1 to 40

Multiplier that may be applied to BRAKE POWER for power overloads lasting no more than 1 second.
INT DB RESISTOR PREF: $99.07 \quad$ Default: TRUE Range: FALSE/TRUE

For future use only. Set to FALSE if an external dynamic brake resistor is fitted.
BRAKING PREF: $99.06 \quad$ Default: FALSE Range: FALSE/TRUE

A read-only parameter indicating the state of the brake switch.

Functional Description

When enabled, the DYNAMIC BRAKING block monitors the internal dc link voltage every milli-second and sets the state of the brake switch accordingly.

Programming

The dynamic braking block provides a control signal that is used by the SLEW RATE LIMIT block. This causes the setpoint to be temporarily frozen whenever the dynamic brake is operating because the dc link voltage exceeds the internal comparison level. This allows the stop rate to be automatically tuned to the characteristics of the load, motor, Drive and brake resistor.

The DYNAMIC BRAKING block operates even when the motor output is not enabled. This allows the block to continually monitor the energy dumped into the braking resistor, and the energy dissipated across the brake switch. With this information the Drive is able to deduce the loading on the brake resistor. Optional trips may be enabled should the switch or resistor be loaded beyond its capabilities.
The "Brake Resistor" and "Brake Switch" trips are disabled by default. To enable these trips, refer to TRIPS STATUS, page D171. When using dynamic braking, the brake resistor information must be entered and these two trips enabled.

Refer also to Chapter 7: "Operating the Drive" - Dynamic Braking.

Programming

EMC CAPACITORS

SETUP::MISCELLANEOUS::EMC CAPACITORS

This block allows the user to disconnect the internal EMC "Y" capacitor ($\mathrm{DC}+$ to earth and DC - to earth) from the drive earth on 890 Frames B, C \& D.

Parameter Descriptions

EMC CAPACITORS
 PREF: 125.01
 Default: 0

Range: See below
Electrically connects the internal EMC capacitors inside the product.

Enumerated Value : Internal EMC " Y " Capacitors

$0:$ CONNECTED Y caps connected to earth
1 : NOT CONNECTED Y caps disconnected from earth

Caution

Isolating the capacitors in this way will lower the input bridge's immunity to surges.
This will invalidate the EMC certification.

Reasons for Isolation

The drive's " Y " capacitors should be electrically isolated :

- when operating the drive on IT (non-earth referenced supplies)
- when operating the drive in a regenerative common dc link system (remove from all drives in the system)
- to prevent nuisance operation of earth leakage protection devices caused by earth leakage currents flowing in the supply

Programming

ENCODER

SETUP::MOTOR CONTROL::ENCODER

This block is used to set up the way that speed feedback is obtained via the feedback option card. Different encoder types may be selected including pulse encoder, sincos encoder and absolute single turn or multi turn. Different encoder types require different hardware options. If an encoder type is selected which does not match the hardware, an error will be flagged.

Parameter Descriptions

PULSE ENC VOLTS
Set this approximately to the supply voltage required by the pulse encoder.

SINCOS ENC VOLTS
 PREF: 71.22
 Default: 5.0 V
 Range: See below

Used to set the supply volts required by the \sin / \cos encoder.
Enumerated Value: SinCos Encoder Volts
$0: 5 \mathrm{~V}$
$1: 10 \mathrm{~V}$

ENCODER LINES PREF:71.02
 Default: 2048
 Range: 250 to 262143

The number of lines must be set to match the type of encoder being used. Incorrect setting of this parameter will result in an erroneous speed measurement and will cause the motor to become unstable.

ENCODER INVERT PREF: 71.03 Default: FALSE Range: FALSE/TRUE

Used to match the encoder direction to the motor direction. The encoder direction is set automatically by the Autotune when running in closed-loop vector mode. It should not be necessary to adjust this parameter. When TRUE, changes the sign of the measured speed and the direction of the position count.

Parameter Descriptions

ENCODER TYPE PREF:71.04
This parameter defines the type of encoder being used.

```
Enumerated Value : Type
    2:CLOCK
    3 : QUADRATURE DIFF
    4: CLOCK/DIR DIFF
    5: CLOCK DIFF
    6 : SINCOS INC
    7: ABS ENDAT ST
    8:ABS ENDAT MT
```

 0 : QUADRATURE single-ended pulse encoder
 1:CLOCK/DIR single-ended pulse encoder
 single-ended pulse encoder single-ended pulse encoder single-ended pulse encoder differential pulse encoder differential pulse encoder differential pulse encoder sin/cos encoder single turn endat absolute encoder multi-turn endat absolute encoder

Note that if an absolute endat encoder is used, the encoder MUST be wired exactly as specified. If not, it will fail to calibrate the absolute position and an error will result when the drive is started. Its status can be viewed via the parameter CALIBRATN STATUS.
OUTPUT GBOX IN PREF:71.05 Default: $1 \quad$ Range: 1 to
$+2000000000$
See OUTPUT GBOX OUT below.

Default: $1 \quad$| Range: | -2000000000 to |
| ---: | :--- |
| | +2000000000 |

These two parameters define the gearbox ratio between the motor and the load. For example, if a 3:2 gearbox is fitted between the motor and the load such that the motor turns through 3 revolutions for every 2 revolutions of the load, then set OUTPUT GBOX IN to 3, and set OUTPUT GBOX OUT to 2 . The software will then keep track of the load position.

Programming

Parameter Descriptions

If the power is removed and then reapplied, it is possible for the drive to keep track of the load position even if the shaft has moved since the power was removed. This is only possible if the encoder is an absolute multi-turn. Otherwise, the load position will be set equal to the motor position on power-up.

ENCODER MECH OIS PREF: $71.06 \quad$ Default: $0.0000 \mathrm{deg} \quad$| Range: 0.0000 to |
| :--- |
| 360.0000 deg |

(Encoder mechanical offset). When using an absolute encoder, the SHAFT POSITION diagnostic shows the absolute position of the motor shaft. The zero position can be adjusted by setting ENCODER MECH O/S. Rotate the motor shaft to the position which is required to be zero, and note the value of SHAFT POSITION. Enter this value into ENCODER MECH O/S to zero its position.
ENCODER FEEDBACK PREF: 71.30 Default: 0.00 Range: -xx RPM

This parameter shows the mechanical speed of the motor shaft, calculated from the encoder feedback, in RPM.
SHAFT POSITION PREF: 71.09 Default: -.xx deg Range: -.xx deg

This diagnostic provides the motor shaft position (before the gear box).
LOAD POSITION PREF: 71.10 Default: -xx deg Range: -.xx deg

This diagnostic provides the motor load position (after the gear box).

REV COUNT PREF: 71.15 Default: $0 \quad$ Range: —.

This counts the number of turns of the motor shaft. It will normally start from zero on power-up. If a multi-turn Endat encoder is fitted, REV COUNT will be made to match the multi turn encoder rev count. However, it will continue to count beyond the Endat range of 0 to 4095 revs. It will count to the limits of a 32 bit number, but the lower 12 bits will be equal to the Endat rev count.

Parameter Descriptions

CALIBRATN STATUS PREF: 71.13 Default: 0 Range: see below

If a sincos absolute Endat encoder is fitted (single-turn or multi-turn), the software will attempt to match the slow absolute position (Endat) information to the fast analog feedback information, to obtain a fast absolute position feedback. This will normally be done on power-up. If the encoder is wired correctly and working correctly, these should match. The CALIBRATN STATUS diagnostic will then display COMPLETED. If the encoder is not an absolute type, the diagnostic will show NOT REQUIRED. If calibration fails, this diagnostic will indicate where the problem may lie. Refer to CAL FAIL RETRY.

```
Enumerated Value : Type
    0 : NOT REQUIRED
    1 : DRIVE NOT STOP'D
    2: MOTOR NOT STOP'D
    3 : ENDAT FAULT
    4 : CAL IN PROGRESS
    5: ID PSN IN PRGRSS
    6: COMPLETED
    7: CALIBRATION LOST
    8: CALIBRATN FAILED
```


CAL FAIL RETRY

PREF: 71.24
Default: FALSE
Range: FALSE / TRUE
The software will make a number of attempts to calibrate the absolute position (see CALIBRATN STATUS above) and then go into the CALIBRATN FAILED state. If the problem has been corrected, it is necessary to get it to try again. This can be done either by switching the drive on and off, changing a related parameter, or by setting CAL FAIL RETRY= TRUE. When the calibration is done, it will automatically be reset to FALSE.
LINE COUNT X4 PREF:71.31 Default: 0 Range:_

Diagnostic showing the encoder line count times 4 , i.e. each edge is counted. This diagnostic is set to 0 at power-up and reset when RESET LINE COUNT is TRUE.
RESET LINE COUNT PREF: 71.23 Default: FALSE Range: FALSE / TRUE

If TRUE the LINE COUNT X4 diagnostic is reset.

Programming

Functional Description

A quadrature encoder uses 2 input signals (A and B), phase shifted by a quarter of a cycle $\left(90^{\circ}\right)$. Direction is obtained by looking at the combined state of A and B.

Speed is calculated using the following function:

$$
\text { SPEED HZ }=\frac{\text { Counts Per Second }}{\text { Lines } \times 4}
$$

where counts per second are the number of edges received from the encoder. There are 4 counts per line.

ENERGY METER

SETUP::MOTOR CONTROL::ENERGY METER

Designed for all Motor Control Modes.

This block measures the electrical energy used by the motor.

Parameter Descriptions

RESET PREF: 113.01 Default: FALSE Range: FALSE/TRUE

When RESET is set to TRUE, the ENERGY USED parameter is reset to zero automatically when the maximum value is reached.

When RESET is set to FALSE, the ENERGY USED parameter is held at the maximum value when the maximum value has been reached
Changing this from FALSE to TRUE at anytime will cause the ENERGY USED parameter to be reset to zero.
POWER PREF: 113.02 Default: 0.00 kW Range: -xx kW

This diagnostic shows the power being delivered to the load in kilowatts.
POWER PREF: 113.03 Default: 0.00 hp Range: - xx hp

This diagnostic shows the power being delivered to the load in horsepower.
REACTIVE POWER PREF: 113.04 Default:0.00 kVAR Range: -xx kVAR

This diagnostic shows the reactive power being delivered to the load in kilo volt-amperes reactive.
ENERGY USED PREF: $113.05 \quad$ Default:0.00 $\mathrm{kW} \mathrm{hr} \quad$ Range: -.xx kW hr

This diagnostic shows the total energy consumed by the load in kilowatt hours.
POWER FACTOR PREF: 113.07 Default: 0.0 Range: -x

This diagnostic shows the power factor estimate (between 0 and 1).
PF ANGLE PREF: $113.08 \quad$ Default: $0.00 \mathrm{deg} \quad$ Range: -xx deg

This diagnostic shows the power factor angle estimate.

Programming

Parameter Descriptions

RAW POWER PREF: 113.09 Default: 0.00 kW Range: -.xx kW

This diagnostic shows the unfiltered estimate of active input power
RAW R. POWER PREF: 113.10 Default: 0.00 kVAR Range: - xx kVAR
This diagnostic shows the unfiltered estimate of reactive input power.

FEEDBACKS

SETUP::MOTOR CONTROL::FEEDBACKS

Designed for all Motor Control Modes.

The FEEDBACKS block allows you to view speed feedback and motor current related diagnostics.

Parameter Descriptions

QUADRATIC TORQUE PREF:70.01 Default: FALSE Range: FALSE/TRUE
Designed for all Motor Control Modes.
When TRUE, selects QUADRATIC allowing higher continuous ratings with less overload capability. Quadratic Torque operation is especially suited to fan or pump applications. When FALSE, selects CONSTANT duty.

OVERLOAD LEVEL PREF: 70.20 Default: HIGH Range: See below

Designed for all Motor Control Modes, except PMAC control mode.
This reduces I*t limit for shaftless printing applications. However, with OVERLOAD LEVEL set to LOW, no pwm frequency reduction occurs during overload conditions.

Enumerated Value : Level

$$
\begin{array}{ll}
0: \text { LOW } & 130 \% \text { for } 60 \mathrm{~s}: \text { sets the } I^{*} t \text { limit } \\
1: \text { HIGH } & 150 \% \text { for } 60 \mathrm{~s}: \text { sets the } I^{*} t \text { limit }
\end{array}
$$

DC LINK VOLTS PREF:70.02 Default:-.V Range: -. V

This shows the voltage across the dc link capacitors.
TERMINAL VOLTS PREF: 70.03 Default: —. V Range: -. V

This shows the rms voltage, between phases, applied by the Drive to the motor terminals.

Programming

Parameter Descriptions

SPEED FBK RPM PREF: 70.04 Default: $-x x$ rpm Range: $-x x$ rpm
This parameter changes according to the CONTROL MODE (DRIVE CONFIG function block):

- In CLOSED-LOOP VEC mode the parameter shows the mechanical speed of the motor shaft in revolutions per minute as calculated from the speed feedback device.
- In SENSORLESS VEC mode the parameter shows the calculated mechanical speed of the motor shaft in revolutions per minute.
- In VOLTS/Hz mode the parameter shows motor synchronous speed in rpm.
- In PMAC control mode, the parameter shows the mechanical speed of the motor shaft.
SPEED FBK REVIS PREF: 70.05 Default: -.xx rev/s Range: -.xx rev/s

This parameter changes according to the CONTROL MODE (DRIVE CONFIG function block):

- In CLOSED-LOOP VEC mode the parameter shows the mechanical speed of the motor shaft in revolutions per second as calculated from the motor speed feedback.
- In SENSORLESS VEC mode the parameter shows the calculated mechanical speed of the motor shaft in revolutions per second.
- In VOLTS / Hz mode, the parameter shows the motor synchronous speed in revolutions per second.
- In PMAC control mode, the parameter shows the mechanical speed of the motor shaft.

Parameter Descriptions

SPEED FBK \% PREF: $70.06 \quad$ Default: - $x x \% \quad$ Range: -.xx $\%$
This parameter changes according to the CONTROL MODE (DRIVE CONFIG function block):

- In CLOSED-LOOP VEC mode the parameter shows the mechanical speed of the motor shaft as a percentage of the user maximum speed setting (MAX SPEED in the REFERENCE function block) as calculated from the motor speed feedback.
- In SENSORLESS VEC mode the parameter shows the calculated mechanical speed of the motor shaft as a percentage of the user maximum speed setting (MAX SPEED in the REFERENCE function block).
- In VOLTS / Hz mode, the parameter shows the electrical drive output frequency as a percentage of the user maximum speed setting (MAX SPEED in the REFERENCE function block).
- In PMAC control mode, the parameter shows the mechanical speed of the motor shaft.
TORQUE FEEDBACK PREF: 70.10 Default: - xx \% Range: -xx \%

In PMAC Motor Control Mode, this shows the estimated motor torque as a percentage of the PERM TORQUE in the PMAC MOTOR 1 function block.
FIELD FEEDBACK PREF: 70.11 Default: - $x x \%$ Range: - x \% $\%$

Designed for all Motor Control Modes, except PMAC control mode (in PMAC Motor Control Mode, the value is always 0). A value of 100% indicates the motor is operating at rated magnetic flux (field).
MOTOR CURRENT \% PREF: 70.12 Default: -.xx \% Range: -.xx \%

In PMAC Motor Control Mode, this diagnostic shows the level of rms line current being drawn from the drive as a percentage of the PERM CURRENT in the MOTOR PMAC 1 function block.
MOTOR CURRENT A PREF: 70.13 Default: -xxA Range: -xx A

In PMAC Motor Control Mode, this diagnostic shows the level of rms line current in Amps being drawn from the Drive.

$$
\begin{array}{llll}
\hline \text { STACK RATING A } & P R E F: 70.19 & \text { Default: -.x } A \quad \text { Range: -.x A }
\end{array}
$$

This diagnostic indicates the stack rating in Amps. This reduces as a function of pwm switching frequency.

Programming

Parameter Descriptions

HEATSINK TEMP PREF: 70.17 Default: - C Range: - C
This diagnostic displays the power stack heatsink temperature in ${ }^{\circ}$ Centigrade.
HEATSINK TEMP PREF: 70.18 Default: - \% Range: - \%

This diagnostic displays the power stack heatsink temperature as a percentage of the overtemperature trip level.

FIREWIRE

SETUP:: COMMS::FIREWIRE

The Firewire block parameterises Firewire communications, providing a series of diagnostics. There are no user settable parameters in this block.

Parameter Descriptions OWN ID

PREF: 117.01
Default: 99
Range: -
FireWire network ID of the drive. This is the physical address, not the net address, as declared as part of the DSE Configuration. Note that this network ID can change after a Bus Reset.
IRM ID PREF:117.02 Default: $99 \quad$ Range: -.

FireWire network ID of the drive acting as the Isochronous Resource Manager. The IRM ID can change after a Bus Reset.
NUMBER OF NODES PREF:117.03 Default: $0 \quad$ Range: -.

Total number of Firewire Nodes connected to the network..
CYCLE TIMER PREF: $117.04 \quad$ Default: $0 \quad$ Range: —.

Timer which should be synchronised across the Firewire network.
BUS RESETS PREF: 117.05 Default: $0 \quad$ Range: 一.

Number of times the Firewire bus has reset.
BAD MESSAGES PREF:117.13 Default: $0 \quad$ Range: —.

Number of incoming Firewire messages that are received malformed. An incrementing value may indicate that the Firewire cabling needs attention.
MISSED TX ACKS PREF:117.14 Default: $0 \quad$ Range: -

Number of outgoing Firewire messages that are not acknowledged. An incrementing value may indicate that the Firewire cabling needs attention.
MCAP ADVERTS PREF: $117.06 \quad$ Default: $0 \quad$ Range: -.

Count of Multicast Advertisements sent from this node.

Programming

Parameter Descriptions

MAX HOPS PREF:117.07 Default: 0 Range: —.
Maximum number of cable hops from this node to all other nodes.
OFFSET (40.69ns) PREF: 117.08 Default: $0 \quad$ Range: —.

Time delay between this node and the node hosting the Cycle Time Master.

FIREWIRE REF

SETUP:: PHASE CONTROL::FIREWIRE REF

Performance Level = ADVANCED : CLOSED-LOOP VEC Motor Control Mode only.

The FireWire option card (Option B) must be fitted to the drive.
This block processes Virtual Master commands received over Firewire communications, producing position, speed and acceleration references to be used by the control loops, when Firewire is selected as the reference source (Firewire Comms Sel is TRUE in Comms Control block).

Parameter Descriptions

CHANNEL

PREF: 119.01
Default: 0
Range: 0 to 62
This parameter sets the Firewire channel that the master reference is being received from.
RESET PREF:119.02 Default: FALSE Range: FALSE/TRUE

This parameter resets the Outputs to zero. Note if this is set TRUE whilst the drive is running following the Firewire Reference, then the drive will decelerate to zero speed on the System Ramp.
INVERT PREF: 119.03 Default: FALSE Range: FALSE/TRUE

This parameter inverts the master reference. Note that this inversion does not take place locally in the drive, so the master and local diagnostics below will always be in the same direction.

GEAR RATIO A	PREF: 119.04	Default: 1000000
Range: -2000000000 to		
2000000000		

This parameter provides a Gear Ratio A / B (see GEAR RATIO B) inserted between master reference input and Firewire Ref outputs. Output $=$ Gear ratio A $/$ Gear Ratio B * Master Input.

GEAR RATIO B \quad PREF: 119.05	Default: 1000000	Range: -2000000000 to

This parameter provides a Gear Ratio A/B (see GEAR RATIO A) inserted between master reference input and Firewire Ref outputs. Output $=$ Gear ratio A $/$ Gear Ratio B * Master Input.

Programming

Parameter Descriptions

POSITION OUTPUT PREF: $119.06 \quad$ Default: -xxxx deg Range: -.xxxx deg

This diagnostic shows the position demand in load mechanical degrees.

SPEED OUTPUT	PREF: 119.07	Default: -.xx Hz	Range: -.xx Hz
This diagnostic shows the speed demand in load mechanical Hz (rev/s).			
ACCEL OUTPUT	PREF: 119.08	Default: - xx	Range: -.xx
This diagnostic shows the acceleration demand in load mechanical Hz/s (rev/s ${ }^{2}$).			
MASTER POSITION	PREF: 119.09	Default: -.xxxx deg	Range: -.xxxx deg
This diagnostic shows the master aster position demand in mechanical degrees.			
MASTER SPEED	PREF: 119.10	Default: -.xxxx Hz	Range: -.xxxx Hz
This diagnostic shows the master speed demand in mechanical Hz (rev/s).			
MASTER ACCEL	PREF: 119.11	Default: -.xxxx	Range: -.xxxx
This diagnostic shows the master acceleration demand in mechanical $\mathrm{Hz/s}\left(\mathrm{rev} / \mathrm{s}^{2}\right)$.			
READY	PREF: 119.14	Default: FALSE	Range: FALSE / TRUE
This diagnostic is TRUE when local drive is properly synchronised with the master, i.e. Status = READY.			

Programming

Parameter Descriptions

STATUS
PREF: 119.13
Default: 7
Range: See below
This diagnostic shows operating and error states
Enumerated Value : Status
0 : READY
1 : REF RESET
2 : MASTER RESET
the Firewire Ref is operating normally the FireWire Ref RESET is set TRUE the Virtual Master is in Reset
3 : LOST SYNC
4 : DUP MASTER
5 : MISSING MASTER
6 : NO FIREWIRE
7 : DISABLED
time stamp difference to large
more than one Virtual Master with the same channel
no Virtual Master with selected channel
no FireWire - either not fitted or no PHY power the FireWire CHANNEL is set to 0

Programming

FLUXING

SETUP::MOTOR CONTROL::FLUXING

Designed for VOLTS/Hz motor Control Mode.

This function block allows user parameterisation of the conventional (volts/hertz) fluxing strategy of the Drive. This is achieved though three flexible Volts-to-frequency templates. Starting torque performance can also be tailored through the FIXED BOOST, ACCELRTN BOOST and AUTO BOOST parameters.

Parameter Descriptions

VIF SHAPE PREF:21.01 Default: $0 \quad$ Range: See below

This parameter determines the type of volts to frequency template that is used to flux the motor. The choices for this parameter are:

Enumerated Value : V/F Shape

0 : LINEAR LAW

1 : FAN LAW
2 : USER DEFINED

This gives a constant flux characteristic up to the BASE FREQUENCY (see MOTOR INDUCTION function block).
This gives a quadratic flux characteristic up to the BASE FREQUENCY. This matches the load requirement for fan and most pump applications This gives a user defined flux characteristic up to the BASE FREQUENCY.

V/F SHAPE

Programming

Parameter Descriptions

 FIXED BOOSTRange: 0.00 to 25.00%
This parameter allows for no-load stator resistance voltage drop compensation. This correctly fluxes the motor (under no-load conditions) at low output frequencies, thereby increasing available motor torque. Fixed boost can be set in addition to auto boost and acceleration boost.

AUTO BOOST
 PREF: 21.04
 Default: 0.00%
 Range: 0.00 to 25.00 \%

This parameter allows for load dependent stator resistance voltage drop compensation. This correctly fluxes the motor (under load conditions) at low output frequencies, thereby increasing available motor torque. Auto boost can be set in addition to fixed boost.
The value of the AUTO BOOST parameter determines level of additional volts supplied to the motor for 100% load.
Setting the value of auto boost too high can cause the Drive to enter current limit. If this occurs, the Drive will be unable to ramp up in speed. Reducing the value of auto boost will eliminate this problem.
ACCELRTN BOOST PREF: 21.08 Default: 0.00% Range: 0.00 to 25.00%

This parameter provides an additional amount of fixed boost when the drive is accelerating. This can help when starting heavy/high stiction loads.

Programming

Parameter Descriptions

ENERGY SAVING
PREF: 21.09
Default: FALSE
Range: FALSE / TRUE
When set TRUE, the demanded volts are reduced to minimise energy consumption if the drive is operating in a steady state at light load.

```
USER FREQ 1 to 10 PREF:21.10,21.12,21.14, Default:Refer to Parameter Range: 0.0 to 100.0%
21.16, 21.18, 21.20, 21.22, Table
21.24, 21.26,21.28
```

These parameters provide 10 frequency points, which together with the USER VOLTAGE parameters, provide the user defined voltage profile. (USER FREQ n, USER VOLTAGE n) provide up to $10(\mathrm{x}, \mathrm{y})$ points on this profile. The USER FREQ parameters are defined as a percentage of the BASE FREQUENCY parameter (refer to the MOTOR INDUCTION function block).

USER VOLTAGE 1 to 10	$P R E F: 21.9,21.11,21.13$,		
$21.15,21.17,21.19,21.21$,			
$21.23,21.25,21.27,21.29$		\quad	Default: Refer to Parameter
:---			

These parameters provide 10 voltage points, which together with the USER FREQ parameters, provide the user defined voltage profile. (USER FREQ n, USER VOLTAGE n) provide up to $10(\mathrm{x}, \mathrm{y})$ points on this profile. The USER VOLTAGE parameters are defined as a percentage of the MOTOR VOLTAGE parameter (refer to the MOTOR INDUCTION function block).

Functional Description

Programming

V/F Shape

The function block allows the user to parameterise the Drive's conventional V/F motor fluxing scheme. Three V/F shapes are available, LINEAR LAW, FAN LAW and USER DEFINED:

- Linear Law V/F shape should be used in applications requiring constant motor torque though out the speed range (e.g. machine tools or hoists).
- Fan Law V/F shape provides extra energy savings for fan or pump applications.
- User Defined V/F shape provides a method for the user to define any profile. 10 user definable (x, y) points are provided. Liner interpolation is used between each point. The drive also assumes the following points - $(0 \%, 0 \%)$ and $(100 \%, 100 \%)-$ though these may be overridden. For example, (USER FREQ $1=0 \%$, USER VOLTAGE $1=5 \%$) takes precedence over ($0 \%, 0 \%$).
For any of these V/F shapes the BASE FREQUENCY parameter (in the MOTOR INDUCTION function block) which is the value of Drive output frequency at which maximum output volts is provided, can be set by the user.

Boost Parameters

- Correct no-load motor fluxing at low Drive output frequencies can be achieved by setting the FIXED BOOST parameter.
- Correct motor fluxing under load conditions is achieved by setting the AUTO BOOST parameter. The motor is correctly fluxed when the FIELD FBK diagnostic in the FEEDBACKS function block reads 100.0%.
- Additional FIXED BOOST can be applied during acceleration by setting the ACCELERTN BOOST parameter. This can be useful for starting heavy/high stiction loads.

Saving Energy

An ENERGY SAVING mode is provided which, when enables under low load conditions in the steady state, attempts to reduce the output voltage so that minimum energy is used.

FLYCATCHING

SETUP::MOTOR CONTROL::FLYCATCHING

Designed for all Motor Control Modes.

This block performs a directional speed search. It allows the Drive to seamlessly catch a spinning motor before controlling the motor to the desired setpoint. This is especially useful for large inertia fan loads, where drafts in building air ducts can cause a fan to `windmill'.

Parameter Descriptions

VHZ ENABLE
PREF: 69.01
Default: FALSE
Range: FALSE / TRUE
Enables flycatching in Volts/Hz Control mode when TRUE.
VECTOR ENABLE PREF: 69.15 Default: FALSE Range: FALSE / TRUE

Enables flycatching in Vector Control mode when TRUE.
START MODE PREF: 69.02 Default: 0 Range: See below

The mode of operation for the flycatching sequence software.
Enumerated Value : Start Mode
0 : ALWAYS
1 : TRIP OR POWERUP
2: TRIP
SEARCH MODE PREF: 69.03 Default: $0 \quad$ Range: See below

The type of speed search carried out by the flycatching sequence.
Enumerated Value : Search Mode
0 : BIDIRECTIONAL
1 : UNIDIRECTIONAL

Programming

Parameter Descriptions

SEARCH VOLTS

PREF: 69.04
Default: 9.00%
Range: 0.00 to 100.00 \%
The percentage level of the search volts applied to the motor during the speed search phase of the flycatching sequence. Increasing this parameter improves the accuracy of the discovered motor speed but increases the braking influence of the speed search on the rotating motor.
SEARCH BOOST PREF: 69.05 Default: 40.00% Range: 0.00 to 50.00%

The level of search boost applied to the motor during the speed search phase of the flycatching sequence.

SEARCH TIME PREF: 69.06 Default: 5.0 s Range: 0.1 to 60.0 s

The search rate during the speed search phase of the flycatching sequence. Performing the flycatching speed search too quickly can cause the drive to inaccurately identify the motor speed. Refluxing at an inaccurate motor speed can cause the drive to trip on overvoltage. If this occurs, increasing this parameter will reduce the risk of tripping.
MIN SEARCH SPEED PREF: $69.07 \quad$ Default: $5.0 \mathrm{~Hz} \quad$ Range: 0.0 to 500.0 Hz

The lowest search speed before the speed search phase of the flycatching sequence is considered to have failed.
REFLUX TIME PREF: 69.08 Default: 3.0 s Range: 0.1 to 20.0 s

The rate of rise of volts from the search level to the working level after a successful speed search. Refluxing the motor too quickly can cause the Drive to trip on either overvoltage or overcurrent. In either case, increasing this parameter will reduce the risk of tripping.
ACTIVE PREF: 69.13 Default: FALSE Range: FALSE/TRUE

A diagnostic output indicating whether the flycatching sequence is active.
SETPOINT PREF: 69.14 Default: - $x x \%$ Range - x. $\%$

This diagnostic output is the setpoint caught at the end of a successful flycatching sequence.

Functional Description

The flycatching function enables the drive to be restarted smoothly into a spinning motor. It applies small search voltages to the motor whilst ramping the Drive frequency from maximum speed to zero. When the motor load goes from motoring to
regenerating, the speed search has succeeded and is terminated. If the search frequency falls below the minimum search speed, the speed search has failed and the Drive will ramp to the speed setpoint from zero.
The flycatching sequence can be triggered by different starting conditions:

ALWAYS:	All starts (after controlled or uncontrolled stop, or after a power-up)
TRIP or POWER-UP:	After uncontrolled stop, i.e. trip or coast, or after a power-up
TRIP:	After uncontrolled stop, i.e. trip or coast

The type of speed sequence may be Bi-directional or Unidirectional:

Bi-directional

Initially, the search is performed in the direction of the speed setpoint. If the drive fails to identify the motor speed in this direction, a second speed search is performed in the reverse direction.

Unidirectional

The search is performed only in the direction of the speed setpoint.

Programming

I/O TRIPS

SETUP::TRIPS::I/O TRIPS

This function block is designed to operate in conjunction with the Analog and Digital Input function blocks to trip the Drive on a loss of setpoint input or safety control input.

Parameter Descriptions

INVERT THERMIST PREF:98.01 Default: FALSE Range: FALSE/TRUE
Inverts the sense of the motor thermistor input. The default FALSE is normally-closed/low impedance.
INVERT ENC TRIP PREF: 98.02 Default: FALSE Range: FALSE / TRUE

Inverts the sense of the encoder fail input on the encoder Technology Box.
EXT TRIP MODE PREF:98.08 Default: DISABLED Range: See below

Determines the special function of digital input 5.
Enumerated Value : External Trip Mode
0 : TRIP - A low at digital input 5 will cause an external trip
1 : COAST - A low at digital input 5 will cause the motor to coast to stop. The drive will not trip.
2 : DISABLED - Digital input 5 does not have any special function.
INPUT 1 BREAK PREF:98.03 Default: FALSE Range: FALSE / TRUE

A general purpose signal designed to be internally wired to the function block ANALOG INPUT 3, BREAK parameter. When this signal goes TRUE this causes an INPUT 1 BREAK trip to occur, (unless this trip is disabled within the TRIPS STATUS function block, see the DISABLED WORD parameter).
This parameter is not saved in the Drive's non-volatile memory and thus is reset to the default setting at power-up.

Parameter Descriptions

INPUT 2 BREAK

Default: FALSE
Range: FALSE / TRUE
A general purpose signal designed to be internally wired to the function block ANALOG INPUT 4, BREAK parameter. When this signal goes TRUE this causes an INPUT 2 BREAK trip to occur, (unless this trip is disabled within the TRIPS STATUS function block, see the DISABLED WORD parameter).
This parameter is not saved in the Drive's non-volatile memory and thus is reset to the default setting at power-up.
THERMISTOR PREF:98.05 Default: FALSE Range: FALSE/TRUE

The current state of the motor thermistor trip input, modified by INVERT THERMIST input.
ENCODER PREF:98.06 Default: FALSE Range: FALSE/TRUE

The current state of the encoder feedback card (Option F) error trip input. TRUE is tripped.
EXTERNAL TRIP PREF:98.07 Default: FALSE Range: FALSE/TRUE

If external trip mode is set to Coast or Trip then this shows the state of the latched trip caused by external trip, (digital input 5). If the external trip mode is set to Disabled, this output will be FALSE.
COMMS BREAK PREF: 98.09 Default: FALSE Range: FALSE / TRUE

Setting this parameter to True causes the COMMS BREAK trip.

Functional Description

The I/O TRIPS function block allows trips to be generated by signals on the input terminals of the Drive. Refer to Chapter 10 for a description of the trips supported by the Drive.

Programming

INERTIA COMP

SETUP::MOTOR CONTROL::INERTIA COMP

This block is used to provide a torque feed forward to compensate for friction and inertia effects whilst the drive is running.

Parameter Descriptions

FRICTION AT 0 RPM
 PREF: 122.01
 Default: 0.00%
 Range: 0.00 to 100.00%

Static friction compensation gain.
FRN AT NMPLT RPM PREF: 122.02 Default: 0.00% Range: 0.00 to 100.00%

Dynamic Friction compensation gain.

RELATIVE INERTIA	$P R E F: 122.03$	Default: 0.00%	Range: 0.0000 to 30000.0000%
Inertia compensation gain.			
FRICTION COMP	$P R E F: 122.04$	Default: -.xx $\%$	Range: - $x x \%$

This diagnostic shows Torque Feedforward component due to friction compensation.
INERTIA COMP PREF: $122.05 \quad$ Default: $-x x \% \quad$ Range: - $x x \%$

This diagnostic shows the Torque Feedforward component due to inertia compensation.
TORQ FEEDFORWARD PREF: 122.06 Default: - $x x \%$ Range: - $x \mathrm{xx} \%$

This diagnostic shows the Total torque feedforward.
SPEED PI OUTPUT PREF: 122.07 Default: -xx $\%$ Range: -xx $\%$

This diagnostic shows the Speed Loop Output - it is provided here to assist with tuning compensation values.

Functional Description

To Set-up Friction at 0 RPM

Run the drive at a very low speed. Observe the SPEED PI OUTPUT diagnostic and set the FRICTN AT 0 RPM parameter to this value. Return to the SPEED PI OUTPUT diagnostic and verify that it is now zero, or that the noise on the diagnostic is equally positive and negative.

To Set-up Friction at Nameplate RPM

Run the drive at nameplate rpm Observe the SPEED PI OUTPUT diagnostic and set the FRN AT NMPLT RPM parameter to this value. Return to the SPEED PI OUTPUT diagnostic and verify that it is now zero, or that the noise on the diagnostic is equally positive and negative.

After friction compensation has been set up, the RELATIVE INERTIA parameter can now be set. Relative Inertia is equal to torque (per unit) / acceleration (revs $/ \mathrm{s}^{2}$).

Optionally, if the system inertia is known, calculate a starting value to put into the RELATIVE INERTIA parameter. Then check the value by accelerating the motor plus load and confirming that the PI diagnostic is around zero. Alternatively, find the Relative Inertia by trial and error: choose a convenient ramp up time, accelerate the motor plus load observing the PI diagnostic, and find a value of Relative Inertia such that the PI diagnostic is around zero during acceleration and deceleration.

Programming

INJ BRAKING

SETUP::MOTOR CONTROL::INJ BRAKING

Designed for VOLTS/Hz Motor Control Mode.

The injection braking block provides a method of stopping spinning induction motors without returning the kinetic energy of the motor and load back in to the dc link of the Drive. This is achieved by running the motor highly inefficiently so that all the energy stored in the load is dissipated in the motor. Thus, high inertia loads can be stopped without the need for an external dynamic braking resistor.

Parameter Descriptions

DEFLUX TIME
PREF: 29.01
Default: 0.5 s
Range: 0.1 to 20.0 s
Determines the time in which the Drive defluxes the motor prior injection braking.
FREQUENCY PREF: 29.02 Default: 9.0 Hz Range: 1.0 to 500.0 Hz

Determines the maximum frequency applied to the motor for the low frequency injection braking mode. It is also clamped internally so as never to exceed 50% of base speed value.
I-LIM LEVEL PREF: 29.03 Default: $100.00 \% \quad$ Range: 50.00 to 150.00%

Determines the level of motor current flowing during low frequency injection braking.
DC PULSE PREF: 29.04 Default: 2.0 s Range: 0.0 to 100.0 s

Determines the duration of the dc pulse applied to the motor when injection braking is required for motor speeds below 20% of base speed. The actual dc pulse time applied to the motor is dependent on the ratio of initial motor speed to 20% of base speed.
FINAL DC PULSE PREF: 29.05 Default: 1.0 s Range: 0.0 to 10.0 s

Determines the duration of the final dc holding pulse applied to the motor after either low frequency injection braking or timed dc pulse.
DC LEVEL PREF: 29.06 Default: 3.00% Range: 0.00 to 25.00%

Determines the level of dc pulse applied to the motor during either the timed or final dc pulse.

Parameter Descriptions

TIMEOUT
PREF: 29.07
Default: 600.0 s
Range: 0.0 to 600.0 s
Determines the maximum amount of time the sequence is allowed to remain in the low frequency injection braking state.
BASE VOLTS PREF: $29.08 \quad$ Default: $100.00 \% \quad$ Range: 0.00 to 115.47%

Determines the maximum volts at base speed applied to the motor during injection braking.
ACTIVE PREF: 29.09 Default: FALSE Range: FALSE / TRUE

Indicates the state of the Drive. TRUE when injection braking.

Programming

INVERSE TIME PMAC

SETUP::MOTOR CONTROL::INVERSE TIME PMAC

Designed for PMAC control mode.

The purpose of the inverse time is to automatically reduce the drive current limit in response to prolonged overload conditions (drive protection).

For Frames B, C \& D:

Under normal conditions, the drive current limit is set to the minimum value between:

- 200% of the permanent Drive current (STACK CURRENT parameter of the FEEDBACKS Function Block)
- MAX CURRENT parameter of the MOTOR PMAC 1 Function Block

If the Drive speed becomes lower than 2.5 (electrical) Hz, the DELAY time is automatically reduced to 25% of its value.
As the drive current exceeds the AIMING POINT level, the excess current is integrated. Motor current is allowed to flow at the minimum value between 200% of permanent drive current and MAX CURRENT (refer to the MOTOR PMAC 1 function block) for a period defined by the DELAY parameter. At this point the inverse time current limit is ramped down from the MAX CURRENT. The rate at which the inverse time current limit is ramped to the AIMING POINT is defined by DOWN TIME.
Once the overload condition is removed, the inverse time current limit level is ramped back toward the minimum value between 200% of permanent drive current and MAX CURRENT at a rate determined by the UP TIME.

For Other Frame Sizes:

Under Normal conditions, the drive limit is set to the minimum value between:

- 150% of the permanent drive current,
- MAX CURRENT parameter of the MOTOR PMAC 1 Function block for a delay value of 60 s .

In Quadratic Torque mode, the allowed overload is reduced to 110% for 60 s before inverse time current limit action occurs.

Parameter Descriptions

AIMING POINT

Default: 105.00%
Range: 50.00 to 105.00%
Determines the final level of the inverse time current limit after a period of prolonged motor overload
DELAY PREF:162.02 Default: 4.0 s Range: 0.5 to 4.0s

Determines the maximum allowed overload duration before inverse time current limit action is taken. This value is based on 200\% overload.
DOWN TIME PREF: 162.03 Default: 1.0 s Range: 0.5 to 2.0 s

Determines the rate at which the inverse time current limit is ramped to the AIMING POINT after a period of prolonged overload.
UP TIME PREF: $162.04 \quad$ Default: $1.0 \mathrm{~s} \quad$ Range: 0.5 to 2.0 s

Determines the rated at which the inverse time current limit is ramped back to the minimum value between 200% of permanent drive current and MAX CURRENT (refer to MOTOR PMAC 1 Function Block) once the overload is removed.
IT LIMITING PREF:162.05 Default: FALSE Range: FALSE/TRUE

This diagnostic indicates if the inverse time current limit is active.
INVERSE TIME OP PREF: $162.06 \quad$ Default: $-.00 \%$ Range: -. 00%

This diagnostic indicates the present level of current that is allowed by the associated motor.
If the MAX CURRENT is higher than the drive permanent current, this value is more than 100%.
If the MAX CURRENT is lower than the drive permanent current; this value is less than 100%.
IT WARNING PREF: $162.07 \quad$ Default: FALSE Range: FALSE/TRUE

This diagnostic indicates if the reduction is acting or not.

Programming

INVERSE TIME

SETUP::MOTOR CONTROL::INVERSE TIME

Designed for all Motor Control Modes, except PMAC control mode.

The purpose of the inverse time is to automatically reduce the drive current limit in response to prolonged overload conditions. As the motor current exceeds the AIMING POINT level, the excess current is integrated. Motor current is allowed to flow at the CURRENT LIMIT (refer to the CURRENT LIMIT function block) for a period defined by the DELAY parameter. At this point the inverse time current limit is ramped down from the CURRENT LIMIT. The rate at which the inverse time current limit is ramped to the AIMING POINT is defined by DOWN TIME.

Once the overload condition is removed, the inverse time current limit level is ramped back toward the CURRENT LIMIT at a rate determined by the UP TIME.
In Quadratic Torque mode, the allowed overload is reduced to 110.0% for 60.0 s before inverse time current limit action occurs.

Parameter Descriptions AIMING POINT PREF: 84.01
 Default: 105.00%
 Range: 50.00 to 150.00%

Determines the final level of the inverse time current limit after a period of prolonged motor overload
DELAY PREF: 84.02 Default: $60.0 \mathrm{~s} \quad$ Range: 5.0 to 60.0s

Determines the maximum allowed overload duration for 150.0% motor current (110.0% in QUADRATIC TORQUE mode) before inverse time current limit action is taken.
DOWN TIME PREF: 84.03 Default: $10.0 \mathrm{~s} \quad$ Range: 1.0 to 10.0 s

Determines the rate at which the inverse time current limit is ramped to the AIMING POINT after a period of prolonged overload.

Programming

Parameter Descriptions

UP TIME
PREF: 84.04
Default: 120.0 s
Range: 1.0 to 600.0 s
Determines the rated at which the inverse time current limit is ramped back to the CURRENT LIMIT (refer to the CURRENT LIMIT function block) once the overload is removed.
IT LIMITING PREF:84.05 Default: FALSE Range: FALSE/TRUE

This diagnostic indicates if the inverse time current limit is active.
INVERSE TIME OP PREF: $84.06 \quad$ Default: $-.00 \%$ Range: -. 00%

This diagnostic indicates the present level of the inverse time current limit.

Programming

LOCAL CONTROL

This block allows the available modes of Local and Remote operation to be customised. It also indicates the selected mode. You can only switch between Local and Remote modes using the Keypad. Refer to Chapter 8: "The Keypad" - The L/R Key.

Parameter Descriptions

SEQ MODES PREF:94.01 Default: $0 \quad$ Range: See below

Allows the source of sequencing commands to be selected. Local is the Keypad, Remote is an external signal. The modes supported are:

Enumerated Value : Seq Mode			
	$0:$ LOCAL/REMOTE		
	$1:$ LOCAL ONLY		
2: REMOTE ONLY			
REF MODES	PREF:94.02	Default: 0	Range: See below

Allows the source of the reference signal to be selected. Local is the Keypad, Remote is an external signal. The modes supported are:

> Enumerated Value $:$ Ref Mode
> $0:$ LOCAL/REMOTE
> $1:$ LOCAL ONLY
> $2:$ REMOTE ONLY

Programming

Parameter Descriptions

POWER UP MODE

PREF: 94.03
Default: 1
Range: See below
Allows the power-up operating mode of the Drive to be selected. Local is the Keypad, Remote is an external signal, Automatic is the same mode as at power-down. The modes supported are:

Enumerated Value : Power Up Mode
0 : LOCAL
1: REMOTE
2 : AUTOMATIC

SEQ DIRECTION
 PREF: 94.04

Default: FALSE
Range: FALSE / TRUE
When TRUE, direction is a Sequencing command.
When FALSE, direction is a Reference command.
REMOTE SEQ PREF:94.05 Default: TRUE Range: FALSE/TRUE

This parameter indicates the present source of the sequencing commands.

REMOTE REF

PREF: 94.06
Default: TRUE
Range: FALSE / TRUE
This parameter indicates the present source of the reference signal.

Programming

MOT PMAC PROTECT

SETUP::MOTOR CONTROL::MOT PMAC PROTECT

Designed for PMAC Control Mode.

This is a motor protection based on the rms current flowing in the motor phases. This protection is called I2T and is based on the permanent current and thermal time constant.
The 100% permanent current is the following curve extracted from parameters in MOTOR PMAC 1 and 2 function block:

The rms motor current is filtered with a first order low pass filter based on the THERMAL TIME CST. The output I2T MOTOR LOAD of this filter is a percentage of the motor thermal load. When this output exceeds 100%, the drive trips in I2T MOTOR TRIP. The level of motor load (I2T MOTOR LOAD) is given as a percentage (100% represents a current equal to the PERM CURRRENT flowing in the motor phases for a THERMAL TIME CST time).

Parameter Descriptions
I2T INHIBIT

Default: FALSE
Range: FALSE / TRUE

This parameter enables/disables the I2T trip action. The drive continues to look for the motor load, but does not trip if the level is higher than 100% :
$\begin{array}{ll}\text { FALSE: } & \text { I2T trip is enabled } \\ \text { TRUE: } & \text { I2T trip is disabled. }\end{array}$
I2T LIMIT MOTOR PREF:161.02 Default:FALSE Range: FALSE / TRUE
This diagnostic indicates the state of the motor current protection.
FALSE: the level of motor load is lower than 100%
TRUE : the level of motor load is higher than 100%
I2T MOTOR LOAD PREF: 161.03 Default: -. 0% Range: -. 0%

This diagnostic indicates the percentage of thermal motor load.
This value is the output of the filter based on the THERMAL TIME CST and PERM CURRENT parameters of the MOTOR PMAC 1 Function Block. When this output exceeds 100%, the drive trips in I2T MOTOR TRIP.

MOTOR I2T TRIP
PREF: 161.04
Default: FALSE
Range: FALSE / TRUE
This diagnostic reports on the state of the I2T motor trip:
FALSE : the motor is running, the level of the motor load is lower than 100% (if the trip is active) TRUE : the drive has tripped, the level of motor load is higher than 100%

Programming

MOT POLARISATION

SETUP::MOTOR CONTROL::MOT POLARISATION

Designed for PMAC control mode

This function is used to set up and verify the relative position between the position sensor and the PMAC motor.

Parameter Descriptions

SWITCH ON START PREF: 156.01 Default: MANUAL Range: MANUAL

Selects the method of starting the pole finding sequence. This parameter is automatically set to MANUAL (where the pole finding sequence is initiated by the POLAR START parameter).
POLARISATION PREF: 156.02 Default: DISABLE Range: DISABLE / ENABLE

Set this parameter to ENABLE to enter the resolver calibration mode.
POLAR START PREF: 156.03 Default: FALSE Range: FALSE / TRUE

Set this parameter to TRUE to start the calibration process (state only available if POLARISATION = ENABLE).
TYPE PREF: 156.04 Default: 1:STANDARD Range: 1:STANDARD

Selects the type of pole finding method. This parameter is automatically set to STANDARD.
Enumerated Value : Type
$0: 1:$ STANDARD Method used by 99% of applications (motor must be free to rotate).

	$0: 1: S T A N D A R D$	Method used by 99% of applications (motor must be free to rotate).
1:MOTOR PHASE	$P R E F: 156.05$	Default: $U P H A S E$

Selects the position to polarise the motor when the TYPE parameter is set to STANDARD.
Enumerated Value : Motor Phase

$$
\begin{aligned}
& 0: \mathrm{U} \text { PHASE }=90^{\circ} \\
& 1: \mathrm{V} \text { PHASE }=-150^{\circ}\left(\text { or } 210^{\circ}\right) \\
& 2: \mathrm{W} \text { PHASE }=-30^{\circ}\left(\text { or } 330^{\circ}\right)
\end{aligned}
$$

Parameter Descriptions

1:MOT CUR PCNT
PREF: 156.06
Default: 50.00
Range: 0.00 to 100.00%
Sets the current level to apply (as a percentage of the permanent current of the motor) when the TYPE parameter is set to STANDARD.
1:MOT CUR RAMP PREF: 156.07 Default: 1.00 Range: 0.10 to 20.00 s

Sets the ramp value in seconds to apply to the current setpoint when the TYPE parameter is set to STANDARD..
ELEC POS OFFSET PREF: $156.16 \quad$ Default:0.0000 ${ }^{\circ}$ Range: -180.0000° to 180.0000°
An electrical position offset value that compensates for deviation from the theoretical value.
For example, if the value of the ELEC POS parameter is 100° and the theoretical value is 90° (MOTOR PHASE parameter set to U PHASE), you can apply a value of -10° to compensate for the deviation.
ELEC POS PREF: 156.17 Default: Range: -180.0000° to 180.0000°

This diagnostic displays the electrical position of the motor in degrees.
CURRENT PREF: 156.18 Default: Range: -. 0000 A

This diagnostic shows the current value in Amps applied to the motor.
STATE PREF: 156.19 Default: $0 \quad$ Range: See below

This diagnostic displays the state of the motor.
Enumerated Value : State

$0:$ NORMAL	normal mode
$1:$ POLARIZING	the motor is under polarisation

Programming

Functional Description

The convention in the 890 drive is given below :

The correct succession of motor phases is $\mathrm{U}($ or M1), V (or M2), W (or M3) if the motor rotates in a clockwise direction looking to the motor shaft on the front side. U phase must ride through the 0 point in a positive way at a position of 0° (electrical position). The position must also increase in that direction.

To polarise the motor, a current setpoint is ramped to the motor in a special configuration. This will cause the rotor to lock to a specific position.

To start the STANDARD polarisation:

1. The motor must be stationary, with no load attached to the motor shaft. In this method, there will be a maximum movement of half an electrical turn of the motor shaft.
2. Choose a MOTOR PHASE: U, V or M.
3. Set the current level to apply in the MOT CURRENT PCNT parameter.
4. Set a ramp value for the current level in the MOT CURRENT RAMP parameter.
5. Set POLARISATION $=$ ENABLE, POLAR START $=$ FALSE .
6. Verify that ELEC POS OFFSET is set to 0.0 .
7. Set POLAR START = TRUE .
8. Apply a torque to the motor and read the value of the ELEC POS parameter.
9. Stop the motor. Verify that the value of ELEC POS after polarisation matches the theoretical position for the chosen motor phase :

- U or M1 : 90°
- V or M2 : $210^{\circ}\left(-150^{\circ}\right)$
- W or M3 : $330^{\circ}\left(-30^{\circ}\right)$

Programming

If not, apply a compensation using the ELEC POS OFFSET parameter. If necessary, repeat steps 6 and 7 until an error of only 1° to 5° is achieved.

Examples:

In U phase $\left(90^{\circ}\right)$, if ELEC POS $=20^{\circ}$ then ELEC POS OFFSET must be set to 70° to get a value of 90° for ELEC POS.
In U phase $\left(90^{\circ}\right)$, if ELEC POS $=-160^{\circ}$ then ELEC POS OFFSET must be set to $-110^{\circ}\left(+250^{\circ}\right)$ to get a value of 90° for ELEC POS. 90° is equivalent to -270°, which explains the value of $-110^{\circ}:-270^{\circ}=-160^{\circ}+\left(-110^{\circ}\right)$.
10. Verify the correct value of ELEC POS parameter and set POLARISATION $=$ DISABLE, POLAR START $=$ FALSE .

This function could also be used to verify the correct connection of the motor phase (correct succession of the 3 phases) by :

1. Polarise the motor on the U phase with a low current, typically 20 to 30%, and a ramp value of 1 second.
2. Change the phase to V, then W , etc. using the MOTOR PHASE parameter and apply torque to the motor:

- If the motor is rotating in a clockwise direction, looking to the front shaft of the motor, then the motor phases are connected correctly. (With the encoder correctly wired, the encoder position will increment when the motor turns in a clockwise way looking to the front shaft of the motor)
- If the motor is rotating in a counter clockwise direction, looking to the front shaft of the motor, two of the motor phases must be inverted, for example U and V phases.

MOTOR INDUCTION

SETUP::MOTOR CONTROL::MOTOR INDUCTION

Designed for all Motor Control Mode, except PMAC Control Mode.

In this function block you enter the details of the motor under control and any available motor nameplate information.
The Autotune feature will determine the MAG CURRENT, STATOR RES, LEAKAGE INDUC, MUTUAL INDUC and ROTOR TIME CONST motor model parameter.
The OVERLOAD parameter determines the allowed level of motor overload. This can be especially useful when operating with motors smaller than the drive rating.

Note Do not attempt to control motors whose rated current is less than 25% of the drive rated current. Poor motor control or Autotune problems may occur if you do.

Parameter Descriptions

POWER PREF: 27.02
Default: 1.5 kW
Range: 0.00 to 3000.00 kW
This parameter contains the motor nameplate power.

* BASE FREQUENCY PREF: $27.03 \quad$ Default: $50.0 \mathrm{~Hz} \quad$ Range: 7.5 to 1000.0 Hz

This parameter contains the motor nameplate base frequency. Refer to FLUXING, page D-52.

* MOTOR VOLTAGE \quad PREF: $27.04 \quad$ Default: $230.0 \mathrm{~V} \quad$ Range: 0.0 to 575.0 V
This parameter contains the motor nameplate voltage at base frequency. Refer to Error! Reference source not found., page
D-Error! Bookmark not defined. D-Error! Bookmark not defined.
MOTOR CURRENT PREF:27.05 Default: $6.26 \mathrm{~A} \quad$ Range: 0.00 to 3276.70 A

This parameter contains the motor nameplate full-load line current.
MAG CURRENT PREF:27.06 Default: $2.50 \mathrm{~A} \quad$ Range: 0.00 to 3276.70 A

This parameter contains the motor model no-load line current as determined by the auto-tune.

Programming

Parameter Descriptions

* NAMEPLATE RPM

PREF: 27.07
Default: 1420 rpm
Range: 0.0 to 30000.0 rpm
This parameter contains the motor nameplate full-load rated speed. This is the motor speed in rpm at base frequency minus full load slip.

* MOTOR CONNECTION PREF: 27.08 Default:1 Range: See below

This parameter contains the motor nameplate winding connection.

Enumerated Value : Motor Connection			
$0:$ DELTA			
$1:$ STAR			
MOTOR POLES	PREF: 27.09	Default: 1	

This parameter contains the motor nameplate pole-pairs.
Enumerated Value : Motor Poles

$$
\begin{aligned}
& 0: 2 \text { pole } \\
& 1: 4 \text { pole } \\
& 2: 6 \text { pole } \\
& 3: 8 \text { pole } \\
& 4: 10 \text { pole } \\
& 5: 12 \text { pole }
\end{aligned}
$$

POWER FACTOR PREF: 27.10 Default: $0.71 \quad$ Range: 0.50 to 0.99

This parameter contains the motor nameplate full-load power factor.
OVERLOAD PREF:27.11 Default: $2.0 \quad$ Range: 1.0 to 5.0

This parameter contains the allowable motor overload factor. It is used to match the drive current measurement range to the motor. The drive is set up so that the Motor Current x Overload can be measured up to a maximum of 2 x the Drive constant torque current rating.
The OVERLOAD parameter has no effect on the current, inverse time or torque limits.

Programming

Parameter Descriptions

TOTAL INERTIA PREF:27.23
 Default: $0.0000 \mathrm{kgm}^{2}$
 Range: 0.0000 to $300.0000 \mathrm{kgm}^{2}$

The total inertia of the motor and load. This is used as part of the speed loop Autotune feature.

STATOR RES PREF: 27.14 Default: 1.5907Ω Range: 0.0000 to 250.0000Ω

This parameter contains the motor model per-phase stator resistance as determined by Autotune.
LEAKAGE INDUC PREF: 27.15 Default: 33.76 mH Range: 0.00 to 300.00 mH

This parameter contains the motor model per-phase leakage inductance as determined by Autotune.
MUTUAL INDUC PREF: 27.16 Default: 135.02 mH Range: 0.00 to 3000.00 mH

This parameter contains the motor model per-phase mutual (magnetising) inductance as determined by Autotune.

ROTOR TIME CONST PREF: 27.17

Default: 136.75 ms
Range: 10.00 to 30000.00 ms
This parameter contains the motor model rotor time constant as determined by Autotune.

Programming

MOTOR PMAC 1

SETUP::MOTOR CONTROL::MOTOR PMAC 1

Designed for PMAC Control Mode.

The MOTOR PMAC blocks ($1 \& 2$) store all the parameters needed to run a PMAC Motor. These parameter values are entered automatically by the DSE 890 Configuration Tool when the tool is used to select the motor type.
In order for the drive to control the motor the parameters marked \bullet MUST be set.

Parameter Descriptions

MANUFACTURER PREF:134.01 Default: PARVEX Range:

Enter the motor manufacturer's name.
MODEL PREF:134.02 Default: HS620EV Range:

Enter the motor name.

- CONSTRUCTION PREF:134.03 Default: 0 Range: See below

Select the motor's construction type.

Enumerated Value : Construction		
$0:$ AXIS	Standard motor.	
$1:$ SPINDLE	Spindle motor.	
$2:$ TORQUE	Direct torque motor.	Range: See below
ATMOSPHERE	PREF: 134.04	Default: 0
Select the motor's atmospheric details.		
Enumerated Value $:$ Atmosphere		
$0:$ STANDARD	Standard motor.	
	$1:$ EXPLOSIVE	Motor built for explosive atmosphere (Ex).

Programming

Parameter Descriptions

MAX VOLTAGE
PREF: 134.05
Default: 400.00
Range: 200.00 to 640.00 V
Set the motor's maximum ac input voltage (in Volts rms).
THERM PROTECTION PREF:134.06 Default: FALSE Range: FALSE/TRUE

Motor's thermal protection feature.

- MAX SPEED PREF:134.07 Default: 4300 Range: 0 to INT MAX

Set the motor's maximum mechanical speed (in rpm)

- MAX CURRENT PREF: 134.08 Default: 10.60 Range: 0.00 to 1024.00 A

Set the motor's maximum rms current. This parameter is used to limit the current demand

- PERM CURRENT PREF: 134.09 Default: 4.90 Range: 0.00 to 1024.00 A

Set the motor's permanent rms current. Permanent current at low speed (in Amp rms) or nominal current.
Refer to MOTOR CURRENT \% in the FEEDBACKS function block. A value of $100 \%=$ PERM CURRENT.

- PERM TORQUE PREF: 134.10 Default: 6.40 Range: 0.00 to 30000.00 Nm

Set the motor's permanent torque.
Refer to TORQUE FEEDBACK in the FEEDBACKS function block. A value of $100 \%=$ PERM TORQUE.

```
LOW SPEED VALUE PREF:134.11 Default:0
Range: 0 to INT MAX rpm
```

Set the motor's low speed value (in rpm) below which the current must be reduced.
If this parameter is unknown, value must be set to 0 rpm .

Programming

Parameter Descriptions

- POLES

Set the number of motor poles, e.g. for a 4 pole motor enter "4".

- BACK EMF PREF:134.13 Default: 85.6 Range: 0.0 to 8192.0 V

Set the motor's Back EMF phase to phase, rms value (Ke, Volts rms per 1000 rpm)
On a standard PMAC motor the following equation may be used to check that the BACK EMF value is approximately correct:
BACK EMF * MAX SPEED < AC Input voltage

- R PREF: 134.14 Default: 3.63 Range: 0.00 to $50.00 ~ \Omega$

Set the motor's resistance, between phases at $25^{\circ} \mathrm{C}$. This parameter is used within the current loop.
-L
PREF: 134.17
Default: 24.299
Range: 0.000 to 1000.000 mH
Set the motor's inductance at maximum current. This parameter is used within the current loop and is related to the overall proportional gain.
PHASE PREF: 134.18 Default: $0.00 \quad$ Range: 0.00 to 90.000 degrees

Set the motor's phase shift advance at permanent current. If this parameter is unknown, value must be set to 0 .
The current setpoint I is separated into two current setpoints Iq and Id, obeying the following rule :

Programming

Parameter Descriptions

MAX PHASE
PREF: 134.19
Default: 0.00
Range: 0.00 to 90.000 degrees
Set the motor's phase shift advance at maximum current. If this parameter is unknown, value must be set to 0 .
The current setpoint I is separated into two current setpoints Iq and Id, obeying the following rule - see PHASE above.
MAX TORQUE PREF: 134.20 Default: $12.80 \quad$ Range: 0.00 to 30000.00 Nm

Set the motor's torque at maximum current.

\bullet KT	PREF: 134.21	Default: 1.376
	Range: 0.0000 to	
$100.0000 \mathrm{Nm} / \mathrm{A}$		

Torque constant (Kt, Nm/A rms).
This parameter is used to compute the current demand given a torque demand :
Current demand $=$ Torque demand $/ \mathrm{KT}$
In order to have correct feedbacks the following equation MUST be true:
PERM TORQUE $=K T *$ PERM CURRENT
On a PMAC motor, the ratio between the BACK EMF and the KT is always around 60:
BACK EMF (Volts rms/1000rpm) ≈ 60 * KT (Npm/Arms)

IFMB	PREF: 134.22	Default: 0.0	Range: -100.0000 to
$100.0000 \mathrm{~A} / \mathrm{Nm}^{3}$			

Set the motor's parameters to compute current setpoint from torque setpoint.

$$
[\text { current }]=[\text { torque }] / K T+[\text { torque }]_{3} * I F M B
$$

If IFMB is unknown, the value must be set to 0 .

Programming

Parameter Descriptions

INERTIA
Set the motor's inertia. The units for this parameter are set by the INERTIA SCALE parameter.

INERTIA SCALE

PREF: 134.24
Default: 0
Range: See below
Set the motor's inertia scale.

> Enumerated Value : Inertia Scale
$0: \mathrm{Kg}^{*} \mathrm{~m}^{2}$
1: $\mathrm{Kg}^{*} \mathrm{~cm}^{2}$
2: $\mathrm{g}^{*} \mathrm{~m}^{2}$

- STAND CURRENT PREF: 134.26 Default: 10.6 Range: 0.00 to 1024.00 A

Permanent current at standstill: if not known, set to the same value as PERM CURRENT at low speed

- THERMAL TIME CST PREF: 134.27 Default: 224.80 Range: 0.00 to 10000.00 s

Copper Thermal Time constant(s). If not known, set to 300s.
CUR LOOP BWDTH PREF: $134.28 \quad$ Default: $600 \quad$ Range: 100 to 1500 Hz

This parameter defines the current loop bandwidth. The value will automatically generate the proportional gain of the PI corrector of the current loop. The proportional gain is calculated based on the "L" motor parameter.
Modifying the CUR LOOP BWDTH value could induce instability. Please contact our application engineer if you need to change it.
INTEGRAL FREQ PREF: 134.29 Default: $150 \quad$ Range: 5 to 600 Hz

This parameter defines the frequency of the Integral action of the PI corrector of the current loop.
Modifying this value could induce instability. Please contact our application engineer if you need to change it.

Functional Description

Programming

MOTOR PMAC 2

SETUP::MOTOR CONTROL::MOTOR PMAC 2

Designed for PMAC Control Mode.

The MOTOR PMAC blocks ($1 \& 2$) store all the parameters needed to run a PMAC Motor. These parameter values are entered automatically by the DSE 890 Configuration Tool when the tool is used to select the motor type.
The parameters are used to vary the motor permanent current as a function of the speed and define the function used for the motor protection against overcurrent.

Parameter Descriptions

MPS1	PREF: 135.01	Default: 230 V	Range: 0 to 600 V
MPS2	$P R E F: 135.02$	Default: 400 V	Range: 0 to 600 V
MPS3	$P R E F: 135.03$	Default: 480 V	Range: 0 to 600 V

These parameters define the waypoints on the motor's thermal protection curve. They represent AC input voltage (in Volts rms).

CURRENT AT MPS1	$P R E F: 135.04$	Default: 10.60 A	Range:0.00 to 1024.00 A
CURRENT AT MPS2	$P R E F: 135.05$	Default: 10.60 A	Range:0.00 to 1024.00 A
CURRENT AT MPS3	$P R E F: 135.06$	Default: 10.60 A	Range:0.00 to 1024.00 A

These parameters define the rms current at the speed defined below.

SPEED AT MPS1	$P R E F: 135.07$	Default: 2300 rpm	Range:0 to 2147483647 rpm
SPEED AT MPS2	$P R E F: 135.08$	Default: 4000 rpm	Range: 0 to 2147483647 rpm
SPEED AT MPS3	$P R E F: 135.09$	Default: 4800 rpm	Range: 0 to 2147483647 rpm

These parameters define the speed on the waypoint.

Functional Description

This block defines the parameters needed to build the following curve. It is used to limit the motor's current, depending on the speed.

If the motor permanent current is defined as a constant on the whole range of use, the following parameters must be set to :

- MPS1 = MPS2 = MPS3 = AC input voltage (in Vrms)
- CURRENT AT MPS $1=$ CURRENT AT MPS2 $=$ CURRENT AT MPS3 $=$ PERM CURRENT from MOTOR PMAC 1 function block
- SPEED AT MPS1 = SPEED AT MPS2 = SPEED AT MPS3 = MAX SPEED from MOTOR PMAC 1 function block

Programming

MOVE TO MASTER

SETUP::PHASE CONTROL::MOVE TO MASTER

Performance Level = ADVANCED : CLOSED-LOOP VEC Motor Control Mode only.

The FireWire option card (Option B) must be fitted to the drive.
This block provides a command which when executed will start a trapezoidal move that aligns the load position with the Master Position + Total Offset. The Dist To Master is loaded such that there is a zero position error at the moment the position loop is enabled. This prevents the shaft moving when the position loop is enabled.

Parameter Descriptions

ENABLE

PREF: 124.01
Default: FALSE
Range: FALSE / TRUE
This parameter commands the Move To Master function to start on positive edge.
MOVE METHOD PREF:124.02 Default: $0 \quad$ Range: See below

This parameter defines how the move will be performed, either Forwards, Backwards, or taking the Shortest distance.

$$
\begin{array}{r}
\text { Enumerated Value }: \text { Move Method } \\
0: \text { SHORTEST } \\
1: \text { FORWARD } \\
2: \text { BACKWARD }
\end{array}
$$

DIRECTION BAND PREF: $124.03 \quad$ Default: $0.05 \quad$ Range: 0.00 to 200.00

This parameter defines the move distance for which the Shortest move will always be taken, overriding the Forward and Backward options of Move Method. This parameter is scaled such that $1.0=1$ load mechanical revolution.
VELOCITY PREF: 124.04 Default: 1.00% Range: 0.10 to 300.00%

This parameter defines the maximum velocity of the move, set in percent of maximum load speed.
ACCELERATION PREF: $124.05 \quad$ Default: $1.00 \% \quad$ Range: 0.01 to 3000.00%

This parameter defines the maximum acceleration of the move, set in percent of maximum load speed per second.

Parameter Descriptions

DIST TO MASTER PREF: 124.06 Default: - $x x x x \quad$ Range: - $x x x x$

This diagnostic displays the distance ($1.0=1$ load mechanical revolution) between the load shaft position and the Master Position + Total Offset position.
ACTIVE PREF: $124.08 \quad$ Default: FALSE Range: FALSE/TRUE

This diagnostic is TRUE to indicate Move to Master is active.
STATE PREF: 124.09 Default: $1 \quad$ Range: See below

This diagnostic indicates the state of the Move to Master move.
Enumerated Value $:$ State

\[\)| $0: \text { RESET }$ | the move to master is in a reset state and cannot be used. |
| :--- | :--- |
| $1: \text { READY }$ | the move to master is ready to be enabled |
| $2: \text { POS AQUIRE }$ | the target position for the move is being acquired |
| $3: \text { ALIGN }$ | the move is active |
| $4: \text { DONE }$ | the move to master is complete |

\]

Programming

OP STATION

SETUP::MENUS::OP STATION

This block allows the operation of the Keypad control keys to be customised.

Parameter Descriptions

ENABLED KEYS PREF: 30.01 Default: 00F0 Range: 0x0000 to 0xFFFF

The following keys on the Keypad can be enabled or disabled separately. The combination produces the parameter setting as in the table below

Parameter Setting	RUN	L/R	JOG	DIR
0000	-	-	-	-
0010	-	-	-	ENABLED
0020	-	-	ENABLED	-
0030	-	-	ENABLED	ENABLED
0040	-	ENABLED	-	-
0050	-	ENABLED	-	ENABLED
0060	-	ENABLED	ENABLED	-
0070	-	ENABLED	ENABLED	ENABLED
0080	ENABLED	-	-	-
0090	ENABLED	-	-	ENABLED
00A0	ENABLED	-	ENABLED	-
OOBO	ENABLED	-	ENABLED	ENABLED
00C0	ENABLED	ENABLED	-	
00D0	ENABLED	ENABLED	-	ENABLED
OOEO	ENABLED	ENABLED	ENABLED	
00FO	ENABLED	ENABLED	ENABLED	ENABLED

Programming

Parameter Descriptions

OP VERSION
PREF: 30.02
Default:0000
Range: 0x0000 to 0xFFFF
Displays the software version of the Keypad. It is cleared to $0 x 0000$ if no Keypad is connected.
OP DATABASE PREF:30.03 Default: FALSE Range: FALSE / TRUE
Reserved for Parker SSD Drives.

Programming

OPERATOR MENU

SETUP::MENUS::OPERATOR MENU

These function blocks, 1 to 32, are used to configure the Operator menu. This feature provides quick access to frequently used parameters. Any parameter may be "promoted" to the Operator menu, and the parameter is then automatically saved on powerdown. In addition, parameters displayed in the Operator menu may be given a different name, and may be rescaled for display using the DISPLAY SCALE function blocks.

PREF 33.xx is OPERATOR MENU 1, PREF 34.xx is OPERATOR MENU 2, PREF 64.xx is OPERATOR MENU 32.

Parameter Descriptions

PARAMETER
PREF: 33.01 to 64.01
Default: 0
Range: 0 to 5505
Selects a parameter to be displayed in the Operator menu. Enter the correct PREF on the Keypad. Enter an equivalent decimal number when using LINK or comms link. To convert the required PREF to the decimal number, multiply the PREF whole number by 32 . Then add the remainder of the PREF. For example: PREF 111.08 is equivalent to $3560((111 \times 32)+8)$.
Only decimal numbers that are equivalent to the listed PREF numbers are acceptable.

NAME PREF: 33.02 to 64.02 Default: Range: max length is 16 chars

Enter your customised parameter name, the maximum length is 16 characters. If this name is left blank, then default parameter name will be used.
SCALING PREF: 33.03 to $64.03 \quad$ Default: NONE Range: Enumerated - see below

Selects a DISPLAY SCALE function block to be applied to the value of PARAMETER.

```
Enumerated Value : Scaling
    0 : NONE
    1: DISPLAY SCALE 1
    2: DISPLAY SCALE 2
    3:DISPLAY SCALE 3
    4 : DISPLAY SCALE 4
```


Programming

Parameter Descriptions

READ ONLY

PREF: 33.04 to 64.04
Default: FALSE
Range: FALSE / TRUE
When TRUE, this entry in the Operator Menu will not be adjustable.
IGNORE PASSWORD PREF: 33.05 to $64.05 \quad$ Default: FALSE Range: FALSE / TRUE

When TRUE, this entry in the Operator Menu may be adjusted regardless of the password protection feature.

Programming

OVER SPEED TRIP

SETUP::TRIPS::OVER SPEED TRIP

Designed for SENSORLESS VEC and CLOSED-LOOP VEC Motor Control Modes.

The over speed trip operates by looking at speed feedback and comparing it against THRESHOLD.
If the feedback exceeds this threshold for a period greater than DELAY, then a trip is triggered. The trip is only active while the drive is operating in Closed-Loop or Sensorless Vector Control.

Parameter Descriptions

INHIBIT PREF: $123.01 \quad$ Default: FALSE Range: FALSE / TRUE

Set this parameter to TRUE to disable the over speed trip.
THRESHOLD PREF: 123.02 Default: 150.00% Range: 0.00 to 300.00%

Sets a threshold below which the trip will not operate. The value of THRESHOLD is compared to the value of SPEED FEEDBACK (from the SPEED LOOP function block).
DELAY PREF: 123.03 Default: 0.10% Range: 0.00 to 10.00 s

Sets the time the trip must be present for before a trip is triggered.
TRIPPED PREF: $123.04 \quad$ Default: FALSE Range: FALSE / TRUE

This is a diagnostic output indicating the current state of the over speed trip.

PATTERN GEN

SETUP::MOTOR CONTROL::PATTERN GEN

Designed for all Motor Control Modes.

The pattern generator function block allows you to configure the Drive PWM (Pulse Width Modulator) operation.

Parameter Descriptions

RANDOM PATTERN

PREF: 73.01
Default: TRUE
Range: FALSE / TRUE
Designed for all Motor Control Modes, except PMAC Control Mode.
This parameter selects between random pattern (quiet motor noise) or the more conventional fixed carrier PWM strategies. When TRUE, random pattern is enabled.
FREQ SELECT PREF: 73.02 Default: $3000 \mathrm{~Hz} \quad$ Range: 2000 to 6000 Hz

For all motor control modes, except PMAC control mode:
This parameter selects the PWM switching frequency of the output power stack.
The higher the switching frequency, the lower the level of motor audible noise. However, this is only achieved at the expense of increased drive losses and reduced stack current rating.
For PMAC control mode (for test purposes):
This parameter selects the PWM switching frequency of the output power stack if the parameter PWM FREQ PMAC is set to 'OTHERS'. The range is 2000 to 4000 Hz .
DEFLUX DELAY PREF: 73.03 Default: 2.0 s Range: 0.1 to 10.0 s

Designed for all Motor Control Modes, except PMAC Control Mode.
Sets the minimum allowed delay between disabling and then re-enabling PWM production (i.e. stopping and starting the drive).
DRIVE FREQUENCY PREF: $73.04 \quad$ Default: -xx Hz Range: - xx Hz

The output frequency provided to the motor.

Programming

Parameter Descriptions

ACTUAL PWM FREQ PREF:73.05 Default: —. Hz Range: -. Hz
The actual pwm switch frequency applied to the motor.
This can reduce in overload conditions in all Control Mode, except PMAC Control Mode.

PWM FREQ PMAC PREF:73.11 Default: $0 \quad$ Range: See below

This parameter defines the frequency of the PWM in PMAC Control mode

```
Enumerated Value : PWM FREQ PMAC
    0:4 kHz
    1:8 kHz
    2:OTHERS
```

The following restrictions apply to the switching frequency:

- For frames B to D, no restriction
- For all other frames the switching frequency is fixed at 4 kHz
'OTHERS' is used in conjunction with the 'FREQ SELECT'parameter for test purposes only. It is effective only when used with an ENDAT encoder type, otherwise the switching frequency is fixed at 4 kHz .

Functional Description

The Drive provides a unique quiet pattern PWM strategy in order to reduce audible motor noise. The user is able to select between the quite pattern or the more conventional fixed carrier frequency method. With the quiet pattern strategy selected (random pattern enabled), audible motor noise is reduced to a dull hiss.
In addition, the user is able to select the PWM carrier frequency. This is the main switching frequency of the power output stage of the Drive. A high setting of carrier frequency (e.g. 6 kHz) reduces audible motor noise but only at the expense of higher Drive losses and smooth motor rotation at low output frequencies. A low setting of carrier frequency (e.g. 3 kHz), reduces Drive losses but increases audible motor noise.

PHASE INCH

SETUP::PHASE CONTROL::PHASE INCH

CLOSED-LOOP VEC Motor Control Mode only.

Used with the external registration controller to advance/retard the Load reference position with respect to the Master position.

Parameter Descriptions

ADVANCE PREF:108.01 Default: FALSE Range: FALSE/TRUE

Command to Inch the load forwards. While TRUE, counts are added to the error calculator at a rate given by RATE. Note: if both ADVANCE and RETARD are TRUE then no action is taken.
RETARD PREF: $108.02 \quad$ Default: FALSE Range: FALSE/TRUE

Command to Inch the load backwards. While TRUE, counts are subtracted from the error calculator at a rate given by RATE.
RESET PREF: 108.09 Default: FALSE Range: FALSE/TRUE

This parameter, when TRUE, resets the Inch Offset to zero. The block may only be reset while the position loop is not operating.
RATE PREF: 108.03 Default: 0.1000 Range: 0.0001 to 30.0000

Speed of the Inch in load rev/s and the rate at which counts are added to the error calculator. A rate of 0.05 with a system scaled in revolutions would cause the drive to advance at a rate of 0.05 revolutions a second with respect to the master.
RATE SCALE PREF: $108.08 \quad$ Default: $1.000 \quad$ Range: 0.001 to 30.000

Gain applied to Rate to allow fine control of Inch Rate. This allows fine control over the inch rate by scaling the value of RATE. Actual Rate $=$ RATE \times RATE SCALE
OFFSET PREF:108.10 Default: - x xxx \quad Range: - x. $x x x$

This diagnostic shows the position offset generated by the block ($1.0=1$ load mechanical revolution). This output is persistent.
ACTIVE PREF: 108.04 Default: FALSE Range: FALSE/TRUE

This diagnostic display True while Advance or Retard actions are active.

Programming

Functional Description

When in Phase control, the Phase Inch function block may be used to advance or retard the relative position on the slave axis with respect to the master axis. This is achieved by feeding extra counts into the position calculator at a rate given by RATE in units per second.

ADVANCE and RETARD are usually linked to operator controlled, momentary-action push buttons

PHASE MOVE

SETUP::PHASE CONTROL::PHASE MOVE

Performance Level = ADVANCED : CLOSED-LOOP VEC Motor Control Mode only.

The FireWire option card (Option B) must be fitted to the drive.
This function block uses a position loop to stop the drive in a set distance. The distance is set in revolutions based on the number of lines on the encoder, usually from a mark at a fixed distance from the home position.
For accurate positioning the drive must be in Closed Loop Vector mode, if the drive is in any other mode then an open loop home algorithm will be used.

Parameter Descriptions

ENABLE

PREF: 109.01
Default: FALSE
Range: FALSE / TRUE
If the function block is not already Active, ENABLE starts the Move operation when going from FALSE to TRUE. Setting ENABLE to FALSE while a move is active will NOT abort the operation.

| HOLD PREF: 109.08 | Default: FALSE |
| :--- | :---: | :---: | :---: |
| Command to hold the current move. (In this state a new move may be triggered, replacing the held move) | |

Command to hold the current move. (In this state a new move may be triggered, replacing the held move)
RESET PREF:109.11 Default: FALSE Range: FALSE/TRUE

When True, this input aborts the current Move, and if the position loop is not operating, resets the Offset to zero.
DISTANCE PREF: 109.02 Default: $1.0 \quad$ Range: -3000.0 to 3000.0

Sets the homing distance in revolutions, a revolution calculated from the number of lines on the encoder and maximum speed.
DISTANCE FINE PREF: 109.03 Default: 0.0000 Range: -1.0000 to 1.0000

Fine adjustment of homing distance. The actual homing distance is the sum of DISTANCE and DISTANCE FINE.
VELOCITY PREF:109.04 Default: $1.00 \% \quad$ Range: 0.10 to 300.00%

The maximum velocity at which the distance is added to the phase loop, set in units per second.

Programming

Parameter Descriptions

The acceleration at which the distance is added to the phase loop, set in units per second ${ }^{2}$.
ACTIVE PREF:109.05 Default: FALSE Range: FALSE/TRUE

Active is set TRUE whenever the block is enable, i.e. the move distance is none zero..
DISTANCE LEFT PREF: 109.06 Default: - $x x$ Range: - $x x$

A diagnostic showing the distance remaining before the move is complete.
OFFSET PREF: 109.10 Default: -xxxx Range: - xxxx

This diagnostic shows the total position offset generated by the move block. ($1.0=1$ load mechanical revolution $)$

Functionall Description

This is a simple trapezoidal relative move function, which acts on each rising edge of the Enable input. The slave shaft is moved a fixed distance at a rate given by the VELOCITY parameter. A move must be complete before a new move will be registered.

Programming

Programming

PHASE MOVE ABS

SETUP::PHASE CONTROL::PHASE MOVE ABS

Performance Level = ADVANCED : CLOSED-LOOP VEC Motor Control Mode only.

The FireWire option card (Option B) must be fitted to the drive.
This block provides a method to move to an absolute position. Once enabled this block provides the reference, disconnecting the remote/firewire reference, until either the drive is stopped or this block is reset. If the remote/firewire reference is non-zero on reset, the drive will accelerate to this reference on the system ramp.

Parameter Descriptions

ENABLE

PREF: 120.01
Default: FALSE
Range: FALSE / TRUE
On a positive edge, this parameter commands the Move Abs function to start.
RESET PREF:120.02 Default: FALSE Range: FALSE/TRUE

With Enable false, a positive edge resets the Move Abs function releasing the position demand back to the Unsynchronised Position Demand.
MOVE METHOD PREF:120.03 Default: $0 \quad$ Range: See below

This parameter defines how the move will be performed, either Forwards, Backwards, or taking the Shortest distance.

> Enumerated Value $:$ Move Method
> $0:$ SHORTEST
> $1:$ FORWARD
> $2:$ BACKWARD
DIRECTION BAND PREF: 120.04 Default: $0.05 \quad$ Range: 0.00 to 1.00

This parameter defines the move distance for which the Shortest move will always be taken, overriding the Forward and Backward options of Move Method. This parameter is scaled such that $1.0=1$ load mechanical revolution.

Parameter Descriptions

POSITION
PREF: 120.05
Default: 0.0000
Range: 0.0000 to 1.0000
The absolute position demand ($1.0=1$ load mechanical revolution).
VELOCITY PREF: 120.06 Default: 1.00% Range: 0.10 to 300.00%

This parameter defines the maximum velocity of the move, set in percent of maximum load speed.
ACCELERATION PREF: 120.07 Default: 1.00% Range: 0.01 to 3000.00%

This parameter defines the maximum acceleration of the move, set in percent of maximum load speed per second.
ABS POSITION PREF: $120.08 \quad$ Default: - $x x x x \quad$ Range: - $x x x x$

This diagnostic displays the absolute position feedback ($1.0=1$ load mechanical revolution).
ACTIVE PREF:120.10 Default: FALSE Range: FALSE/TRUE

This diagnostic is TRUE to indicate Move Abs is active (i.e. the position demand is being provided by this block)
DONE PREF: $120.11 \quad$ Default: FALSE Range: FALSE / TRUE

This diagnostic is TRUE to indicate the last Move Abs enabled has completed.
STATE PREF: 120.12 Default: 1 Range: See below

This diagnostic indicates the state of the Move Abs move.
Enumerated Value : State

$$
\begin{array}{ll}
0: \text { RESET } & \text { the move to master is in a reset state and cannot be used. } \\
1: \text { READY the move Abs is ready to be enabled } \\
2: \text { POS AQUIRE the target position for the move is being acquired } \\
3: \text { ALIGN } & \text { the move is active } \\
4: \text { DONE } & \text { the move Abs is complete }
\end{array}
$$

Programming

PHASE OFFSET

SETUP::PHASE CONTROL::PHASE OFFSET

CLOSED-LOOP VEC Motor Control Mode only.

Provides an unramped position Offset of the Master reference position with respect to the Load position, or an unramped speed Offset to the Master reference speed.

Phase Output $=$ Error + Offset + Offset Fine

Parameter Descriptions

OFFSET
PREF: 110.01
Default: 0.0
Range: -3000.0 to 3000.0
A course offset added to the phase error allowing an absolute phase correction to be applied. The Offset is added to the phase at a maximum rate of ± 32768 counts.

OFFSET FINE	PREF: 110.02	Default: 0.0000
Additional correction added to OFFSET to allow fine control of position.	Range: -1.0000 to 1.0000	
SPEED OFFSET $\quad P R E F: 110.04$	Default: 0.00%	Range: -300.00 to 300.00%
A speed offset added to the speed demand.	PREF: 110.03	Default: FALSE
ACTIVE		Range: FALSE / TRUE
True while the offset count is being added.		

PHASE TUNING

SETUP::PHASE CONTROL::PHASE TUNING

The Tuning function block provides a means of injecting a speed offset or a phase offset in a selected wave form to assist the tuning of the speed and phase loops. It would be unusual for both tests to be active together.

Parameter Descriptions

ENABLE PHASE PREF: $111.04 \quad$ Default: FALSE Range: FALSE/TRUE

Activates a test function to add a test signal to the position demand (phase offset).
ENABLE SPEED
PREF: 111.02
Default: FALSE
Range: FALSE / TRUE

Activates a test function to add a test signal to the speed demand (speed offset).
REFERENCE TYPE PREF:111.08 Default: 0 Range: See below
Type of tuning reference, either square, sine, or triangular wave.

> Enumerated Value : Type

0 : SQUARE
1 : SINUSOIDAL
2 : TRIANGULAR

SPEED AMPLITUDE PREF: 111.09 Default: $0.1000 \mathrm{rev} / \mathrm{s} \quad$ Range: 0.0000 to 100.0000

 rev/sThis parameter sets the amplitude of the test signal. The signal is symmetric. (i.e. for an amplitude of 1% the test signal varies by $+/-1.0 \%$). In speed test mode, the unit of this parameter are load speed, in position test mode, the unit is percent of 1 load revolution.

POS'N AMPLITUDE PREF: $111.16 \quad$ Default: 1.0000 deg Range: 0.0000 to 100.0000 deg

This parameter sets the amplitude of the test signal. The signal is symmetric. (i.e. for an amplitude of 1% the test signal varies by $+/-1.0 \%$). In speed test mode, the unit of this parameter are load speed, in position test mode, the unit is percent of 1 load revolution.

Programming

Parameter Descriptions

PERIOD PREF:111.01
Default: 10.000 s
Range: 0.001 to 30.000 s
The wave form period in seconds.
ACTIVE PREF: $111.06 \quad$ Default: FALSE Range: FALSE/TRUE

Diagnostic. TRUE when either ENABLE SPEED or ENABLE PHASE are active.
RUN TR FUNC TEST
PREF: 111.12
Default: FALSE
Range: FALSE / TRUE

Use this parameter to start the test. Wait until the motor is turning at steady speed, then set it to TRUE. When the test is finished it will be automatically returned to FALSE.
NO OF MEASRMENTS $\quad P R E F: 111.13$
Default: 100
Range: 1 to 1000

This parameter sets the number of times the pseudorandom torque sequence is applied to the motor. The sequence duration is typically around 2 seconds, the test will last for 2 seconds times the number of measurements set here. The results will normally be contaminated with noise. The more measurements are taken, the better the signal to noise ratio. Typically 100 to 1000 measurements will be required, depending on the complexity of the system.

TORQUE AMPLITUDE PREF: 111.14 Default: 10.00% Range: 0.00 to 100.00%

Sets the amplitude of the pseudorandom torque pulses applied for the test. The larger the amplitude, the better the signal to noise ratio. However, the current loop must be operating in linear mode for the test to be valid, so do not choose an amplitude that would drive the current loop into saturation.

Programming

Parameter Descriptions

TRANS FUNC TYPE

PREF: 111.15
Default: 1
Range: See below
(i.e. Transfer Function Type)

The normal mode of operation is OPEN LOOP TRANS FN. This adds a pseudorandom binary sequence of torque onto the torque demand signal. The resultant change in speed is measured, stored, and read out to a pc where it may be analysed, and the system transfer function determined.

Using this mode it is also possible to determine the closed loop speed loop transfer function, the open loop position loop transfer function, and the closed loop position loop transfer function.

However, it is also possible to measure the closed loop speed loop transfer function directly, by setting this parameter equal to SPEED TRANSFR FN.

Enumerated Value : Type
0 : SPEED TRANSFR FN
1 : OPEN LP TRANS FN

Programming

POSITION LOOP

SETUP::MOTOR CONTROL::POSITION LOOP

This block controls the position of the motor. It compares a position demand, with position feedback, and generates a speed demand dependent on the difference. Note that the function blocks Move to Master, Phase Inch, Phase Move, Phase Move Abs, etc. will not work if this block is not enabled (PREF 3879).

Parameter Descriptions

ENABLE

PREF: 121.07
Default: FALSE
Range: FALSE / TRUE
Set True to enable the position loop to operate.
PROP GAIN PREF: 121.01 Default: 10.0 Range:

The position loop proportional gain.
INTEGRAL TIME PREF: 121.02 Default: $500.0 \mathrm{~ms} \quad$ Range:

The position loop integral time constant.
INTEGRAL DEFEAT PREF: 121.03 Default: FALSE Range:

When TRUE, this parameter sets the position loop integral to 0.0 and prevents it from operating.
LIMIT PREF: 121.11 Default: 10.00% Range: 0.00 to 300.00%

This parameter sets a symmetric clamp as a percentage of maximum speed, to limit the maximum position loop output of the block (PID Output).
POSITION DEMAND PREF: $121.15 \quad$ Default: - $x x$ deg Range: - xx deg

This diagnostic shows the input position demand.
TOTAL OFFSET PREF: 121.14 Default: - $x x x x$ Range: -.xxxx

This diagnostic shows the total position offset from the phase control blocks, Phase Inch, Phase Move, Phase Offset \& Phase Tuning.

Programming

Parameter Descriptions

OUTPUT PREF: $121.10 \quad$ Default: —.xxxx $\mathrm{Hz} \quad$ Range: -.xxxx Hz

This diagnostic shows the total output (PID Output + Spd Feedforward).
FOLLOWING ERROR PREF: 121.13 Default: -.xxxx deg Range: -.xxxx deg

This diagnostic shows the absolute maximum position loop error over a 1 second period.
LIMITING PREF:121.12 Default: FALSE Range: FALSE/TRUE

This diagnostic is TRUE if the PID output has reached the Limit value.
PID OUTPUT PREF: 121.09 Default: - $x x x x H z \quad$ Range: - $x x x x H z$

This diagnostic shows the output of the position loop PI loop only.
SPD FEEDFORWARD PREF: $121.08 \quad$ Default: —.xxxx $H z \quad$ Range: - $x x x x H z$

This diagnostic shows the Speed Feedforward from other blocks, e.g. inertia compensation.
POSITN INTEGRAL PREF: 121.06 Default:-.xxxx deg Range: -.xxxx deg

This diagnostic shows the value of the position loop integral.
POSITION ERROR PREF: $121.05 \quad$ Default: -.xxxx deg Range: -.xxxx deg

This diagnostic shows the instantaneous position error.
POSN LOOP RSPONS PREF: $121.04 \quad$ Default: - $x \mathrm{~ms}$ Range: - $x \mathrm{~ms}$

This diagnostic shows the nominal response time of the position loop.

Programming

Parameter Descriptions

MODE
PREF: 121.16
Default: 0
Range: See below
This diagnostic shows the operating mode of the position loop. (Range: Enumerated - 0: DISABLED, 1 : ENABLED, , 2 : UNSYNCHRONISED, 3: SYNCHRONISED , 4: ABSOLUTE,.)

Enumerated Value: Mode
$0:$ DISABLED
$1:$ ENABLED
$2:$ UNSYNCHRONISED
$3:$ SYNCHRONISED
$4:$ ABSOLUTE

The position loop is disabled.
The position loop is enabled, but not operating The position loop is operating, but this drive has not been synchronised to the master by a Move To Master operation The position loop is operating, and the drive has been synchronised to the master, by a Move To Master operation The position loop is operating with demands from the Phase Move Abs block

Functional Description

The position error (position demand - position feedback) is calculated and processed by a proportional + integral (PI) controller. The output of the PI controller is a speed demand, which is passed directly to the speed loop block. (speed loop Speed Demand $=$ position loop Output. Note that speed loop Phase Input $=0$).

POWER LOSS CNTRL

SETUP::MOTOR CONTROL::POWER LOSS CNTRL

Designed for all Motor Control Modes.

This function block controls the behaviour of the drive during a power outage.
When enabled, the drive attempts to keep the dc link high by regeneratively recovering the kinetic energy in the motor load in the event of mains supply loss.

This is achieved by ramping the speed setpoint to zero during the power outage. If during the outage the supply returns, the speed setpoint is automatically ramped back to the speed setpoint.
When disabled, the drive will trip on UNDERVOLTS if the mains supply is removed.

Parameter Descriptions

ENABLE

PREF: 112.01
Default: FALSE
Range: FALSE / TRUE
When TRUE, the Power Loss Ride-Through functionality is enabled.
TRIP THRESHOLD PREF: 112.02 Default: 243 V Range: 0 to 1000 V

Determines the dc link volts at which the Power Loss Ride-Through sequence is triggered.
CONTROL BAND PREF:112.03 Default: 20 V Range: 0 to 1000 V

Sets the dc link voltage above the TRIP THRESHOLD at which the setpoint Ramp to Stop is paused. If the dc link volts remain above this level for a period greater than 500 ms , the setpoint is ramped back to the speed demand.
ACCEL TIME PREF: 112.04 Default: 10.00 s Range: 0.01 to 300.00 s

Determines the time in which the speed setpoint is ramped back to the speed demand. This is expressed as the time to ramp from zero to MAX SPEED.

Programming

Parameter Descriptions

DECEL TIME

Determines the time in which the speed setpoint is ramped to zero. This is expressed as the time to ramp from MAX SPEED to zero.
INITIAL STEP PREF: $112.08 \quad$ Default: 0.00% Range: 0.00 to 100.00%

This parameter sets the initial speed reduction step at the start of the power loss control sequence.
TIME LIMIT PREF: 112.06 Default: $30.00 \mathrm{~s} \quad$ Range: 0.00 to 300.00 s

Determines the maximum allowed time of the Power Loss Ride-Through sequence. Once timeout is reached, the drive is allowed to Coast to Stop and eventually trip on UNDERVOLTS.

```
PWR LOSS ACTIVE PREF:112.07 Default:FALSE Range: FALSE / TRUE
```

This diagnostic is set to TRUE while the Power Loss Ride-Through sequence is active.

REFERENCE

SETUP::SEQ \& REF::REFERENCE

This function block holds all the parameters concerning the generation of the setpoint reference (reference ramp, speed trim, setpoint reverse, etc.).
The generation of reference setpoint is described in Chapter 3 : "Product Overview" - Controlling the Drive.

Parameter Descriptions

REMOTE SETPOINT
PREF: 101.01
Default: 0.00%
Range: - 300.00 to 300.00%
This is the target reference that the Drive will ramp to in remote reference mode (not including trim), direction is taken from REMOTE REVERSE and the sign of REMOTE SETPOINT.
SPEED TRIM PREF: 101.02 Default: 0.00% Range: -300.00 to 300.00%

The trim is added to the ramp output in remote mode (or if TRIM IN LOCAL is TRUE) to form SPEED DEMAND . The trim is typically connected to the output of a PID in a closed loop system.
Note The output of the REFERENCE RAMP is set to -SPEED TRIM when the drive is started to ensure that the SPEED DEMAND ramps from zero.
MAX SPEED CLAMP PREF: $101.03 \quad$ Default: $110.00 \% \quad$ Range: 0.00 to 110.00%

Maximum value for SPEED DEMAND.

MIN SPEED CLAMP	PREF: 101.04	Default: -110.00%
Minimum value for SPEED DEMAND.		Range: -110.00 to 0.00%
TRIM IN LOCAL	PREF: 101.05	Default: FALSE

REMOTE REVERSE PREF: 101.06 Default: FALSE Range: FALSE / TRUE

Demanded direction when in Remote Reference mode. This is usually connected directly to the Sequencing Logic.

Programming

Parameter Descriptions

MAX SPEED
PREF: 101.08
Default: 1500 rpm
Range: 0 to 32000 rpm
The maximum speed clamp and scale factor for other speed parameters. 100% speed $=$ maximum speed in rpm.
SPEED DEMAND PREF: $101.09 \quad$ Default: $-x x \% \quad$ Range: - $x x \%$

Indicates actual speed demand to the Drive after reference ramp.
SPEED SETPOINT PREF: $101.10 \quad$ Default: - $x \mathrm{x} \% \quad$ Range: - $x x \%$

Indicates target speed. This will be equal to either LOCAL SETPOINT, REMOTE SETPOINT, JOG SETPOINT, COMMS SETPOINT or FIREWIRE SETPOINT before reference ramp. (Refer to the REFERENCE JOG function block for the JOG SETPOINT parameter).
REVERSE PREF:101.11 Default: FALSE Range: FALSE/TRUE

Indicates demanded direction. This may not be the actual direction as no account of setpoint sign is taken.

LOCAL SETPOINT PREF:101.12 Default:-xx \% Range:-xx \%

Indicates the Keypad setpoint. It is always a positive quantity; saved on power down. Direction is taken from LOCAL REVERSE.
LOCAL REVERSE PREF: 101.13 Default: FALSE Range: FALSE / TRUE

Indicates demanded direction in Local Reference mode, saved on power down.
COMMS SETPOINT PREF: $101.14 \quad$ Default: $0.00 \% \quad$ Range: -300.00 to 300.00%

This setpoint is the target reference that the Drive will ramp to in Remote Reference Comms mode (not including trim). A positive value indicates a forward direction.
FWIRE SETPOINT PREF: $101.15 \quad$ Default: $-x x \% \quad$ Range: $-x x \%$

This diagnostic shows the Firewire Ref speed setpoint.

| SPEED DEMAND PREF: 101.16 | Default: $-x \mathrm{~Hz}$ | Range: $-x \mathrm{~Hz}$ |
| :--- | :---: | ---: | :--- |

Indicates actual speed demand to the Drive after reference ramp.

Functional Description

Remote Reference

* REMOTE SETPOINT if Remote Reference Terminal mode COMMS SETPOINT if Remote Reference Comms mode
(Mode is selectable in COMMS CONTROL block)

Programming

REFERNCE ENCODER

SETUP::MOTOR CONTROL::REFERNCE ENCODER

This block is used to set up how the reference encoder input is obtained, via the Reference Encoder Speed Feedback Option Card. This option card can be fitted to the control board in either position, upper or lower. The drive must be capable of using the High Performance blocks found in the DSE 890 Configuration Tool.
Various encoder types may be selected (including pulse encoder, sincos encoder and absolute single-turn or multi-turn) and require different hardware options. If an encoder type is selected which does not match the hardware, an error will be flagged.

The reference encoder input will normally be used to make the drive precisely follow an external reference. This is done in conjunction with the VIRTUAL MASTER function block. The Firewire mode must first be selected. The parameter VIRTUAL MASTER :: SOURCE should be set to REFERNCE ENCODER. The virtual master output will then be equal to the reference encoder input.

Parameter Descriptions		
PULSE ENC VOLTS	Default: $10.0 \mathrm{~V}: 158.01 \quad$ Range: 10.0 to 20.0 V	

Set this approximately to the supply voltage required by the pulse encoder.
SINCOS ENC VOLTS PREF: 158.22 Default: 5.0 V Range: See below

Used to set the supply volts required by the \sin / \cos encoder.
Enumerated Value : SinCos Encoder Volts

$$
\begin{aligned}
& 0: 5 \mathrm{~V} \\
& 1: 10 \mathrm{~V}
\end{aligned}
$$

ENCODER LINES
PREF: 158.02
Default: 2048
Range: 250 to 262143
The number of lines must be set to match the type of encoder being used. Incorrect setting of this parameter will result in an erroneous speed measurement.

Programming

Parameter Descriptions

ENCODER INVERT
This parameter is used to switch the direction of the input encoder, forward or reverse.
ENCODER TYPE PREF: 158.04 Default: $0 \quad$ Range: See below

This parameter defines the type of encoder being used.

```
Enumerated Value : Type
    0:QUADRATURE single-ended pulse encoder
    1:CLOCK/DIR single-ended pulse encoder
    2: CLOCK single-ended pulse encoder
    3: QUADRATURE DIFF differential pulse encoder
    4: CLOCK/DIR DIFF differential pulse encoder
    5: CLOCK DIFF
    6: SINCOS INC
    7:ABS ENDAT ST
    8: ABS ENDAT MT
    differential pulse encoder
    sin/cos encoder
    single turn endat absolute encoder
    multi-turn endat absolute encoder
```

Note that if an absolute endat encoder is used, the encoder MUST be wired exactly as specified. If not, it will fail to calibrate the absolute position and an error will result when the drive is started. This status can be viewed via the parameter CALIBRATN STATUS.

* OUTPUT GBOX IN	$P R E F: 158.05$	Default: 1	Range: 1 to
+2000000000			

See OUTPUT G'BOX OUT below.

Parameter Descriptions

* OUTPUT GBOX OUT

$$
\begin{aligned}
\text { Range: } & -2000000000 \text { to } \\
& +2000000000
\end{aligned}
$$

OUTPUT GBOX IN and OUTPUT GBOX OUT together define the gearbox ratio between the motor and the load. For example, if a 3:2 gearbox is fitted between the motor and the load such that the motor turns through 3 revolutions for every 2 revolutions of the load, then set OUTPUT GBOX IN to 3 , and set OUTPUT GBOX OUT to 2 . The software will then keep track of the load position.
If the power is removed and then reapplied, it is possible for the drive to keep track of the load position even if the shaft has moved since the power was removed. This is only possible if the encoder is an absolute multi-turn. Otherwise, the load position will be set equal to the motor position on power-up.

ENCODER MECH OIS PREF: 158.06 Default: 0.0000 deg Range: 0.0000 to 360.0000 deg
(Encoder mechanical offset). When using an absolute encoder, the SHAFT POSITION diagnostic shows the absolute position of the input encoder. The zero position can be adjusted by setting ENCODER MECH O/S. Locate the position which is required to be zero, and note the value of SHAFT POSITION. Enter this value into ENCODER MECH O/S to zero its position.
ENCODER FEEDBACK PREF: 158.30 Default: 0.00 Range: -xx RPM

This parameter shows the mechanical speed of the motor shaft, calculated from the encoder feedback, in RPM.
SHAFT POSITION PREF: 158.09 Default: -xx deg Range: -.xx deg

This diagnostic provides the motor shaft position (before the gear box).

* LOAD POSITION PREF: 158.10 Default: -xx deg Range: -.xx deg

This diagnostic provides the motor load position (after the gear box).

Programming

Parameter Descriptions

* The output gearbox functions LOAD POSITION, OUTPUT GBOX IN and OUTPUT GBOX OUT are intended to apply to the feedback encoder, to allow the user to keep track of the speed and position of a load attached to the motor via a gearbox. It will not normally be applicable to the reference encoder. However, the parameters are included here because it is possible that the reference encoder may be derived from a motor with a gearbox. In this case it may be desirable to use the load position as the reference. These parameters will make it possible to do this.
REV COUNT PREF: 158.15 Default: $0 \quad$ Range: —.

This counts the number of turns of the encoder input. It will normally start from zero on power-up. If a multi-turn Endat encoder is fitted, REV COUNT will be made to match the multi-turn encoder rev count. However, it will continue to count beyond the Endat range of 0 to 4095 revs. It will count to the limits of a 32 bit number, but the lower 12 bits will be equal to the endat rev count.

CALIBRATN STATUS PREF:158.13 Default: 0 Range: see below

If a sincos absolute Endat encoder is fitted (single-turn or multi-turn), the software will attempt to match the slow absolute position (Endat) information to the fast analog feedback information, to obtain a fast absolute position feedback. This will normally be done on power-up. If the encoder is wired correctly and working correctly, these should match. The CALIBRATN STATUS diagnostic will then display COMPLETED. If the encoder is not an absolute type, the diagnostic will show NOT REQUIRED. If calibration fails, this diagnostic will indicate where the problem may lie. Refer to CAL FAIL RETRY.

Programming

Parameter Descriptions

```
Enumerated Value : Type
    0 : NOT REQUIRED
    1: DRIVE NOT STOP'D
    2:MOTOR NOT STOP'D
    3 : ENDAT FAULT
    4: CAL IN PROGRESS
    5 : ID PSN IN PRGRSS
    6: COMPLETED
    7: CALIBRATION LOST
    8: CALIBRATN FAILED
```


CAL FAIL RETRY PREF: 158.24 Default: FALSE Range: FALSE / TRUE

The software will make a number of attempts to calibrate the absolute position (see CALIBRATN STATUS above) and then go into the CALIBRATN FAILED state. If the problem has been corrected, it is necessary to get it to try again. This can be done either by switching the drive on and off, changing a related parameter, or by setting CAL FAIL RETRY = TRUE. When the calibration is done, CAL FAIL RETRY will automatically be reset to FALSE.

LINE COUNT X4 PREF: $158.31 \quad$ Default: $0 \quad$ Range:

Diagnostic showing the encoder line count times 4 , i.e. each edge is counted. This diagnostic is set to 0 at power-up and reset when RESET LINE COUNT is TRUE.

RESET LINE COUNT PREF: 158.23 Default: FALSE Range: FALSE / TRUE
If TRUE the LINE COUNT X4 diagnostic is reset.

Programming

Functional Description

A quadrature encoder uses 2 input signals (A and B), phase shifted by a quarter of a cycle $\left(90^{\circ}\right)$. Direction is obtained by looking at the combined state of A and B.

Speed is calculated using the following function:

$$
\text { SPEED HZ }=\frac{\text { Counts Per Second }}{\text { Lines } \times 4}
$$

where counts per second are the number of edges received from the encoder. There are 4 counts per line.

REFERENCE JOG

SETUP::SEQ \& REF::REFERENCE JOG

This block holds all the parameters that concern the Jog functionality on the Drive.

Parameter Descriptions

The setpoint is the target reference that the Drive will ramp to.
ACCEL TIME PREF:103.02 Default: 1.0 s Range: 0.0 to 3000.0 s

The time that the Drive will take to ramp the jog setpoint from 0.00% to 100.00%.
DECEL TIME PREF:103.03 Default: 1.0 s Range: 0.0 to 3000.0 s

The time that the Drive will take to ramp the jog setpoint from 100.00% to 0.00%.

Functional Description

The REFERENCE JOG function block is used to configure the action of the Drive when used in jog mode. The various operating modes are described in more detail in Chapter 4 or 5: - The Start/Stop Mode Explained.

Programming

REFERENCE RAMP

SETUP::SEQ \& REF::REFERENCE RAMP

This function block forms part of the reference generation. It provides the facility to control the rate at which the Drive will respond to a changing setpoint demand.

Parameter Descriptions

RAMP TYPE PREF:100.01 Default: 0 Range: See below

Select the ramp type:
Enumerated Value : Ramp Type
0 : LINEAR
1 : S
ACCEL TIME PREF:100.02 Default: Range: 0.0 to 3000.0 s
The time that the Drive will take to ramp the setpoint from 0.00% to 100.00%.
DECEL TIME
PREF: 100.03
Default:
Range: 0.0 to 3000.0 s

The time that the Drive will take to ramp the setpoint from 100.00% to 0.00%.

```
SYMMETRIC MODE PREF:100.04 Default: FALSE Range: FALSE /TRUE
```

Select whether to use the ACCEL TIME and DECEL TIME pair of ramp rates, or to use the SYMETRIC RATE parameter to define the ramp rate for the Drive.

SYMMETRIC TIME PREF:100.05 Default:10.0 Range: 0.0 to 3000.0 s

The time that the Drive will take to ramp from 0.00% to 100.00% and from 100.00% to 0.00% when SYMETRIC MODE is TRUE.

SRAMP CONTINUOUS PREF:100.06 Default: TRUE Range: FALSE/TRUE
When TRUE, and S ramp is selected in RAMP TYPE, forces a smooth transition if the speed setpoint is changed when ramping. The curve is controlled by the SRAMP ACCEL and SRAMP JERK 1 to SRAMP JERK 4 parameters. When FALSE, there is an immediate transition from the old curve to the new curve.

Programming

Parameter Descriptions

SRAMP ACCEL PREF:100.07 Default: 10.0 Range: 0.00 to $100.00 / \mathrm{s}^{2}$

Sets the acceleration rate in units of percent per second ${ }^{2}$, i.e. if the full speed of the machine is $1.25 \mathrm{~m} / \mathrm{s}$ then the acceleration will be:
$1.25 \times 75.00 \%=0.9375 \mathrm{~m} / \mathrm{s}^{2}$

```
SRAMP DECEL PREF:100.08 Default:10.0 Range:0.00 to 100.00 /s 
```

This functions in the same way as SRAMP ACCEL above.
SRAMP JERK 1
PREF: 100.09
Default: 10.0
Range: 0.00 to $100.00 / \mathrm{s}^{3}$

Rate of change of acceleration for the first segment of the curve in units of percent per second ${ }^{3}$, i.e. if the full speed of the machine is $1.25 \mathrm{~m} / \mathrm{s}$ then the jerk will be: $1.25 \times 50.00 \%=0.625 \mathrm{~m} / \mathrm{s}^{3}$
SRAMP JERK 2
PREF: 100.10
Default: 10.0
Range: 0.00 to $100.00 / \mathrm{s}^{3}$

Rate of change of acceleration in units of percent per second ${ }^{3}$ for segment 2.
SRAMP JERK 3
PREF: 100.11
Default: 10.0
Range: 0.00 to $100.00 / \mathrm{s}^{3}$

Rate of change of acceleration in units of percent per second ${ }^{3}$ for segment 3.
SRAMP JERK 4 PREF: 100.12 Default: $10.0 \quad$ Range: 0.00 to $100.00 / \mathrm{s}^{3}$

Rate of change of acceleration in units of percent per second ${ }^{3}$ for segment 4.
HOLD
PREF: 100.13
Default: FALSE
Range: FALSE / TRUE

When TRUE the output of the ramp is held at its last value.

RAMPING
 PREF: 100.14

Default: FALSE
Range: FALSE / TRUE
Set TRUE when ramping.

Programming

Functional Description

Chapter 6: "Operating the Drive" - Starting and Stopping Methods, describes the use of the system ramp.
The ramp output takes the form shown below.

REFERENCE STOP

SETUP::SEQ \& REF::REFERENCE STOP

This function block holds all the parameters concerning the stopping method of the Drive.
The stopping methods of the Drive are described in more detail in Chapter 6: "Operating the Drive" - Starting and Stopping Methods.

Parameter Descriptions

RUN STOP MODE PREF: 102.01 Default: 0 Range: See below

Selects stopping mode that the controller will use once the run command has been removed. The choices are:

```
Enumerated Value : Stopping Mode
    0 : RUN RAMP
    1:COAST
    2: DC INJECTION (only Volts/Hz control mode)
    3 : STOP RAMP
```

When RUN RAMP is selected the Drive will decelerate using the reference ramp deceleration time, provided it is non zero. When COAST is selected the motor will free-wheel. When DC INJECTION is selected the motor is stopped by applying dc current. When STOP RAMP is selected the motor will decelerate in STOP TIME.
STOP TIME
PREF: 102.02
Default: 10.0 s
Range: 0.0 to 600.0 s

Rate at which the demand is ramped to zero after the ramp has been quenched.
STOP ZERO SPEED PREF: 102.03 Default: 0.10% Range: 0.00 to 100.00%
Threshold for zero speed detection used by stop sequences.
STOP DELAY
PREF: 102.04
Default: 0.500 s
Range: 0.000 to 30.000 s

Sets the time at which the Drive holds zero speed before quenching after a normal stop or a jog stop. This may be particularly useful if a mechanical brake requires time to operate at zero speed, or for jogging a machine to position.

Programming

Parameter Descriptions

FAST STOP MODE PREF: 102.05 Default: 0 Range: See below

Selects stopping mode used during a fast stop, two options ramped or coast.
Enumerated Value : Stopping Mode
0 : RAMPED
1: COAST
FAST STOP LIMIT PREF: 102.06 Default: $30.0 \mathrm{~s} \quad$ Range: 0.0 to 3000.0 s
Maximum time that the Drive will try to Fast Stop, before quenching.
FAST STOP TIME PREF: 102.07 Default: $0.1 \mathrm{~s} \quad$ Range: 0.0 to 600.0 s
Rate at which the SPEED DEMAND is ramped to zero (see REFERENCE function block)
FINAL STOP RATE PREF: 102.08 Default: $1200 \mathrm{~Hz} / \mathrm{s} \quad$ Range: 1 to $4800 \mathrm{~Hz} / \mathrm{s}$
Rate at which any internally generated setpoint trims are removed. For example, the trim due to the slip compensation in Volts/Hz control mode.

REGEN CONTROL

SETUP::MOTOR CONTROL::REGEN CNTRL

Designed for 4Q Regen Control Mode.

This function block is used to setup, sequence and monitor the operation of the drive when used in 4Q Regen Control Mode.

Parameter Descriptions

PRECHARGE CLOSED PREF: $114.01 \quad$ Default: TRUE Range: FALSE/TRUE

This parameter is used to indicate the external precharge contactor is closed, i.e. the external precharge resistor is no longer in circuit.
DC VOLTS DEMAND
PREF: 114.02
Default: 720V
Range: 0 to 1000 V

Use this to set the demanded dc link volts for the common dc bus. It must be set higher than the peak of the mains supply, but lower than the overvolts (820 V on 400 V products, 410 V on 230 V products).
BRAKE MODE
PREF: 114.15
Default: FALSE
Range: FALSE / TRUE

Setting this parameter True allows the drive to generate energy into the mains in common dc link systems. The regeneration occurs when the dc link is higher than the DC VOLTS DEMAND level. In this mode the drive will not draw energy from the mains. The drive acts purely as a braking unit.
Id DEMAND
PREF: 114.07
Default: 0.1
Range: -1.5

Use this parameter in AFE current control mode to set the per-unit (PU) current demand that is proportional to the drive active power.
Iq DEMAND PREF:114.18 Default: $0.0 \quad$ Range: -1.5 to 1.5
Use this parameter in AFE current control mode to set the per-unit (PU) current demand that is proportional to the drive reactive power.
MAX CURRENT
PREF: 114.19
Default: 1.5
Range: 0 to 1.5

This parameter sets the current limit applied to the 4-Q Regen drive in AFE current control mode.

Programming

Parameter Descriptions

CURRENT CONTROL
PREF: 114.08
Default: FALSE
Range: FALSE / TRUE
This parameter is used to designate if the drive is operating in a current control mode (TRUE), or in a closed-loop voltage control mode (FALSE).

HARDWARE SYNC PREF: 114.25 Default:FALSE Range:TRUE/FALSE

This parameter is used to designate whether the drive is synchronised using 8902LS line sync option (TRUE), or a sensorless algorithm in software (FALSE).

SYNCHRONIZING PREF:114.09 Default: FALSE Range: FALSE/TRUE

This diagnostic reads True during the mains synchronisation period. This occurs when the drive is first run in 4Q Regen Control Mode. This synchronising period lasts for 100 ms .
SYNCHRONIZED PREF:114.10 Default: FALSE Range: FALSE/TRUE
This diagnostic reads True when mains synchronisation has been successfully completed.
PHASE LOSS PREF:114.11 Default: FALSE Range: FALSE/TRUE
This diagnostic reads True if the drive suspects there is a missing input phase from the mains supply.
CLOSE PRECHARGE
PREF: 114.12
Default: TRUE
Range: FALSE / TRUE

This diagnostic controls the operation of the external precharge contactor required by the 4Q Regen Control Mode.
ENABLE DRIVE PREF: $114.13 \quad$ Default: FALSE FALSE / TRUE
This diagnostic is used to enable drives on a common de link system supplied by a drive using the 4Q Regen Control Mode. The diagnostic reads True if mains synchronisation has been successful and the drive is Healthy.

```
STATUS PREF:114.14 Default: 4 Range: See below
```

This diagnostic indicates the status of operation of the drive.

$$
\begin{aligned}
& \text { Enumerated Value : Status } \\
& 0: \text { INACTIVE } \\
& 1: \text { SYNCHRONIZING }
\end{aligned}
$$

Parameter Descriptions

$2:$ SYNCHRONIZED
$3:$ SUPPLY FREQ HIGH
4 : SUPPLY FREQ LOW
$5:$ SYNCH FAILED

INACTIVE : Indicates when the 4 Q drive is not running
SYNCHRONIZING : Indicates during mains synchronisation period (first 100 ms after Run command)
SYNCHRONIZED : Indicates successful synchronisation is complete
SUPPLY FREQ HIGH : Indicates 4Q drive output frequency is greater than 70 Hz . This is a fault condition SUPPLY FREQ LOW : Indicates the 4Q drive output frequency is less than 40 Hz . This is a fault condition SYNCH FAILED : Indicates the 4Q drive has failed to synchronise on to the mains supply. This is a fault condition

Programming

RESOLVER

SETUP::MOTOR CONTROL::RESOLVER

Designed for PMAC Control Mode.

This block defines the parameters used to set up the resolver.

Parameter Descriptions

NAME PREF:133.01 Default: PARVEX Range:
Set the resolver's name.
POLES PREF: 133.02 Default: $2 \quad$ Range: 2 to 20

Set the resolver's number of poles. For a standard resolver, this number is 2.
When using an ENDAT encoder with a belt-pulley system on the feedback (typically PARVEX Torque motors), this parameter can be used to declare the ratio between the motor shaft and the encoder. The parameter nammed PULLEYBELT RATIO in this block can also be used to enter this ratio. Use either POLES or PULLEYBELT RATIO parameter.

For example:

ENCODER	RATIO	POLES
Resolver	Direct Mounting	2
ENDAT	Direct Mounting	2
	$3: 1$	6
	$6: 1$	12
	$9: 1$	18

When using a resolver with a pulley belt, it is better to use the PULLEYBELT RATIO parameter in this block to enter the ratio.

Parameter Descriptions

RATIO
PREF: 133.03
Default: 0.5
Range:0.2 to 1.0
Set the resolver's transformation ratio (at 8 kHz , nominal carrier voltage).
SPEED MAX PREF: 133.04 Default: $10000 \quad$ Range: 0 to 2147483647

Set the resolver's maximum mechanical speed in RPM. If unknown, the value must be set to the motor maximum speed.
ACCURACY PREF: 133.05 Default: $20.00 \quad$ Range: 0.00 to 60.00 minutes

Set the resolver's peak to peak accuracy (in minutes). If unknown, use the default value.
CARRIER VOLTAGE PREF: 133.06 Default: 7.00 Range: 1.00 to 10.00 V

Set the resolver's nominal carrier rms voltage at 8 kHz (in Volts). If unknown, use the default value.
CURRENT PREF: 133.07 Default: 0.046 Range: 0.000 to 1.000A

Set the resolver's nominal carrier rms current at 8 kz under nominal carrier voltage (in Amps). If unknown, use the default value.

INERTIA $P R E F: 133.08$	Default: 24.00	Range: 10.00 to
$32768.00 \mathrm{Kg} . \mathrm{cm} 2$		

Set the resolver's rotor inertia (in $\mathrm{kg}^{*} \mathrm{~cm}^{2}$). If unknown, use the default value.
POSITION SET UP PREF: 133.11 Default: $0.00 \quad$ Range: -180.00 to 180.00 deg

The electrical position offset value, in degrees. The value will adapt the resolver to the motor phasing (this parameter is automatically set up by using the MOT POLARISATION function block). The value could also be entered here if known.
RESOLVER POS OUT PREF: 133.15 Default: Range: _. $x x x x$

Mechanical position given by the resolver.
TRIP PREF: 133.16 Default: FALSE Range: FALSE / TRUE

This is a diagnostic output indicating a resolver trip:
TRIP $=$ FALSE : resolver is OK
TRIP = TRUE : resolver is tripped

Programming

Parameter Descriptions

INIT DONE
PREF: 133.17
Default: TRUE
Range: FALSE / TRUE
This is a diagnostic output indicating the state of the resolver init sequence:
INIT DONE = FALSE : init on going
INIT DONE = TRUE : init done
REVERSE CNT DIR PREF:133.18 Default: FALSE Range: FALSE / TRUE
Set the count direction for the resolver feedback.
REVERSE CNT DIR = FALSE : the position is increasing if the motor is running in a clockwise direction looking to the front shaft of the motor.
REVERSE CNT DIR = TRUE : the position is decreasing if the motor is running in a clockwise direction looking to the front shaft of the motor.

SPEED FILTER	PREF: 133.19	Default: 100.00
Set the low pass filter frequency in Hz on the resolver speed information.	Range: 10.00 to 1000.00 Hz	

Set the low pass filter frequency in Hz on the resolver speed information.

Parameter Descriptions

Set a phase shift in degrees between the carrier and the \sin / \cos signals coming from the resolver.

Carrier :

Sin/cos signals, motor in rotation :

TRIP SELECTION

PREF: 133.21
Default: 2
Select the trip detection based on hardware and/or software detection:
Enumerated Value : Trip Selection

$$
\begin{aligned}
& 0: \text { HARD AND SOFT } \\
& 1: \text { HARD } \\
& 2: \text { SOFT }
\end{aligned}
$$

The trip is based on hardware and software detection.
The trip is only based on hardware detection.
The trip is only based on software detection.

Programming

Parameter Descriptions

Hardware Detection :

The trip is issued from the sine and cosine inputs, based on the following nominal values for the resolver :

```
CARRIER VOLTAGE:7Vrms
RATIO : 0.5
```


Software Detection :

The trip is also issued from the sine and cosine inputs. The trigger value used is based on the following formula :
trip level $=0.15$ *(CARRIER VOLTAGE * 0.1414 * RATIO * 2.0)
where
CARRIER VOLTAGE $=7 \mathrm{Vrms}$, RATIO $=0.5$ for a standard resolver
0.15 is the trigger value.

RESET LINE COUNT PREF: 133.26 Default: FALSE Range: FALSE / TRUE
If TRUE the LINE COUNT X4 diagnostic is reset.

LINE COUNT X4 PREF: 133.27 Default: $0 \quad$ Range: _

Diagnostic showing the resolver position with a resolution of 65536 points per resolver division. This diagnostic is set to 0 at power-up and reset when RESET LINE COUNT is TRUE.
PULLEYBELT RATIO PREF: 133.28 Default: 1 Range:_1 to 100

Set the ratio of Pulley Belt system between the encoder feedback and the motor shaft (Typically PARVEX Torque Motors). Can be used either for resolver or ENDAT encoder.
Default value is 1 (feedback mounted directly on the motor shaft)

SEQUENCING LOGIC

SETUP::SEQ \& REF::SEQUENCING LOGIC

This function block contains all the parameters relating to the sequencing (start and stop) of the Drive.
Before the Drive will respond to the RUN FORWARD, RUN REVERSE or JOG parameters (cause the Drive to run or jog), the parameters DRIVE ENABLE, NOT FAST STOP and NOT COAST STOP need to be set to TRUE. In addition, the Drive needs to be healthy (HEALTHY is TRUE). The Drive will only respond to RUN FORWARD, RUN REVERSE and JOG if the Drive is in the Remote Sequencing mode.
If RUN FORWARD and RUN REVERSE are TRUE, both are ignored and the Drive will stop.

Parameter Descriptions

START DELAY PREF: 92.25 Default: 0.000 s Range: 0.000 to 30.000 s
Delays the action of "ramping to setpoint" from the Run command. This can allow a period for motor flux to establish before the ramp to setpoint.

```
RUN FORWARD PREF:92.01 Default: FALSE Range: FALSE / TRUE
```

Setting this parameter to TRUE causes the Drive to run in the forward direction.

RUN REVERSE PREF: $92.02 \quad$ Default: FALSE Range: FALSE/TRUE

Setting this parameter to TRUE causes the Drive to run in the reverse direction.
NOT STOP PREF:92.03 Default: FALSE Range: FALSE/TRUE

Setting this parameter TRUE will latch the RUN FORWARD or RUN REVERSE commands. Once latched, they can be reset to FALSE and the Drive will continue to run. Setting NOT STOP to FALSE causes the run commands to be unlatched.
JOG PREF: $92.04 \quad$ Default: FALSE Range: FALSE/TRUE

Setting this parameter TRUE causes the Drive to run at the speed set by JOG SETPOINT (refer to the REFERENCE JOG function block). Once jogging, setting JOG to FALSE causes the Drive to ramp to zero.

Programming

Parameter Descriptions CONTACTOR CLOSED

Feedback used to indicate that the external contactor has been closed. It must be TRUE for the sequencer to proceed from the SWITCHED ON state to the READY STATE, refer to SEQUENCER STATE.
DRIVE ENABLE PREF: 92.06 Default: TRUE Range: FALSE/TRUE

This provides a means of electronically inhibiting Drive operation. Whilst running, setting this parameter to FALSE disables the Drive operation and causes the motor to coast.
NOT FAST STOP PREF: $92.07 \quad$ Default: TRUE Range: FALSE/TRUE

Whilst running or jogging, setting this parameter to FALSE causes the Drive to ramp to zero. The rate is set by FAST STOP RATE in the STOP function block. The action of setting NOT FAST STOP to TRUE is latched. The Drive cannot be restarted until fast stop is completed.

NOT COAST STOP PREF:92.08 Default: TRUE Range: FALSE/TRUE

Setting this parameter to FALSE disables the Drive operation and causes the motor to coast. The action of setting this parameter to TRUE is latched. The Drive can not be restarted until the coast stop is completed.
A detailed description of the sequencer states, as indicated by the SEQUENCER STATE parameter, is described in Appendix B.

REMOTE REVERSE PREF: $92.09 \quad$ Default: FALSE FALSE / TRUE
For remote setpoints, setting this parameter TRUE inverts the demanded direction of motor rotation.
REM TRIP RESET PREF: $92.10 \quad$ Default: FALSE Range: FALSE/TRUE

On a transition to TRUE, this input clears latched trips.
TRIP RST BY RUN PREF: $92.11 \quad$ Default: TRUE Range: FALSE / TRUE

This allows the rising edge of run command to clear latched trips.
POWER UP START PREF: $92.12 \quad$ Default: FALSE Range: FALSE/TRUE

If TRUE, this allows the Drive to go directly to run mode on power-up if in remote and a run command is present. If FALSE, a low to high transition of the run command is required.

Parameter Descriptions

TRIPPED PREF: 92.13 Default: FALSE Range: FALSE / TRUE

Indicates that there is a latched trip present.
RUNNING PREF:92.14 Default: FALSE Range: FALSE/TRUE

Indicates that that the Drive is in the enabled state.
JOGGING PREF:92.15 Default: FALSE Range: FALSE/TRUE
Indicates that the Drive is in the JOG mode.

STOPPING
 PREF: 92.16

Default: FALSE
Range: FALSE / TRUE
Indicates that the Drive is stopping.
OUTPUT CONTACTOR PREF: 92.17
Default: FALSE
Range: FALSE / TRUE
Output to be used to drive an external contactor in the motor output. This contactor is normally closed unless a Trip condition has occurred or the Drive goes into the re-configuration mode.

```
SWITCH ON ENABLE PREF:92.18 Default: FALSE Range: FALSE / TRUE
```

Sometimes referred to as READY TO SWITCH ON, this parameter indicates that the Drive will accept a run command.

SWITCHED ON
 PREF: 92.19
 Default: FALSE
 Range: FALSE / TRUE

Run accepted. Waiting for CONTACTOR CLOSED and any motor deflux delay to be completed

READY

PREF: 92.20
Default: FALSE
Range: FALSE / TRUE
Indicates that the Drive's power stack is operable and the Drive will run if enabled.
SYSTEM RESET
PREF: 92.21
Default: FALSE
Range: FALSE / TRUE

TRUE for a single block diagram execution cycle after the Drive enters either RUN or JOG mode.

Programming

Parameter Descriptions

SEQUENCER STATE PREF: 92.22 Default:0 Range: See below

This parameter indicates the current sequencing state:

```
Enumerated Value : State
    0 : START DISABLED
    1:START ENABLED
    2:SWITCHED ON
    3:READY
    4:ENABLED
    5: F-STOP ACTIVE
    6: TRIP ACTIVE
    7: TRIPPED
```

Refer to Appendix B : "Sequencing Logic States".
REMOTE REV OUT PREF:92.23 Default: FALSE Range: FALSE/TRUE

This parameter indicates the current state of remote direction and RUN REVERSE. Note - this is the demanded direction, not the actual direction.
HEALTHY PREF:92.24 Default: TRUE Range: FALSE/TRUE

Set FALSE when the Drive trips, and set TRUE when the run command is removed.

FAN RUNNING PREF:92.26 Default: FALSE Range: FALSE/TRUE

This can be used to control the running of externally supplied fans. TRUE when the drive heatsink is hot, when the ambient temperature is high or when the motor load is high. Remains TRUE for 60s after the load or temperature has dropped. Initialised TRUE on frame size B following a power on.
CONTACTOR DELAY PREF: 92.27 Default: 10.0 s Range: 1.0 to 10 s

On entry to the SWITCHED ON state the sequencing logic sets the OUTPUT CONTACTOR output to TRUE and starts an internal delay timer. The logic then waits for the feedback signal CONTACTOR CLOSED to be TRUE before moving on to the READY state. If the CONTACTOR CLOSED signal does not go TRUE within the delay time set by CONTACTOR DELAY then the drive will trip with a CONTACTOR FBK trip.

SETPOINT DISPLAY

SETUP::MENUS::SETPOINT DISPLAY

This function block allows you to customise the setpoint name and setpoint parameter value.

Parameter Descriptions

NAME PREF:32.02 Default: Range: max length 16 chars

Enter your customised text for the setpoint name. If this name is left blank, then the default setpoint name will be used, for example: SETPOINT (LOCAL), SETPOINT (JOG) etc.

```
SCALING PREF:32.03 Default:0 Range:0 to 4
```

A scaling factor applied to the speed setpoint and feedback displays. Selects a DISPLAY SCALE function block to be applied.
Enumerated Value : State
0 : NONE
1 : DISPLAY SCALE 1
2 : DISPLAY SCALE 2
3 : DISPLAY SCALE 3
4 : DISPLAY SCALE 4

IGNORE PASSWORD
 PREF: 32.05
 Default: TRUE
 Range: FALSE / TRUE

When TRUE the setpoint may be modified even when a password is used to make all other parameter read-only.

Programming

SKIP FREQUENCIES

SETUP::MOTOR CONTROL::SKIP FREQUENCIES

This function block may be used to prevent the Drive operating at frequencies that cause mechanical resonance in the load.

Parameter Descriptions

INPUT PREF: 91.01

Default: 0.00%
Range: - 300.00 to 300.00%
The value of the block input in $\%$.
BAND 1 PREF: 91.02 Default: 0.0 Hz Range: 0.0 to 500.0 Hz

The width of each skip band in Hz .
FREQUENCY $1 \quad$ PREF: $91.03 \quad$ Default: $0.0 \mathrm{~Hz} \quad$ Range: 0.0 to 500.0 Hz

This parameter contains the centre frequency of each skip band in Hz .

BAND 2	PREF: 91.04	Default: 0.0 Hz	Range: 0.0 to 500.0 Hz

The width of each skip band in Hz .
FREQUENCY $2 \quad$ PREF: $91.05 \quad$ Default: $0.0 \mathrm{~Hz} \quad$ Range: 0.0 to 500.0 Hz

This parameter contains the centre frequency of each skip band in Hz .
BAND 3 PREF: 91.06 Default: 0.0 Hz Range: 0.0 to 500.0 Hz

The width of each skip band in Hz.
FREQUENCY $3 \quad$ PREF: $91.07 \quad$ Default: $0.0 \mathrm{~Hz} \quad$ Range: 0.0 to 500.0 Hz

This parameter contains the centre frequency of each skip band in Hz .

BAND 4	PREF: 91.08	Default: 0.0 Hz	Range: 0.0 to 500.0 Hz

The width of each skip band in Hz.

FREQUENCY 4

PREF: 91.09
Default: 0.0 Hz
Range: 0.0 to 500.0 Hz
This parameter contains the centre frequency of each skip band in Hz .

Programming

Parameter Descriptions

OUTPUT PREF:91.10 Default: - $x \mathrm{x} \%$ Range: - $x \mathrm{xx} \%$
Diagnostic on the output of the function block in \%
OUTPUT HZ PREF: 91.11 Default: -x Hz Range: -x Hz

Diagnostic on the output of the function block in Hz
INPUT HZ PREF: 91.12 Default: -x Hz Range: - $x \mathrm{~Hz}$

Diagnostic on the input of the function block in Hz

Functional Description

Four programmable skip frequencies are available to avoid resonances within the mechanical system. Enter the value of frequency that causes the resonance using the "FREQUENCY" parameter and then programme the width of the skip band using its "BAND" parameter. The Drive will then avoid sustained operation within the forbidden band as shown in the diagram. The skip frequencies are symmetrical and thus work in forward and reverse.

Note Setting the FREQUENCY to 0 disables the corresponding band. Setting the BAND to 0 causes the value of BAND 1 to be used for this band.

Programming

Programming

The behaviour of this function block is illustrated below.

Programming

SLEW RATE LIMIT

SETUP::MOTOR CONTROL::SLEW RATE LIMIT

Designed for all Motor Control Modes.

This function block prevents over-current and over-voltage faults occurring due to a rapidly changing setpoint.

Parameter Descriptions

ENABLE PREF: 22.01 Default: TRUE Range: FALSE/TRUE

When this parameter is FALSE, this function block is disabled and the setpoint is unaffected by this function block.
ACCEL LIMIT
PREF: 22.02
Default: $500.0 \mathrm{~Hz} / \mathrm{s}$
Range: 1.0 to $1200.0 \mathrm{~Hz} / \mathrm{s}$

The maximum rate at which the setpoint may accelerate away from zero.

DECEL LIMIT

PREF: 22.03
Default: $500.0 \mathrm{~Hz} / \mathrm{s}$
Range: 1.0 to $1200.0 \mathrm{~Hz} / \mathrm{s}$
The maximum rate at which the setpoint may decelerate towards zero.

Functional Description

The SLEW RATE LIMIT block obtains the setpoint from the output of the application, correctly scaled by the REFERENCE block. The rate of change limits are applied and the setpoint is then passed on for further processing.
When the braking block determines that the internal de link voltage is too high it issues a Hold signal. This causes the SLEW RATE LIMIT block to hold the setpoint at its current value. This typically lasts for only 1 ms , time for the excess energy to be dumped into the dynamic braking resistor.

Programming

Note If the drive is part of a common DC link/bus system set the ENABLE parameter to FALSE. This disables ramp-hold during deceleration on high link volts feature.

Programming

SLIP COMP

SETUP::MOTOR CONTROL::SLIP COMP

Designed for VOLTS/Hz motor Control Mode.

The slip compensation function block allows the Drive to maintain motor speed in the presence of load disturbances.

Parameter Descriptions

ENABLE PREF:23.01 Default: FALSE Range: FALSE/TRUE

For the slip compensation to be operational this must be TRUE.
MOTORING LIMIT PREF: 23.02 Default: 150.0 rpm Range: 0.0 to 600.0 rpm

The maximum trim that will be produced by the slip compensation block when the motor is driving the load (motoring).

REGEN LIMIT
 PREF: 23.03
 Default: 150.0 rpm
 Range: 0.0 to 600.0 rpm

The maximum trim that will be produced by the slip compensation block when the motor is being driven by the load, (regenerating).

Functional Description

Based on the rated speed, the no load speed and the rated load of the motor, the slip compensation block adjusts the demand frequency to compensate for any speed reduction resulting from the load.

Programming

Programming

SPEED FBK TRIP

SETUP::TRIPS::SPEED FBK TRIP

CLOSED-LOOP VEC Motor Control Mode only.

The speed feed back trip operates by looking at speed error and comparing it against THRESHOLD.
If the error exceeds this threshold for a period greater than DELAY, then a trip is triggered. The trip is only active while the drive is operating in Closed-Loop Vector Control and not in Autotune. When using the drive in torque control, this trip should be disabled to prevent nuisance tripping by setting INHIBIT to TRUE.

Torque control is defined as operating in torque or current limit, or if the TORQ DMD ISOLATE parameter in the SPEED LOOP function block is TRUE.

Parameter Descriptions

Set this parameter to TRUE to disable the speed feedback trip.
THRESHOLD PREF: 115.02 Default: $50.00 \% \quad$ Range: 0.00 to 300.00%

Sets a threshold below which the trip will not operate. The value of THRESHOLD is compared to the value of SPEED ERROR (from the SPEED LOOP function block).
DELAY PREF: 115.03 Default: 10.00% Range: 0.00 to 10.00 s

Sets the time the trip must be present for before a trip is triggered.
TRIPPED PREF: 115.04 Default: FALSE Range: FALSE / TRUE

This is a diagnostic output indicating the current state of the speed feedback trip.

SPEED LOOP

SETUP::MOTOR CONTROL::SPEED LOOP

Designed for SENSORLESS VEC and CLOSED-LOOP VEC Motor Control Modes.

This function block controls the speed of the motor by comparing the actual speed to the demanded speed, and applying more or less torque in response to the error.

Fixed Inputs and Outputs

These parameters are not viewable on the keypad, They are accessible using the DSE 890 Configuration Tool.

Speed Demand

This is connected to the output of the REFERENCE function block.

Speed Feedback

The speed feedback is derived from the encoder when the Control Mode is configured as CLOSED-LOOP VEC. When configured as SENSORLESS VEC the speed feedback is calculated from the voltages and currents slowing in the motor, and the motor model.

Torque Demand

The output of the SPEED LOOP function block is a torque demand. This torque demand is passed on to the TORQUE LIMIT function block.

Parameter Descriptions

SPEED PROP GAIN PREF: 78.01 Default: 20.0 Range: 0.0 to 3000.0

Sets the proportional gain of the loop.
Speed error (revolutions per second) x proportional gain $=$ torque percent.
SPEED INT TIME PREF: 78.02 Default: $100 \mathrm{~ms} \quad$ Range: 1 to 15000 ms
This is the integral time constant of the speed loop. A speed error which causes the proportional term to produce a torque demand T , will cause the integral term to also ramp up to a torque demand T after a time equal to "speed int time".

Programming

Parameter Descriptions

INT DEFEAT
When TRUE, the integral term does not operate.
SPEED INT PRESET PREF: $78.04 \quad$ Default: 0.00% Range: -500.00 to 500.00%

The integral term will be preset to this value when the drive starts.

$$
\text { SPEED DMD FILTER } \quad \text { PREF: } 78.05 \quad \text { Default: } 0.0 \mathrm{~ms} \quad \text { Range: } 0.0 \text { to } 14.0 \mathrm{~ms}
$$

The speed demand is filtered to reduce ripple. The filter is first order with time constant equal to the value of this parameter.

$$
\text { SPEED FBK FILTER } \quad \text { PREF: } 78.06 \quad \text { Default: } 0.0 \mathrm{~ms} \quad \text { Range: } 0.0 \text { to } 15.0 \mathrm{~ms}
$$

The speed feedback is filtered to reduce ripple, such as that caused by low line count encoders. The filter is first order with time constant equal to the value of this parameter.

AUX TORQUE DMD PREF: 78.07 Default: 0.00% Range: - 300.00 to 300.00%

When the drive is operating in speed control mode, the value of this parameter is added on to the torque demand produced by the speed loop PI. When the drive is operating in torque control mode (i.e. "torque demand isolate is TRUE) the speed loop PI does not operate, and the torque demand becomes the sum of this parameter plus the DIRECT INPUT (if selected).
ADAPTIVE THRESH
PREF: 78.08
Default: 5.00%
Range: 0.00 to 10.00%

If the speed demand is less than the adaptive threshold, the speed loop proportional gain is the adaptive p-gain.
ADAPTIVE P-GAIN
PREF: 78.09
Default: 20.00
Range: 0.00 to 300.00

Proportional gain used if speed demand $<$ adaptive threshold.

Parameter Descriptions

DIRECT IP SELECT PREF: 78.10 Default: 0 Range: See below

The direct input to the speed loop is an analog input which is sampled synchronously with the speed loop. This ensures that the speed loop always has the most up-to-date value of the input, allowing it to respond faster. Any one of the six analog inputs can be selected as the direct input. If NONE is selected, the input is set to zero. If ANIN6 is selected but the 8903/AI board is not fitted, the input is set to zero. When not in use, it should be disabled by selecting NONE.

Enumerated Value : Direct IP Select

$0:$ NONE
$1:$ ANIN1
$2:$ ANIN2
$3:$ ANIN3
$4:$ ANIN4
$5:$ ANIN5
$6:$ ANIN6

DIRECT RATIO PREF:78.11

Default: 1.0000
Range: - 10.0000 to 10.0000
The Direct Input is multiplied by this parameter.

DIRCT IP POS LIM PREF: 78.12

Default: 110.00%
Range: - 110.00 to 110.00%
This limits the upper value of the Direct Input.
DIRCT IP NEG LIM PREF: 78.13
Default: - 110.00%
Range: - 110.00 to 110.00%
This limits the lower value of the Direct Input.
SPEED POS LIM PREF: 78.14
Default: 110.00 \%
Range: -110.00 to 110.00%
This sets the upper limit of the speed demand.
SPEED NEG LIM PREF: 78.15
Default:-110.00 \%
Range: - 110.00 to 110.00%
This sets the lower limit of the speed demand.

Programming

Parameter Descriptions

TORQ DMD ISOLATE PREF:78.16 Default: FALSE Range: FALSE/TRUE
Selects between Speed Control mode and Torque Control mode. When TRUE, (Torque Control mode) the torque demand output from the speed loop block is the sum of the Direct Input plus the AUX TORQUE DMD parameter.
TOTAL SPD DMD RPM
PREF: 78.17
Default: —.xx rpm
Range: - xx rpm

This diagnostic shows the final values of the speed demand in rpm obtained after summing all sources. This is the value which is presented to the speed loop.
TOTAL SPD DMD \%
PREF: 78.18
Default: -. 00%
Range: - $.00 \%$

This diagnostic shows the final values of the speed demand as a \% of MAX SPEED obtained after summing all sources. This is the value which is presented to the speed loop.
SPEED ERROR
PREF: 78.19
Default: -. 00%
Range: -. 00%

Shows the difference between the demanded speed and the actual speed as a $\%$ of MAX SPEED.
TORQUE DEMAND PREF: 78.20 Default:-. 00% Range: -. 00%
Shows the demanded motor torque as a percentage of rated motor torque.
DIRECT INPUT
PREF: 78.21
Default: -. 00%
Range: -. 00%

Shows the value of the Direct Input, after scaling and clamping.
PHASE INPUT
PREF: 78.26
Default: -. 00%
Range: -. 00%

Shows the value of the Phase PID Output connected internally.

Parameter Descriptions

COMPENSATN TYPE PREF: 78.30 Default: 0 Range: See below

Selects the type of compensation applied to the torque demand. Refer to Functional Description for selection details.
Enumerated Value : Type
0 : NONE
1 : MAX ATTENUATION
2 : MINIMUM PHASE
3 : PHASE ADVANCE
4 : NOTCH FILTER

COMPENSATION F1 PREF: 78.27 Default: 2000 Hz Range: 200 to 8000 Hz

Performs various functions as described in Functional Description, depending on which compensation mode is selected by COMPENSAT'N TYPE.

COMPENSATION F2 PREF: $78.31 \quad$ Default: $2000 \mathrm{~Hz} \quad$ Range: 200 to 8000 Hz
Used only when COMPENSAT'N TYPE selection is "PHASE ADVANCE". In this case it sets the end frequency F2 for the phase advance (start frequency is set by COMPENSATION F1).
DEMAND SOURCE PREF: 78.28
Default: 1
Range: See below
This diagnostic shows the source of the speed demand.
Enumerated Value : Demand Source

$0:$ LOCAL	Local reference
$1:$ REMOTE	Remote Reference
$2:$ COMMS	Comms reference
$3:$ CELITE+	(reserved)
$4:$ FIREWIRE	Firewire reference, with system ramp in use
$5:$ DIRECT FIREWIRE	Firewire reference, with system ramp bypassed.

Programming

Parameter Descriptions

$$
\text { SPD PI OUTPUT } \quad \text { PREF: } 78.29 \quad \text { Default: -. } 00 \% \quad \text { Range: -. } 00 \%
$$

This diagnostic shows the torque demand due to the speed loop PI output, not including any feedforward terms.

Functional Description

The speed error (speed demand minus speed feedback) is calculated and processed via a proportional + integral (PI) controller. The output of the PI controller is a torque demand, which is passed directly to the torque control block.

The speed demand is derived from the Setpoint Scale block. The speed feedback is derived from the encoder when the drive is in CLOSED-LOOP VEC mode. This mode gives the best control, as the feedback is fast and accurate. When the drive is in SENSORLESS VEC mode, the speed feedback is calculated from the voltages and currents flowing in the motor, and the motor model.

The parameters COMPENSATION F1 and COMPENSATION F2 perform different functions depending upon the setting of the COMPENSAT'N TYPE parameter:

COMPENSAT'N TYPE:

MAX ATTENTUATION

This applies a first order filter with 3db attenuation frequency given by parameter "COMPENSATION F1".
This form of compensation has a more efficient roll off characteristic, falling to zero at the Nyquist limit (see "Nyquist limit" below). The Nyquist limit is equal to half the loop operating frequency, it has the disadvantage that it adds additional phase delay equal to a time delay of half a sample period to the transfer function. This delay is equal to $1 /(4 *$ switching frequency). For example, if the switching frequency is 4 kHz , the delay is equal to 62.5 uS .
Nyquist Limit: This is defined as half the control loop operating frequency. The control loops operate at twice the stack switching frequency, so the Nyquist Limit is equal to the stack switching frequency.

MINIMUM PHASE

This applies a simple first order recursive filter with 3 db attenuation frequency given approximately by parameter COMPENSATION F1. This type of compensation has a less efficient roll off characteristic, but has less phase shift than the MAX ATTENTUATION filter, as there is no additional time delay.

Programming

PHASE ADVANCE
This selection implements a transfer function of the type $\underline{1+\mathrm{s} / 2 * \mathrm{pi} * \mathrm{f} 1}$, which gives a phase

$$
1+\mathrm{s} / 2^{*} \mathrm{pi}{ }^{*} \mathrm{f} 2
$$

advance between the frequencies f 1 to f 2 . When this function is selected, the values of f 1 and f 2 are set by the parameters COMPENSATION F1 and COMPENSATION F2.

NOTCH FILTER

This selection will give a zero transmission notch at a frequency specified by parameter COMPENSATION F1. It has a phase delay of 1 sample period. A sample period is $1 /(2 *$ switching frequency $)$. For example, if the switching frequency is 4 kHz , a sample period is 125 us .

Summary

"COMPENSAT'N TYPE" Selection	Compensation Type	Action of "COMPENSATION F1"	Action of COMPENSATION F2"
NONE	Torque demand is transmitted unchanged.	-	-
MAX ATTENTUATION	First order filter with zero transmission at Nyquist limit.	sets 3db cutoff frequency	has no effect
MINIMUM PHASE	First order recursive filter with minimum phase shift.	sets 3db cutoff frequency	has no effect
PHASE ADVANCE	Phase advance function.	Sets value of f1 (beginning of phase advance).	Sets value of f2 (end of phase advance).
NOTCH FILTER	Zero transmission notch at selected frequency.	Sets frequency of zero transmission notch.	has no effect

SPEED LOOP 2

SETUP::MOTOR CONTROL::SPEED LOOP 2

Designed for SENSORLESS VEC and CLOSED-LOOP VEC Motor Control Modes.

There are three filters operating on the speed loop torque demand output. They add compensation to the transfer function of the motor and load. This can improve performance. Use the tuning tool in the DSE 890 Configuration Tool to set these filters optimally.
Setting the Filter Type to NONE will cause the filter to have no effect. If compensation is required, up to three filters may be selected in any order and in any combination.

One of the filters is located in the SPEED LOOP function block, the other two filters are located in the SPEED LOOP 2 function block (this block).

- The SPEED LOOP function block contains one filter: this is selected by COMPENSATION F1 and COMPENSAT'N TYPE (a second parameter COMPENSATION F2 is also used when the compensation type is selected to be PHASE ADVANCE).
- The SPEED LOOP 2 function block (this block) contains two filters: these are selected by TQ COMP 2 FREQ and SELECT TQ COMP 2, and also TQ COMP 3 FREQ and SELECT TQ COMP 3.

Parameter Descriptions

SELECT TQ COMP 2 PREF:163.1 Default: NONE Range: See below

Selects the type of compensation applied to the torque demand. Refer to Functional Description in the SPEED LOOP function block for selection details. (PHASE ADVANCE is not selectable with this filter)

Enumerated Value : Filter Type

```
0 : NONE
1:MAX ATTENUATION
2: MINIMUM PHASE
3 : NOTCH FILTER
```


Programming

Parameter Descriptions

TQ COMP 2 FREQ PREF: 163.2 Default: 2000 Hz Range: 100 to 8000 Hz
Performs various functions as described in Functional Description in the SPEED LOOP function block, depending on which compensation mode is selected by SELECT TQ COMP 2.
SELECT TQ COMP 3
PREF: 163.3
Default: NONE
Range: See below

Selects the type of compensation applied to the torque demand. Refer to Functional Description in the SPEED LOOP function block for selection details. (PHASE ADVANCE is not selectable with this filter)

Enumerated Value : Filter Type

```
0 : NONE
1 : MAX ATTENUATION
2 : MINIMUM PHASE
3 : NOTCH FILTER
```

TQ COMP 3 FREQ PREF: 163.4 Default: 2000 Hz Range: 100 to 8000 Hz
Performs various functions as described in Functional Description in the SPEED LOOP function block, depending on which compensation mode is selected by SELECT TQ COMP 3.

Programming

STABILISATION

SETUP::MOTOR CONTROL::STABILISATION
Designed for VOLTS/Hz motor Control Mode.
Enabling this function reduces the problem of unstable running in induction motors. This can be experienced at approximately half full speed, and under low load conditions.

Parameter Descriptions

ENABLE
PREF: 25.01
Default: TRUE
Range: FALSE / TRUE

Programming

STALL TRIP

SETUP::TRIPS::STALL TRIP

The function block protects the motor from damage that may be caused by continuous operation beyond specification (i.e. in a stalled condition).

Parameter Descriptions

STALL TIME PREF:105.01 Default: 120.0 s Range: 0.1 to 3000.0 s

The time after which a stall condition will cause a trip.

STALL LIMIT TYPE PREF:105.03 Default: $0 \quad$ Range: See below

This parameter determines whether the stall trip operates on motor torque or motor current.
Enumerated Value : Stall Limit Type
0 : TORQUE
1: CURRENT

Functional Description

If STALL LIMIT TYPE is set to TORQUE and the estimated load exceeds the active TORQUE LIMIT (refer to the TORQUE LIMIT function block) for a time greater than STALL TIME then the stall trip will become active. The timer is reset whenever the estimated load is less than the active Torque Limit.
Similarly, if the STALL LIMIT TYPE is set to CURRENT and the measured current exceeds the active Current limit (i.e. the drive is in current limit) for a time greater than STALL TIME then the stall trip will become active. The timer is reset whenever the measured current is less than the active Current Limit.
Refer to Chapter 10 for a description of the trips supported by the Drive.

SYNTHETIC ENCODER

SETUP::PHASE CONTROL::SYNTHETIC ENCODR

(Virtual Master Simulator) This function generates A, B, and Z pulses, equivalent to an encoder following either the virtual master or the motor shaft or the load position (see SOURCE parameter).

Parameter Descriptions MODE SELECT PREF:160.01 Default: OFF Range:See below

Some versions of hardware support the direct repeat function. That is, the outputs of either the feedback encoder, or if fitted, the reference encoder, may be electrically buffered and switched directly to the output pins. To select this function, select RPEAT FBK ENCODER or RPEAT REF ENCODER as desired. Otherwise select RUN SYNTH ENCDR to run the synthetic encoder.

Enumerated Value : Mode Select
$0:$ OFF
$1:$ RUN SYNTH ENCDR
$2:$ RPEAT FBK ENCDR
$3:$ RPEAT REF ENCDR

SOURCE

PREF: 160.09
Default: V MASTER POSN Range:See below
This selects the input to the synthetic encoder. Selecting V MASTER POSN will cause the synthetic encoder to directly follow the virtual master. It can also be set to follow the feedback or reference encoders. Note that this is not the same as selecting the direct electrical repeat in MODE SELECT. Both the feedback and the reference encoders have a software gearbox function, which continuously calculates the position of a load on the other side of a gearbox connected to the motor shaft or reference shaft. It is possible to select the synthetic encoder to follow the encoder shaft directly, or to follow the position of the load on the other side of the gearbox. For example, to follow the feedback encoder directly, select FBK ENCR SHAFT, and to follow the load on the other side of the gearbox, select FBK ENCR LOAD.

Programming

Parameter Descriptions

Enumerated Value : Source

$$
\begin{aligned}
& 0: \text { V MASTER POSN } \\
& 1: \text { FBK ENCR SHAFT } \\
& 2: \text { FBK ENCR LOAD } \\
& 3: \text { REF ENCR SHAFT } \\
& 4: \text { REF ENCR LOAD }
\end{aligned}
$$

ENCODER LINES PREF:160.02 Default:1024 Range: 4 to 65536

Sets the number of lines of the simulated encoder.
DIRECTION PREF:160.03 Default: SAME AS SOURCE Range:See below

Allows inverting the synthetic encoder direction with regards to the source direction.
Enumerated Value : Direction
0 : SAME AS SOURCE
1: REVERSE OF SRCE
Z PULSE OFFSET PREF:160.05 Default:0.000 deg. Range: 0.0000 to 360.000 deg.
Sets the position in degrees at which the marker pulse (Z pulse) occurs.

TORQUE LIMIT

SETUP::MOTOR CONTROL::TORQUE LIMIT

Designed for all Motor Control Modes.

This function block allows you to set the maximum level of motor rated torque which is allowed before torque limit action occurs.
If the estimated motor torque is greater than the ACTUAL POS LIM value, the motor speed is controlled to maintain the torque at this level. A similar situation occurs if the estimated motor torque is less that the ACTUAL NEG LIM value.
The torque limit function block has separate positive and negative torque limits. In addition, a symmetric main torque limit is also provided.
The lowest positive and negative torque limits (including any current limit or inverse time current limit action) is indicated in the ACTUAL POS LIM and ACTUAL NEG LIM diagnostic. These are the final limits used to limit motor torque.

Parameter Descriptions POS TORQUE LIM PREF: $83.01 \quad$ Default: $150.00 \% \quad$ Range: -300.00 to 300.00%

This parameter sets the maximum allowed level of positive motor torque.
NEG TORQUE LIM PREF: $83.02 \quad$ Default: $-150.00 \% \quad$ Range: -300.00 to 300.00%

This parameter sets the maximum allowed level of negative motor torque MAIN TORQUE LIM PREF: 83.03 Default: 150.00% Range: 0.00 to 300.00%
This parameter sets the symmetric limit on the maximum allowed motor torque.

$$
\text { FAST STOP T-LIM } \quad \text { PREF: } 83.07 \quad \text { Default: } 150.00 \% \quad \text { Range: } 0.00 \text { to } 300.00 \%
$$

This parameter sets the torque limit used during a Fast Stop.
SYMMETRIC LIM PREF: 83.04 Default: FALSE Range:FALSE/TRUE/
When TRUE, the NEG TORQUE LIM is forced to reflect the POS TORQUE LIM parameter.

Programming

Parameter Descriptions

$$
\text { ACTUAL POS LIM } \quad \text { PREF: } 83.05 \quad \text { Default: -. } 00 \% \quad \text { Range: -. } 00 \%
$$

This diagnostic indicates the final actual positive torque limit including any current limit or inverse time current limit action.
ACTUAL NEG LIM PREF: 83.06

$$
\text { Default }:-.00 \%
$$

$$
\text { Range: -. } 00 \%
$$

This diagnostic indicates the final actual negative torque limit including any current limit or inverse time current limit action.

TRIPS HISTORY

SETUP::TRIPS::TRIPS HISTORY

This function block records the last ten trips that caused the Drive to stop.
To do this, it stores the value of the FIRST TRIP parameter, PREF 97:09, taken from the TRIPS STATUS function block.

Parameter Descriptions

TRIP 1 (NEWEST) PREF:96.01 Default: $0 \quad$ Range: See below

Records the most recent trip that caused the Drive to stop. The values that this (and the parameters below) may take are the same as tag number 6, FIRST TRIP, detailed in the TRIPS STATUS function block.
TRIP 2 PREF: 96.02 Default: 0 Range: As above

Records the second most recent trip that caused the Drive to stop.
TRIP 3 PREF: 96.03 Default: 0 Range: As above

Records the third most recent trip that caused the Drive to stop.
TRIP 4 PREF: 96.04 Default: 0 Range: As above

Records the fourth most recent trip that caused the Drive to stop.
TRIP 5 PREF: 96.05 Default: $0 \quad$ Range: As above

Records the fifth most recent trip that caused the Drive to stop.

```
TRIP 6
PREF: 96.06
Default: 0
Range: As above
```

Records the sixth most recent trip that caused the Drive to stop.
TRIP 7 PREF: 96.07 Default: 0 Range: As above

Records the seventh most recent trip that caused the Drive to stop.
TRIP 8
PREF: 96.08
Default: 0
Range: As above

Records the eighth most recent trip that caused the Drive to stop.

Programming

Parameter Descriptions

TRIP 9 PREF: 96.09 Default: $0 \quad$ Range: As above

Records the ninth most recent trip that caused the Drive to stop.
TRIP 10 (OLDEST) PREF: 96.10 Default: 0 Range: As above
Records the tenth most recent trip that caused the Drive to stop.

Functional Description

This function block provides a view of the ten most recent trips that caused the Drive to stop. Every time a new trip occurs this is entered as TRIP 1 (NEWEST and the other recorded trips are moved down. If more than ten trips have occurred since the Drive was configured then only the ten most recent trips will be available for inspection.

These parameters are preserved through a power failure.

TRIPS STATUS

SETUP::TRIPS::TRIPS STATUS

The Drive supports advanced and flexible trip logic to support monitoring of the Drive itself, the motor and the load. This function block provides a view into the current trip condition(s) and allows some trips to be disabled.

Parameter Descriptions

DISABLED WORD 1
 PREF: 97.01
 Default: 0300
 Range: 0x0000 to 0xFFFF

Use this parameter to disable trips. Not all trips may be disabled, the DISABLED WORD 1 mask is ignored for trips that cannot be disabled. See below for which trips may be disabled and how this parameter is formed.

DISABLED WORD 2 PREF: 97.02 Default: 0840 Range: 0x0000 to 0xFFFF

Use this parameter to disable trips. Not all trips may be disabled, the DISABLED WORD 2 mask is ignored for trips that cannot be disabled. See below for which trips may be disabled and how this parameter is formed.

DISABLED WORD 3 PREF: 97.10 Default: 0000 Range: 0x0000 to 0xFFFF

Use this parameter to disable trips. Not all trips may be disabled, the DISABLED WORD 3 mask is ignored for trips that cannot be disabled. See below for which trips may be disabled and how this parameter is formed.

DISABLED WORD 4 PREF: 97.11 Default: 000 Range: 0x0000 to 0xFFFF

Use this parameter to disable trips. Not all trips may be disabled, the DISABLED WORD 4 mask is ignored for trips that cannot be disabled. See below for which trips may be disabled and how this parameter is formed.
DISABLED WORD 5 PREF: 97.18 Default: 0000 Range: 0x0000 to 0xFFFF

Use this parameter to disable trips. Not all trips may be disabled, the DISABLED WORD 5 mask is ignored for trips that cannot be disabled. See below for which trips may be disabled and how this parameter is formed.

DISABLED WORD 6 PREF: 97.19 Default: 0000 Range: 0x0000 to 0xFFFF

Use this parameter to disable trips. Not all trips may be disabled, the DISABLED WORD 6 mask is ignored for trips that cannot be disabled. See below for which trips may be disabled and how this parameter is formed.

Programming

Parameter Descriptions

ACTIVE WORD 1

PREF: 97.05
Default: 0000
Range: $0 x 0000$ to $0 x F F F F$
Indicates which trips are currently active. These parameters are a coded representation of the trip status. See below for a description of how this parameter is formed.

ACTIVE WORD 2 PREF:97.06 Default:0000 Range: 0x0000 to 0xFFFF

Indicates which trips are currently active. These parameters are a coded representation of the trip status. See below for a description of how this parameter is formed.

ACTIVE WORD $3 \quad P R E F: 97.14$
 Default: 0000
 Range: 0x0000 to 0xFFFF

Indicates which trips are currently active. These parameters are a coded representation of the trip status. See below for a description of how this parameter is formed.

ACTIVE WORD 4 PREF: 97.15 Default: 0000 Range: 0x0000 to 0xFFFF

Indicates which trips are currently active. These parameters are a coded representation of the trip status. See below for a description of how this parameter is formed.

ACTIVE WORD 5 PREF: 97.22 Default: 0000 Range: 0x0000 to 0xFFFF

Indicates which trips are currently active. These parameters are a coded representation of the trip status. See below for a description of how this parameter is formed.

$$
\text { ACTIVE WORD } 6 \quad \text { PREF: } 97.23 \quad \text { Default: } 0000 \quad \text { Range: 0x0000 to 0xFFFF }
$$

Indicates which trips are currently active. These parameters are a coded representation of the trip status. See below for a description of how this parameter is formed.
WARNINGS WORD 1 PREF: 97.07 Default: 0000 Range: 0x0000 to 0xFFFF

Indicates which trips are currently active. These parameters are a coded representation of the trip status. See below for a description of how this parameter is formed.

WARNINGS WORD 2 PREF: 97.08 Default: 0000 Range: 0x0000 to 0xFFFF

Indicates which conditions are likely to cause a trip. These parameters are a coded representation of the warning status. See below for a description of how this parameter is formed.

Programming

Parameter Descriptions

WARNINGS WORD 3 PREF: 97.16 Default: 0000 Range: 0x0000 to 0xFFFF

Indicates which conditions are likely to cause a trip. These parameters are a coded representation of the warning status. See below for a description of how this parameter is formed.
WARNINGS WORD 4 PREF: 97.17 Default: 0000 Range: 0x0000 to 0xFFFF
Indicates which conditions are likely to cause a trip. These parameters are a coded representation of the warning status. See below for a description of how this parameter is formed.

WARNINGS WORD 5 PREF: 97.24 Default: 0000 Range: 0x0000 to 0xFFFF
Indicates which conditions are likely to cause a trip. These parameters are a coded representation of the warning status. See below for a description of how this parameter is formed.

WARNINGS WORD 6 PREF: 97.25 Default: 0000 Range: 0x0000 to 0xFFFF
Indicates which conditions are likely to cause a trip. These parameters are a coded representation of the warning status. See below for a description of how this parameter is formed.

FIRST TRIP PREF:97.09 Default: $0 \quad$ Range: see table below

From when a trip occurs until that trip is reset, this parameter indicates the trip source. When several trips have occurred, this parameter indicates the first one that was detected.
U PHASE FAULT
PREF: 97.26, 97.27, 97.28
Default: FALSE
Range: FALSE / TRUE

V PHASE FAULT

W PHASE FAULT

These parameters are valid on an 890PX. They indicate which output phase(s) has(have) reported a fault. Typically, these parameters may be used to identify the phase on which a fan has failed or an over temperature condition has occurred.

Programming

Functional Description

The tables below shows the possible parameter values for FIRST TRIP, and the TRIPS HISTORY function block.
The DISABLED WORD 1 , ACTIVE WORD 1 and WARNINGS WORD 1 parameters use a four digit hexadecimal number to identify individual trips. Each trip has a unique corresponding number as shown below.

Trip Name (MMI)	Value	Mask	User Disable	Auto-restart
NO TRIP	0	0×0000	N/A	N/A
OVERVOLTAGE	1	0×0001	No	Yes
UNDERVOLTAGE	2	0×0002	No	Yes
OVERCURRENT	4	0×0004	No	Yes
HEATSINK	8	0×0008	No	Yes
EXTERNAL TRIP	16	0×0010	No	Yes
INPUT 1 BREAK	32	0×0020	Yes	Yes
INPUT 2 BREAK	64	0×0040	Yes	Yes
MOTOR STALLED	128	0×0080	Yes	Yes
INVERSE TIME	256	0×0100	Yes	Yes
BRAKE RESISTOR	512	0×0200	Yes	Yes
BRAKE SWITCH	1024	0×0400	Yes	Yes
OP STATION	2048	0×0800	Yes	Yes
LOST COMMS	4096	$0 x 1000$	Yes	Yes
CONTACTOR FBK	8192	16384	0×4000	Yes
SPEED FEEDBACK	32768	0×8000	No	
AMBIENT TEMP				

The DISABLED WORD 2 , ACTIVE WORD 2 and WARNINGS WORD 2 parameters use a four digit hexadecimal number to identify individual trips. Each trip has a unique corresponding number as shown below.

Trip Name (MMI)	Value	Mask +	User Disable	Auto-restart
NO TRIP	0	0x0000	N/A	N/A
MOTOR OVERTEMP	1	0x0001	Yes	Yes
CURRENT LIMIT	2	0x0002	No	Yes
TRIP 19 (Reserved)	4	0x0004	No	No
24V FAILURE	8	0x0008	Yes	Yes
LOW SPEED OVER I	16	0x0010	No	Yes
PHASE FAIL	32	0x0020	No	Yes
ENCODER 1 FAULT	64	0x0040	Yes	Yes
DESAT (OVER I)	128	0x0080	No	Yes
VDC RIPPLE	256	0x0100	No	Yes
BRAKE SHORT CCT	512	0x0200	No	Yes
OVERSPEED	1024	0x0400	Yes	Yes
ANALOG INPUT ERR	2048	0x0800	No	Yes
INT DB RESISTOR	4096	0x1000	No	Yes
TRIP 30 (Reserved)	8192	0x2000	No	No
UNKNOWN	16384	0x4000	No	Yes
OTHER	32768	0x8000	No	Yes

Programming

The DISABLED WORD 3, ACTIVE WORD 3 and WARNINGS WORD 3 parameters use a four digit hexadecimal number to identify individual trips. Each trip has a unique corresponding number as shown below.

Trip Name (MMI)	Value	Mask EXT 1	User Disable	Auto-restart
NO TRIP	0	0x0000	N/A	N/A
MAX SPEED LOW	1	0×0001	Yes	N/A
MAINS VOLTS LOW	2	0x0002	Yes	N/A
NOT AT SPEED	4	0x0004	Yes	N/A
MAG CURRENT FAIL	8	0x0008	Yes	N/A
NEGATIVE SLIP F	16	0×0010	Yes	N/A
TR TOO LARGE	32	0x0020	Yes	N/A
TR TOO SMALL	64	0x0040	Yes	N/A
MAX RPM DATA ERR	128	0x0080	Yes	N/A
STACK TRIP	256	0×0100	N/A	N/A
LEAKGE L TIMEOUT	512	0x0200	Yes	N/A
POWER LOSS STOP	1024	0x0400	N/A	N/A
MOTR TURNING ERR	2048	0x0800	Yes	N/A
MOTR STALLED ERR	4096	0x1000	Yes	N/A
AT TORQ LIM ERR	8192	0x2000	Yes	N/A
FW ISR TIMEOUT	16384	0x4000	N/A	N/A
ENCODR CAL ERROR	32768	0x8000	Yes	N/A

The DISABLED WORD 4 , ACTIVE WORD 4 and WARNINGS WORD 4 parameters use a four digit hexadecimal number to identify individual trips. Each trip has a unique corresponding number as shown below.

Trip Name (MMI)	Value	Mask EXT 1+	User Disable	Auto-restart
NO TRIP	0	0×0000	N/A	N/A
OUTPUT GBX ERROR	1	0×0001	Yes	N/A
APP HALTED	2	0×0002	N/A	N/A
APP ERROR	4	0×0004	N/A	N/A
FIRMWARE ERROR	8	0×0008	N/A	N/A
TRIP 53 (Reserved)	16	0×0010	N/A	N/A
TRIP 54 (Reserved)	32	0×0020	N/A	N/A
TRIP 55 (Reserved)	64	0×0040	N/A	N/A
TRIP 56 (Reserved)	128	0×0080	N/A	N/A
RESOLVER ERROR	256	0×0100	N/A	N/A
ITT MOTOR TRIP	512	0×0200	N/A	N/A
TRIP 59 (Reserved)	1024	0×0400	N/A	N/A
SAFE TORQUE OFF	2048	0×0800	N/A	N/A
TRIP 63 (Not Affected)	16384	0×4000	N/A	
TRIP 64 (Not Affected)	32768	0×8000		

Programming

The DISABLED WORD 5 , ACTIVE WORD 5 and WARNINGS WORD 5 parameters use a four digit hexadecimal number to identify individual trips. Each trip has a unique corresponding number as shown below.

Trip Name (MMI)	Value	Mask EXT 2	User Disable	Auto-restart
NO TRIP	0	0x0000	N/A	N/A
TRIP 65 (Not Affected)	1	0x0001	N/A	N/A
TRIP 66 (Not Affected)	2	0x0002	N/A	N/A
TRIP 67 (Not Affected)	4	0x0004	N/A	N/A
TRIP 68 (Not Affected)	8	0x0008	N/A	N/A
TRIP 69 (Not Affected)	16	0×0010	N/A	N/A
TRIP 70 (Not Affected)	32	0x0020	N/A	N/A
TRIP 71 (Not Affected)	64	0x0040	N/A	N/A
TRIP 72 (Not Affected)	128	0x0080	N/A	N/A
TRIP 73 (Not Affected)	256	0×0100	N/A	N/A
TRIP 74 (Not Affected)	512	0x0200	N/A	N/A
TRIP 75 (Not Affected)	1024	0x0400	N/A	N/A
TRIP 76 (Not Affected)	2048	0x0800	N/A	N/A
TRIP 77 (Not Affected)	4096	0×1000	N/A	N/A
TRIP 78 (Not Affected)	8192	0x2000	N/A	N/A
TRIP 79 (Not Affected)	16384	0×4000	N/A	N/A
TRIP 80 (Not Affected)	32768	0x8000	N/A	N/A

The DISABLED WORD 6 , ACTIVE WORD 6 and WARNINGS WORD 6 parameters use a four digit hexadecimal number to identify individual trips. Each trip has a unique corresponding number as shown below.

Trip Name (MMI)	Value	Mask EXT 2+	User Disable	Auto-restart
NO TRIP	0	0x0000	N/A	N/A
TRIP 81 (Not Affected)	1	0x0001	N/A	N/A
TRIP 82 (Not Affected)	2	0x0002	N/A	N/A
TRIP 83 (Not Affected)	4	0x0004	N/A	N/A
TRIP 84 (Not Affected)	8	0x0008	N/A	N/A
TRIP 85 (Not Affected)	16	0x0010	N/A	N/A
TRIP 86 (Not Affected)	32	0x0020	N/A	N/A
TRIP 87 (Not Affected)	64	0x0040	N/A	N/A
TRIP 88 (Not Affected)	128	0x0080	N/A	N/A
TRIP 89 (Not Affected)	256	0×0100	N/A	N/A
TRIP 90 (Not Affected)	512	0x0200	N/A	N/A
TRIP 91 (Not Affected)	1024	0x0400	N/A	N/A
TRIP 92 (Not Affected))	2048	0x0800	N/A	N/A
TRIP 93 (Not Affected))	4096	0x1000	N/A	N/A
TRIP 94 (Not Affected)	8192	0x2000	N/A	N/A
TRIP 95 (Not Affected)	16384	0x4000	N/A	N/A
TRIP 96 (Not Affected)	32768	0x8000	N/A	N/A

Programming

Hexadecimal Representation of Trips

When more than one trip is to be represented at the same time then the trip codes are simply added together to form the value displayed. Within each digit, values between 10 and 15 are displayed as letters A to F

For example referring to the tables above, if the ACTIVE WORD 1 parameter is

Decimal number	Display
10	A
11	B
12	C
13	D
14	E
15	F

a " 2 " in digit 3
an " 8 " and a " 2 " in digit 2
$(8+2=10$, displayed as $\mathbf{A})$
an " $\mathbf{8}$ " in digit 1
This in turn represents the active trips BRAKE RESISTOR, MOTOR STALLED, INPUT 1 BREAK and HEATSINK TEMP, (an unlikely situation).
(In decimal representation, 02 A 8 h is 680 d
$680=512+128+32+8$
This in turn represents the active trips BRAKE RESISTOR, MOTOR STALLED, INPUT 1 BREAK and HEATSINK TEMP)

In the same way, the ACTIVE WORD 2 parameter displaying 02A8 would represent CURRENT LIMIT, DESAT (OVER I), TRIP 22 and 24 V failure, (another unlikely situation).

The hexadecimal value is used over comms, however, pressing the M key whilst displaying the hexadecimal trip value will show the list of all trips and their current values

VIRTUAL MASTER

SETUP::PHASE CONTROL::VIRTUAL MASTER

This block transmits a regular update of speed, position and acceleration to all other drives listening on the selected channel.
The output is profiled by the ACCELERATION, DECELERATION and JERK 1-4 parameters.
Refer to REFERENCE RAMP, page D-126.
An example acceleration graph for a velocity $60 \% / \mathrm{s}$ maximum, acceleration of $20 \% / \mathrm{s}^{2}$ and a jerk of $10 \% / \mathrm{s}^{3}$ is shown below.

Parameter Descriptions

CHANNEL PREF: 118.17 Default: $0 \quad$ Range: 0 to 64

This parameter sets the Firewire channel that the Virtual Master broadcasts references on.
SOURCE PREF:118.20 Default: S RAMP Range: See below

Selects the source of the virtual master speed and position.
Enumerated Value : Source

0 : S RAMP	the virtual master output is derived from the INPUT parameter via an sramp function		
1: FEEDBACK POSN the virtual master output is the motor shaft speed and position, unchanged			
2 : REFERENCE ENCODR the virtual master output is the reference encoder speed and position, un			
3 : LINEAR	the virtu ramp fun	is derived from the	ameter, passed through a linea
UT	PREF: 118.01	Default: 0.00%	Range: -100.00 to 100.00%
p input.			
ELERATION	PREF: 118.02	Default: $10.00 / s^{2}$	Range: 0.00 to $100.00 / \mathrm{s}^{2}$

Sets the acceleration rate in units of percent per second ${ }^{2}$, i.e. if the full speed of the machine is $1.25 \mathrm{~m} / \mathrm{s}$ then the acceleration will be: $1.25 \times 75.00 \%=0.9375 \mathrm{~m} / \mathrm{s}^{2}$
DECELERATION PREF: 118.03 Default: $10.00 / \mathrm{s}^{2} \quad$ Range: 0.00 to $100.00 / \mathrm{s}^{2}$

This functions in the same way as ACCELERATION above.

Programming

Parameter Descriptions

JERK 1 to JERK 4

$$
\begin{aligned}
& \text { PREF: 118.04, 118.05, } \quad \text { Default: } 10.00 / s^{2} \\
& 118.06,118.07
\end{aligned}
$$

$$
\text { Range: } 0.00 \text { to } 100.00 \mathrm{ss}^{3}
$$

Rate of change of acceleration for the relevant segment of the curve, i.e. JERK 1 is for segment 1 , etc.
CONTINUOUS
PREF: 118.08
Default: FALSE
Range: FALSE / TRUE

When TRUE, it forces a smooth transition if the speed point is changed when ramping. The curve is controlled by the ACCELERATION and JERK 1 to JERK 4 parameters. When FALSE, there is an immediate transition from the old curve to the new curve.
HOLD PREF: 118.09 Default: FALSE Range: FALSE / TRUE
When TRUE, the output of the ramp is held at its last value.
SYMMETRIC JERK
PREF: 118.10
Default: FALSE
Range: FALSE / TRUE

When TRUE, JERK 1 is used for all segments of the curve. JERK 2, JERK 3 and JERK 4 are ignored.
RESET PREF: 118.11 Default: FALSE Range: FALSE / TRUE
If TRUE, the output is made equal to the input.
OFFSET PREF: 118.12 Default: 0.0000 deg
This input provides an additional offset to be applied to the Position Output
MAX SPEED PREF: 118.18 Default: 1500.0 rpm Range: 100.0 to 6000.0 rpm
This parameter specifies the maximum speed of the Virtual Master
POSITION OUTPUT
PREF: 118.14
Default:-.xxxx deg
Range: -.xxxx deg
Master position output.
SPEED OUTPUT PREF:118.13 Default: -.xx $\mathrm{Hz} \quad$ Range: -.xx Hz
Master speed output.
ACCEL OUTPUT PREF: 118.15
Default: - $x x \quad$ Range:.$- x x$
Master acceleration output in $/ \mathrm{s}^{\wedge} 2$.

Parameter Descriptions

$$
\text { RAMPING } \quad P R E F: 118.16
$$

Default: FALSE

Range: FALSE / TRUE
This is set TRUE when ramping.
STATUS
PREF: 118.19
Default: 4
Range: See below

Operating status of the Virtual Master.
Enumerated Value : Status

$0:$ READY	operating correctly
$1:$ RESET	RESET input is FALSE
$2:$ DUPLICATE	another VIRTUAL MASTER has the same CHANNEL number
3: INITIALISING	FireWire is present but state not yet known
4: NO FIREWIRE	No FireWire Option fitted or no FireWire power supplied
$5:$ DISABLED	CHANNEL set to zero

Functional Description

The time needed to stop or accelerate is:
As the speed is symmetrical, the average speed is V/2 therefore the stopping / acceleration distance can be calculated:

$$
s=\frac{V}{2}\left(\frac{V_{\Delta}}{\Delta}+A\right)[\text { Meters }] \quad t=\frac{V_{\Delta}}{}+A_{7}[\text { Seconds }]
$$

\boldsymbol{V} is the maximum speed the drive must reach in $\% /$ sec. A is the maximum allowable acceleration in $\% / \mathrm{sec}^{2}$.
\boldsymbol{J} is the maximum allowable value for jerk, in $\% / \mathrm{sec}^{3}$
Note: These only hold true if Jerk = Jerk2 for acceleration or Jerk 3 = Jerk 4 for deceleration.

Programming

VOLTAGE CONTROL

SETUP::MOTOR CONTROL::VOLTAGE CONTROL

Designed for VOLTS/Hz motor Control Mode.

This function block allows the motor output volts to be controlled in the presence of dc link voltage variations. This is achieved by controlling the level of PWM modulation as a function of measured de link volts. The de link volts may vary either due to supply variations or regenerative braking by the motor.
Three control modes are available, None, Fixed and Automatic.

Parameter Descriptions
 VOLTAGE MODE PREF: 81.01

Default: 0
Range: See below
Set to NONE, no attempt is made to control the PWM modulation depth for variations in dc link voltage.
Set to FIXED, the Drive's output volts are maintained, regardless of variations in the dc link voltage. The Drive's model number sets the default value for demanded maximum output voltage.
Set to AUTOMATIC, the voltage is controlled as above, but the output voltage is allowed to rise smoothly as dc link volts vary. This allows the motor to be overfluxed during deceleration, thereby increasing braking performance.

Enumerated Value : Voltage Mode
0 : NONE
1 : FIXED
2 : AUTOMATIC
BASE VOLTS PREF: 81.03 Default: 100.00% Range: 0.00 to 115.47%
This parameter directly scales the output of the voltage control function block, thus allowing further scaling of the Drive output volts if required.

Programming

ZERO SPEED

SETUP::MOTOR CONTROL::ZERO SPEED

This function block detects when the motor speed is at or close to zero. HYSTERESIS and THRESHOLD are user-definable.

Parameter Descriptions HYSTERISIS

PREF: 85.01
Default: 0.10%
Range: 0.00 to 300.00%
Provides a hysteresis band about which the outputs are stable.
IF the hysteresis value is $>=$ to the Threshold
THEN the level is set to 2 x the hysteresis value and the Off level is set to zero,
ELSE the On level $=$ Threshold + Hysteresis and the Off level $=$ Threshold - Hysteresis.
THRESHOLD PREF: 85.02 Default: 0.50% Range: 0.00 to 300.00%

The nominal level below which the outputs are set.

AT ZERO SPD FBK PREF: 85.03 Default: TRUE Range: FALSE / TRUE

Speed feedback. TRUE when at zero speed feedback, as defined by THRESHOLD and HYSTERESIS.
IF $($ abs $($ speed feedback $))>$ On Level at zero speed $=$ FALSE
ELSE if (abs(speed feedback)) <= Off Level at zero speed = TRUE
ELSE at zero speed is unchanged
AT ZERO SPD DMD PREF: 85.04 Default: TRUE Range: FALSE / TRUE

Speed demand. TRUE when at zero speed demand, as defined by THRESHOLD and HYSTERESIS.
AT STANDSTILL PREF: 85.05 Default: TRUE Range: FALSE / TRUE

TRUE when both AT ZERO SPD FBK and AT ZERO SPD DMD are TRUE.

Functional Description

Example where BAND $=0.2 \%$

AT ZERO SPD DMD \quad _

Programming

Parameter Specifications

The headings for the Parameter tables are described below.

PREF	A numeric identification of the parameter. It is used to identify the source and destinations of internal links.
Name	The parameter name.
Block	The menu page and function block under which the parameter is stored.
Type	REAL Floating point value INT Integer value BOOL A Boolean (bit) representing FALSE or TRUE ENUM An enumerated value representing a selection STRING An ASCII string WORD 16 Bit hexadecimal number
Range	This varies with parameter type: Note Decimal Places: "-" signifies an indeterminable number of units. An " x " signifies a decimal place, e.g. 一.xx \% could represent 100.00%.
Default	The default value of the parameter.
ro\rw	Denotes a Read-Only (ro) or Read-Write (rw) parameter.

Notes	You can record your application's settings here. Output parameters are not saved in non-volatile memory unless indicated.
	1. This input parameter is not saved in non-volatile memory. 2. This input parameter can only be written to when the drive is stopped. 3. The default value is dependent on the power board. 4. The default value is dependent on the frequency board. 5. This parameter is not set from DSE on a partial install.

Programming

Parameter Table: PREF Number Order

179.08	FITTED	ANALOG INPUT	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
PREF	Name	Block	Type	Range	Default	rolrw	Notes
1.03	TYPE	ANALOG INPUT 1	ENUM	$\begin{aligned} & 0:-10 . .+10 \mathrm{~V} \\ & 1: 0 . .+10 \mathrm{~V} \end{aligned}$	-10..+10 V	rw	
1.06	VALUE	ANALOG INPUT 1	REAL	_.x	100.0 \%	ro	Output
2.03	TYPE	ANALOG INPUT 2	ENUM	$\begin{aligned} & 0:-10 . .+10 \mathrm{~V} \\ & 1: 0 . .+10 \mathrm{~V} \end{aligned}$	-10..+10 V	rw	
2.06	VALUE	ANALOG INPUT 2	REAL	_.x	100.0 \%	ro	Output
3.03	TYPE	ANALOG INPUT 3	ENUM	$\begin{aligned} & 0:-10 . .+10 \mathrm{~V} \\ & 1: 0 . .+10 \mathrm{~V} \\ & 2: 0 . .20 \mathrm{~mA} \\ & 3: 4 . .20 \mathrm{~mA} \end{aligned}$	-10..+10 V	rw	
3.04	BREAK ENABLE	ANALOG INPUT 3	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
3.05	BREAK VALUE	ANALOG INPUT 3	REAL	-300.00 to 300.00%	0.00 \%	rw	
3.06	VALUE	ANALOG INPUT 3	REAL	_. ${ }^{\text {P }}$	100.0 \%	ro	Output
3.07	BREAK	ANALOG INPUT 3	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
4.03	TYPE	ANALOG INPUT 4	ENUM	$\begin{aligned} & 0:-10 . .+10 \mathrm{~V} \\ & 1: 0 . .+10 \mathrm{~V} \\ & 2: 0 . .20 \mathrm{~mA} \\ & 3: 4 . .20 \mathrm{~mA} \end{aligned}$	-10..+10 V	rw	
4.04	BREAK ENABLE	ANALOG INPUT 4	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	rw	
4.05	BREAK VALUE	ANALOG INPUT 4	REAL	-300.00 to 300.00%	0.00 \%	rw	
4.06	VALUE	ANALOG INPUT 4	REAL	_. X	100.0 \%	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
4.07	BREAK	ANALOG INPUT 4	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
5.06	VALUE	ANALOG INPUT 5	REAL	..x	0.0 \%	ro	Output
6.01	VALUE	ANALOG OUTPUT 1	REAL	-300.00 to 300.00%	0.00 \%	rw	1
6.05	TYPE	ANALOG OUTPUT 1	ENUM	$\begin{aligned} & 0:-10 . .+10 \mathrm{~V} \\ & 1: 0 . .+10 \mathrm{~V} \end{aligned}$	$0 . .+10 \mathrm{~V}$	rw	
7.01	VALUE	ANALOG OUTPUT 2	REAL	-300.00 to 300.00%	0.00 \%	rw	1
7.05	TYPE	ANALOG OUTPUT 2	ENUM	$\begin{aligned} & 0:-10 . .+10 \mathrm{~V} \\ & 1: 0 . .+10 \mathrm{~V} \end{aligned}$	0..+10 V	rw	
8.02	VALUE	DIGITAL INPUT 1	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
9.02	VALUE	DIGITAL INPUT 2	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
10.02	VALUE	DIGITAL INPUT 3	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
11.02	VALUE	DIGITAL INPUT 4	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
12.02	VALUE	DIGITAL INPUT 5	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
13.02	VALUE	DIGITAL INPUT 6	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
14.02	VALUE	DIGITAL INPUT 7	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
15.02	VALUE	DIGITAL INPUT 8	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
16.02	VALUE	DIGITAL INPUT 9	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
17.01	VALUE	DIGITAL OUTPUT 1	BOOL	0 : FALSE 1: TRUE	FALSE	rw	1

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
18.01	VALUE	DIGITAL OUTPUT 2	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	1
19.01	VALUE	DIGITAL OUTPUT 3	BOOL	0 : FALSE 1: TRUE	FALSE	rw	1
21.01	V/F SHAPE	FLUXING	ENUM	0 : LINEAR LAW 1: FAN LAW 2 : USER DEFINED	LINEAR LAW	rw	
21.02	BASE FREQUENCY	FLUXING	REAL	7.5 to 500.0 Hz	50.0 Hz	rw	1,4
21.03	FIXED BOOST	FLUXING	REAL	0.00 to 25.00 \%	0.00 \%	rw	3
21.04	AUTO BOOST	FLUXING	REAL	0.00 to 25.00%	0.00 \%	rw	
21.08	ACCELRTN BOOST	FLUXING	REAL	0.00 to 25.00 \%	0.00 \%	rw	
21.09	ENERGY SAVING	FLUXING	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
21.10	USER FREQ 1	FLUXING	REAL	0.0 to 100.0 \%	10.0 \%	rw	
21.11	USER VOLTAGE 1	FLUXING	REAL	0.0 to 100.0 \%	10.0 \%	rw	
21.12	USER FREQ 2	FLUXING	REAL	0.0 to 100.0 \%	20.0 \%	rw	
21.13	USER VOLTAGE 2	FLUXING	REAL	0.0 to 100.0 \%	20.0 \%	rw	
21.14	USER FREQ 3	FLUXING	REAL	0.0 to 100.0 \%	30.0 \%	rw	
21.15	USER VOLTAGE 3	FLUXING	REAL	0.0 to 100.0 \%	30.0 \%	rw	
21.16	USER FREQ 4	FLUXING	REAL	0.0 to 100.0 \%	40.0 \%	rw	
21.17	USER VOLTAGE 4	FLUXING	REAL	0.0 to 100.0 \%	40.0 \%	rw	
21.18	USER FREQ 5	FLUXING	REAL	0.0 to 100.0 \%	50.0 \%	rw	
21.19	USER VOLTAGE 5	FLUXING	REAL	0.0 to 100.0 \%	50.0 \%	rw	
21.20	USER FREQ 6	FLUXING	REAL	0.0 to 100.0 \%	60.0 \%	rw	
21.21	USER VOLTAGE 6	FLUXING	REAL	0.0 to 100.0 \%	60.0 \%	rw	
21.22	USER FREQ 7	FLUXING	REAL	0.0 to 100.0 \%	70.0 \%	rw	
21.23	USER VOLTAGE 7	FLUXING	REAL	0.0 to 100.0 \%	70.0 \%	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
21.24	USER FREQ 8	FLUXING	REAL	0.0 to 100.0 \%	80.0 \%	rw	
21.25	USER VOLTAGE 8	FLUXING	REAL	0.0 to 100.0 \%	80.0 \%	rw	
21.26	USER FREQ 9	FLUXING	REAL	0.0 to 100.0 \%	90.0 \%	rw	
21.27	USER VOLTAGE 9	FLUXING	REAL	0.0 to 100.0 \%	90.0 \%	rw	
21.28	USER FREQ 10	FLUXING	REAL	0.0 to 100.0 \%	100.0 \%	rw	
21.29	USER VOLTAGE 10	FLUXING	REAL	0.0 to 100.0 \%	100.0 \%	rw	
22.01	ENABLE	SLEW RATE LIMIT	BOOL	$0 \text { : FALSE }$ 1: TRUE	TRUE	rw	
22.02	ACCEL LIMIT	SLEW RATE LIMIT	REAL	1.0 to $1200.0 \mathrm{~Hz} / \mathrm{s}$	$500.0 \mathrm{~Hz} / \mathrm{s}$	rw	
22.03	DECEL LIMIT	SLEW RATE LIMIT	REAL	1.0 to $1200.0 \mathrm{~Hz} / \mathrm{s}$	$500.0 \mathrm{~Hz} / \mathrm{s}$	rw	
23.01	ENABLE	SLIP COMP	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	2
23.02	MOTORING LIMIT	SLIP COMP	REAL	0.0 to 600.0 RPM	150.0 RPM	rw	5
23.03	REGEN LIMIT	SLIP COMP	REAL	0.0 to 600.0 RPM	150.0 RPM	rw	5
25.01	ENABLE	STABILISATION	BOOL	0 : FALSE 1 : TRUE	TRUE	rw	
27.01	CONTROL MODE	MOTOR INDUCTION	ENUM	0 : VOLTS / Hz 1 : SENSORLESS VEC 2 : CLOSED-LOOP VEC	VOLTS / Hz	rw	2
27.02	POWER	MOTOR INDUCTION	REAL	0.00 to 3000.00 kW	30.00 kW	rw	3
27.03	BASE FREQUENCY	MOTOR INDUCTION	REAL	7.5 to 1000.0 Hz	50.0 Hz	rw	2,4
27.04	MOTOR VOLTAGE	MOTOR INDUCTION	REAL	0.0 to 690.0 V	400.0 V	rw	3,4
27.05	MOTOR CURRENT	MOTOR INDUCTION	REAL	0.00 to 3276.70 A	54.00 A	rw	2,3
27.06	MAG CURRENT	MOTOR INDUCTION	REAL	0.00 to 3276.70 A	16.20 A	rw	3
27.07	NAMEPLATE RPM	MOTOR INDUCTION	REAL	0.0 to 30000.0 RPM	1470.0 RPM	rw	3,4
27.08	MOTOR CONNECTION	MOTOR INDUCTION	ENUM	$\begin{aligned} & 0 \text { : DELTA } \\ & 1 \text { : STAR } \end{aligned}$	STAR	rw	3,4

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
27.09	MOTOR POLES	MOTOR INDUCTION	ENUM	0 : 2 POLE 1:4 POLE 2:6 POLE 3:8 POLE 4:10 POLE 5:12 POLE	4 POLE	rw	
27.10	POWER FACTOR	MOTOR INDUCTION	REAL	0.50 to 0.99	0.86	rw	3
27.11	OVERLOAD	MOTOR INDUCTION	REAL	1.0 to 5.0	2.0	rw	3
27.14	STATOR RES	MOTOR INDUCTION	REAL	0.0000 to 250.0000 Ohm	0.2851 Ohm	rw	3,5
27.15	LEAKAGE INDUC	MOTOR INDUCTION	REAL	0.00 to 300.00 mH	9.08 mH	rw	3,5
27.16	MUTUAL INDUC	MOTOR INDUCTION	REAL	0.00 to 3000.00 mH	36.30 mH	rw	3,5
27.17	ROTOR TIME CONST	MOTOR INDUCTION	REAL	10.00 to 30000.00 ms	506.08 ms	rw	3,5
27.23	TOTAL INERTIA	MOTOR INDUCTION	REAL	0.0000 to 300.0000 kgm 2	0.0000 kgm 2	rw	5
27.24	SUPPLY VOLTAGE	MOTOR INDUCTION	ENUM	$\begin{aligned} & 0: 230 \mathrm{~V} \\ & 1: 380 \mathrm{~V} \text { TO } 460 \mathrm{~V} \\ & 2: 500 \mathrm{~V} \\ & 3: 575 \mathrm{~V} \\ & 4: 690 \mathrm{~V} \end{aligned}$	380 V TO 460V	rw	3
29.01	DEFLUX TIME	INJ BRAKING	REAL	0.1 to 20.0 s	1.0 s	rw	3,5
29.02	FREQUENCY	INJ BRAKING	REAL	1.0 to 500.0 Hz	6.0 Hz	rw	3,5
29.03	I-LIM LEVEL	INJ BRAKING	REAL	50.00 to 150.00%	100.00 \%	rw	
29.04	DC PULSE	INJ BRAKING	REAL	0.0 to 100.0 s	2.0 s	rw	3,5
29.05	FINAL DC PULSE	INJ BRAKING	REAL	0.0 to 10.0 s	3.0 s	rw	3,5
29.06	DC LEVEL	INJ BRAKING	REAL	0.00 to 25.00%	1.25 \%	rw	3,5
29.07	TIMEOUT	INJ BRAKING	REAL	0.0 to 600.0 s	90.0 s	rw	
29.08	BASE VOLTS	INJ BRAKING	REAL	0.00 to 115.47 \%	75.00 \%	rw	3,5
29.09	ACTIVE	INJ BRAKING	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
30.01	ENABLED KEYS	OP STATION	WORD	0000 to FFFF	00F0	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
30.02	OP VERSION	OP STATION	WORD	0000 to FFFF	0000	ro	Output
30.03	OP DATABASE	OP STATION	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	ro	Output
31.01	VIEW LEVEL	ACCESS CONTROL	ENUM	0 : OPERATOR 1 : BASIC 2 : ADVANCED	BASIC	rw	
31.02	PASSWORD	ACCESS CONTROL	WORD	0000 to FFFF	0000	rw	
31.05	CONFIG NAME	ACCESS CONTROL	STRING	max length is 16 chars		rw	
31.06	STARTUP SCREEN	ACCESS CONTROL	INT	0 to 32	0	rw	
32.02	NAME	SETPOINT DISPLAY	STRING	max length is 16 chars		rw	
32.03	SCALING	SETPOINT DISPLAY	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
32.05	IGNORE PASSWORD	SETPOINT DISPLAY	BOOL	$0 \text { : FALSE }$ 1 : TRUE	TRUE	rw	
33.01	PARAMETER	OPERATOR MENU 1	PREF	00.00 to A5. 15	0	rw	
33.02	NAME	OPERATOR MENU 1	STRING	max length is 16 chars		rw	
33.03	SCALING	OPERATOR MENU 1	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
33.04	READ ONLY	OPERATOR MENU 1	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
33.05	IGNORE PASSWORD	OPERATOR MENU 1	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
34.01	PARAMETER	OPERATOR MENU 2	PREF	00.00 to A5.15	0	rw	
34.02	NAME	OPERATOR MENU 2	STRING	max length is 16 chars		rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
34.03	SCALING	OPERATOR MENU 2	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
34.04	READ ONLY	OPERATOR MENU 2	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
34.05	IGNORE PASSWORD	OPERATOR MENU 2	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
35.01	PARAMETER	OPERATOR MENU 3	PREF	00.00 to A5. 15	0	rw	
35.02	NAME	OPERATOR MENU 3	STRING	max length is 16 chars		rw	
35.03	SCALING	OPERATOR MENU 3	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
35.04	READ ONLY	OPERATOR MENU 3	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
35.05	IGNORE PASSWORD	OPERATOR MENU 3	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
36.01	PARAMETER	OPERATOR MENU 4	PREF	00.00 to A5.15	0	rw	
36.02	NAME	OPERATOR MENU 4	STRING	max length is 16 chars		rw	
36.03	SCALING	OPERATOR MENU 4	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
36.04	READ ONLY	OPERATOR MENU 4	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
36.05	IGNORE PASSWORD	OPERATOR MENU 4	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
37.01	PARAMETER	OPERATOR MENU 5	PREF	00.00 to A5. 15	0	rw	
37.02	NAME	OPERATOR MENU 5	STRING	max length is 16 chars		rw	
37.03	SCALING	OPERATOR MENU 5	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
37.04	READ ONLY	OPERATOR MENU 5	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
37.05	IGNORE PASSWORD	OPERATOR MENU 5	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
38.01	PARAMETER	OPERATOR MENU 6	PREF	00.00 to A5.15	0	rw	
38.02	NAME	OPERATOR MENU 6	STRING	max length is 16 chars		rw	
38.03	SCALING	OPERATOR MENU 6	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
38.04	READ ONLY	OPERATOR MENU 6	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
38.05	IGNORE PASSWORD	OPERATOR MENU 6	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { :TRUE } \end{aligned}$	FALSE	rw	
39.01	PARAMETER	OPERATOR MENU 7	PREF	00.00 to A5. 15	0	rw	
39.02	NAME	OPERATOR MENU 7	STRING	max length is 16 chars		rw	
39.03	SCALING	OPERATOR MENU 7	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
39.04	READ ONLY	OPERATOR MENU 7	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
39.05	IGNORE PASSWORD	OPERATOR MENU 7	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
40.01	PARAMETER	OPERATOR MENU 8	PREF	00.00 to A5.15	0	rw	
40.02	NAME	OPERATOR MENU 8	STRING	max length is 16 chars		rw	
40.03	SCALING	OPERATOR MENU 8	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
40.04	READ ONLY	OPERATOR MENU 8	BOOL	$\begin{aligned} & \hline 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	
40.05	IGNORE PASSWORD	OPERATOR MENU 8	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
41.01	PARAMETER	OPERATOR MENU 9	PREF	00.00 to A5.15	0	rw	
41.02	NAME	OPERATOR MENU 9	STRING	max length is 16 chars		rw	
41.03	SCALING	OPERATOR MENU 9	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
41.04	READ ONLY	OPERATOR MENU 9	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
41.05	IGNORE PASSWORD	OPERATOR MENU 9	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
42.01	PARAMETER	OPERATOR MENU 10	PREF	00.00 to A5. 15	0	rw	
42.02	NAME	OPERATOR MENU 10	STRING	max length is 16 chars		rw	
42.03	SCALING	OPERATOR MENU 10	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
42.04	READ ONLY	OPERATOR MENU 10	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
42.05	IGNORE PASSWORD	OPERATOR MENU 10	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
43.01	PARAMETER	OPERATOR MENU 11	PREF	00.00 to A5. 15	0	rw	
43.02	NAME	OPERATOR MENU 11	STRING	max length is 16 chars		rw	
43.03	SCALING	OPERATOR MENU 11	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
43.04	READ ONLY	OPERATOR MENU 11	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \\ & \hline \end{aligned}$	FALSE	rw	
43.05	IGNORE PASSWORD	OPERATOR MENU 11	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
44.01	PARAMETER	OPERATOR MENU 12	PREF	00.00 to A5.15	0	rw	
44.02	NAME	OPERATOR MENU 12	STRING	max length is 16 chars		rw	
44.03	SCALING	OPERATOR MENU 12	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
44.04	READ ONLY	OPERATOR MENU 12	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
44.05	IGNORE PASSWORD	OPERATOR MENU 12	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
45.01	PARAMETER	OPERATOR MENU 13	PREF	00.00 to A5.15	0	rw	
45.02	NAME	OPERATOR MENU 13	STRING	max length is 16 chars		rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
45.03	SCALING	OPERATOR MENU 13	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
45.04	READ ONLY	OPERATOR MENU 13	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
45.05	IGNORE PASSWORD	OPERATOR MENU 13	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
46.01	PARAMETER	OPERATOR MENU 14	PREF	00.00 to A5. 15	0	rw	
46.02	NAME	OPERATOR MENU 14	STRING	max length is 16 chars		rw	
46.03	SCALING	OPERATOR MENU 14	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
46.04	READ ONLY	OPERATOR MENU 14	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
46.05	IGNORE PASSWORD	OPERATOR MENU 14	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
47.01	PARAMETER	OPERATOR MENU 15	PREF	00.00 to A5.15	0	rw	
47.02	NAME	OPERATOR MENU 15	STRING	max length is 16 chars		rw	
47.03	SCALING	OPERATOR MENU 15	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
47.04	READ ONLY	OPERATOR MENU 15	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
47.05	IGNORE PASSWORD	OPERATOR MENU 15	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
48.01	PARAMETER	OPERATOR MENU 16	PREF	00.00 to A5. 15	0	rw	
48.02	NAME	OPERATOR MENU 16	STRING	max length is 16 chars		rw	
48.03	SCALING	OPERATOR MENU 16	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
48.04	READ ONLY	OPERATOR MENU 16	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
48.05	IGNORE PASSWORD	OPERATOR MENU 16	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	rw	
49.01	PARAMETER	OPERATOR MENU 17	PREF	00.00 to A5.15	0	rw	
49.02	NAME	OPERATOR MENU 17	STRING	max length is 16 chars		rw	
49.03	SCALING	OPERATOR MENU 17	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
49.04	READ ONLY	OPERATOR MENU 17	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	rw	
49.05	IGNORE PASSWORD	OPERATOR MENU 17	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
50.01	PARAMETER	OPERATOR MENU 18	PREF	00.00 to A5. 15	0	rw	
50.02	NAME	OPERATOR MENU 18	STRING	max length is 16 chars		rw	
50.03	SCALING	OPERATOR MENU 18	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
50.04	READ ONLY	OPERATOR MENU 18	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
50.05	IGNORE PASSWORD	OPERATOR MENU 18	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
51.01	PARAMETER	OPERATOR MENU 19	PREF	00.00 to A5.15	0	rw	
51.02	NAME	OPERATOR MENU 19	STRING	max length is 16 chars		rw	
51.03	SCALING	OPERATOR MENU 19	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
51.04	READ ONLY	OPERATOR MENU 19	BOOL	$\begin{aligned} & \hline 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	
51.05	IGNORE PASSWORD	OPERATOR MENU 19	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
52.01	PARAMETER	OPERATOR MENU 20	PREF	00.00 to A5.15	0	rw	
52.02	NAME	OPERATOR MENU 20	STRING	max length is 16 chars		rw	
52.03	SCALING	OPERATOR MENU 20	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
52.04	READ ONLY	OPERATOR MENU 20	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
52.05	IGNORE PASSWORD	OPERATOR MENU 20	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
53.01	PARAMETER	OPERATOR MENU 21	PREF	00.00 to A5. 15	0	rw	
53.02	NAME	OPERATOR MENU 21	STRING	max length is 16 chars		rw	
53.03	SCALING	OPERATOR MENU 21	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
53.04	READ ONLY	OPERATOR MENU 21	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
53.05	IGNORE PASSWORD	OPERATOR MENU 21	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
54.01	PARAMETER	OPERATOR MENU 22	PREF	00.00 to A5. 15	0	rw	
54.02	NAME	OPERATOR MENU 22	STRING	max length is 16 chars		rw	
54.03	SCALING	OPERATOR MENU 22	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
54.04	READ ONLY	OPERATOR MENU 22	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \\ & \hline \end{aligned}$	FALSE	rw	
54.05	IGNORE PASSWORD	OPERATOR MENU 22	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
55.01	PARAMETER	OPERATOR MENU 23	PREF	00.00 to A5.15	0	rw	
55.02	NAME	OPERATOR MENU 23	STRING	max length is 16 chars		rw	
55.03	SCALING	OPERATOR MENU 23	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
55.04	READ ONLY	OPERATOR MENU 23	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
55.05	IGNORE PASSWORD	OPERATOR MENU 23	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
56.01	PARAMETER	OPERATOR MENU 24	PREF	00.00 to A5.15	0	rw	
56.02	NAME	OPERATOR MENU 24	STRING	max length is 16 chars		rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
56.03	SCALING	OPERATOR MENU 24	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
56.04	READ ONLY	OPERATOR MENU 24	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
56.05	IGNORE PASSWORD	OPERATOR MENU 24	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
57.01	PARAMETER	OPERATOR MENU 25	PREF	00.00 to A5.15	0	rw	
57.02	NAME	OPERATOR MENU 25	STRING	max length is 16 chars		rw	
57.03	SCALING	OPERATOR MENU 25	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
57.04	READ ONLY	OPERATOR MENU 25	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
57.05	IGNORE PASSWORD	OPERATOR MENU 25	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
58.01	PARAMETER	OPERATOR MENU 26	PREF	00.00 to A5.15	0	rw	
58.02	NAME	OPERATOR MENU 26	STRING	max length is 16 chars		rw	
58.03	SCALING	OPERATOR MENU 26	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
58.04	READ ONLY	OPERATOR MENU 26	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
58.05	IGNORE PASSWORD	OPERATOR MENU 26	BOOL	$\begin{aligned} & \hline 0: \text { FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
59.01	PARAMETER	OPERATOR MENU 27	PREF	00.00 to A5.15	0	rw	
59.02	NAME	OPERATOR MENU 27	STRING	max length is 16 chars		rw	
59.03	SCALING	OPERATOR MENU 27	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
59.04	READ ONLY	OPERATOR MENU 27	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
59.05	IGNORE PASSWORD	OPERATOR MENU 27	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
60.01	PARAMETER	OPERATOR MENU 28	PREF	00.00 to A5.15	0	rw	
60.02	NAME	OPERATOR MENU 28	STRING	max length is 16 chars		rw	
60.03	SCALING	OPERATOR MENU 28	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
60.04	READ ONLY	OPERATOR MENU 28	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
60.05	IGNORE PASSWORD	OPERATOR MENU 28	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
61.01	PARAMETER	OPERATOR MENU 29	PREF	00.00 to A5.15	0	rw	
61.02	NAME	OPERATOR MENU 29	STRING	max length is 16 chars		rw	
61.03	SCALING	OPERATOR MENU 29	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
61.04	READ ONLY	OPERATOR MENU 29	BOOL	0 : FALSE 1: TRUE	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
61.05	IGNORE PASSWORD	OPERATOR MENU 29	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
62.01	PARAMETER	OPERATOR MENU 30	PREF	00.00 to A5.15	0	rw	
62.02	NAME	OPERATOR MENU 30	STRING	max length is 16 chars		rw	
62.03	SCALING	OPERATOR MENU 30	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
62.04	READ ONLY	OPERATOR MENU 30	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
62.05	IGNORE PASSWORD	OPERATOR MENU 30	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
63.01	PARAMETER	OPERATOR MENU 31	PREF	00.00 to A5. 15	0	rw	
63.02	NAME	OPERATOR MENU 31	STRING	max length is 16 chars		rw	
63.03	SCALING	OPERATOR MENU 31	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	
63.04	READ ONLY	OPERATOR MENU 31	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
63.05	IGNORE PASSWORD	OPERATOR MENU 31	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
64.01	PARAMETER	OPERATOR MENU 32	PREF	00.00 to A5.15	0	rw	
64.02	NAME	OPERATOR MENU 32	STRING	max length is 16 chars		rw	
64.03	SCALING	OPERATOR MENU 32	ENUM	0 : NONE 1 : DISPLAY SCALE 1 2 : DISPLAY SCALE 2 3 : DISPLAY SCALE 3 4 : DISPLAY SCALE 4	NONE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
64.04	READ ONLY	OPERATOR MENU 32	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
64.05	IGNORE PASSWORD	OPERATOR MENU 32	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
65.01	DECIMAL PLACE	DISPLAY SCALE 1	ENUM	0 : DEFAULT 1 : X.XXXX 2 : X.XXX 3: X.XX 4 : X.X 5 : X.	DEFAULT	rw	
65.02	FORMULA	DISPLAY SCALE 1	ENUM	$\begin{aligned} & 0: A / B^{*} X+C \\ & 1: A / B^{*}(X+C) \\ & 2: A /\left(B^{*} X\right)+C \\ & 3: A /\left(B^{*}(X+C)\right) \end{aligned}$	A/B * $X+C$	rw	
65.03	COEFFICIENT A	DISPLAY SCALE 1	REAL	-32768.0000 to 32767.0000	1.0000	rw	
65.04	COEFFICIENT B	DISPLAY SCALE 1	REAL	-32768.0000 to 32767.0000	1.0000	rw	
65.05	COEFFICIENT C	DISPLAY SCALE 1	REAL	-32768.0000 to 32767.0000	0.0000	rw	
65.06	HIGH LIMIT	DISPLAY SCALE 1	REAL	-32768.0000 to 32767.0000	0.0000	rw	
65.07	LOW LIMIT	DISPLAY SCALE 1	REAL	-32768.0000 to 32767.0000	0.0000	rw	
65.08	UNITS	DISPLAY SCALE 1	STRING	max length is 6 chars		rw	
66.01	DECIMAL PLACE	DISPLAY SCALE 2	ENUM	0 : DEFAULT 1: X.XXXX 2 : X.XXX 3: X.XX 4: X.X 5 : X.	DEFAULT	rw	
66.02	FORMULA	DISPLAY SCALE 2	ENUM	$\begin{aligned} & 0: A / B^{*} X+C \\ & 1: A / B^{*}(X+C) \\ & 2: A /\left(B^{*} X\right)+C \\ & 3: A /\left(B^{*}(X+C)\right) \\ & \hline \end{aligned}$	A/B * $X+C$	rw	
66.03	COEFFICIENT A	DISPLAY SCALE 2	REAL	-32768.0000 to 32767.0000	1.0000	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
66.04	COEFFICIENT B	DISPLAY SCALE 2	REAL	-32768.0000 to 32767.0000	1.0000	rw	
66.05	COEFFICIENT C	DISPLAY SCALE 2	REAL	-32768.0000 to 32767.0000	0.0000	rw	
66.06	HIGH LIMIT	DISPLAY SCALE 2	REAL	-32768.0000 to 32767.0000	0.0000	rw	
66.07	LOW LIMIT	DISPLAY SCALE 2	REAL	-32768.0000 to 32767.0000	0.0000	rw	
66.08	UNITS	DISPLAY SCALE 2	STRING	max length is 6 chars		rw	
67.01	DECIMAL PLACE	DISPLAY SCALE 3	ENUM	0 : DEFAULT 1: X.XXXX 2: X.XXX 3: X.XX 4: X.X 5 : X	DEFAULT	rw	
67.02	FORMULA	DISPLAY SCALE 3	ENUM	$\begin{aligned} & 0: A / B^{*} X+C \\ & 1: A / B^{*}(X+C) \\ & 2: A /\left(B^{*} X\right)+C \\ & 3: A /\left(B^{*}(X+C)\right) \end{aligned}$	A/B * $X+C$	rw	
67.03	COEFFICIENT A	DISPLAY SCALE 3	REAL	-32768.0000 to 32767.0000	1.0000	rw	
67.04	COEFFICIENT B	DISPLAY SCALE 3	REAL	-32768.0000 to 32767.0000	1.0000	rw	
67.05	COEFFICIENT C	DISPLAY SCALE 3	REAL	-32768.0000 to 32767.0000	0.0000	rw	
67.06	HIGH LIMIT	DISPLAY SCALE 3	REAL	-32768.0000 to 32767.0000	0.0000	rw	
67.07	LOW LIMIT	DISPLAY SCALE 3	REAL	-32768.0000 to 32767.0000	0.0000	rw	
67.08	UNITS	DISPLAY SCALE 3	STRING	max length is 6 chars		rw	
68.01	DECIMAL PLACE	DISPLAY SCALE 4	ENUM	0 : DEFAULT 1 : X.XXXX 2: X.XXX 3: X.XX 4 : X.X $5: X$.	DEFAULT	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
68.02	FORMULA	DISPLAY SCALE 4	ENUM	$\begin{aligned} & 0: A / B * X+C \\ & 1: A / B *(X+C) \\ & 2: A /(B * X)+C \\ & 3: A /(B *(X+C)) \end{aligned}$	A/B * $\mathrm{X}+\mathrm{C}$	rw	
68.03	COEFFICIENT A	DISPLAY SCALE 4	REAL	-32768.0000 to 32767.0000	1.0000	rw	
68.04	COEFFICIENT B	DISPLAY SCALE 4	REAL	-32768.0000 to 32767.0000	1.0000	rw	
68.05	COEFFICIENT C	DISPLAY SCALE 4	REAL	-32768.0000 to 32767.0000	0.0000	rw	
68.06	HIGH LIMIT	DISPLAY SCALE 4	REAL	-32768.0000 to 32767.0000	0.0000	rw	
68.07	LOW LIMIT	DISPLAY SCALE 4	REAL	-32768.0000 to 32767.0000	0.0000	rw	
68.08	UNITS	DISPLAY SCALE 4	STRING	max length is 6 chars		rw	
69.01	VHZ ENABLE	FLYCATCHING	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
69.02	START MODE	FLYCATCHING	ENUM	0 : ALWAYS 1 : TRIP OR POWER UP 2 : TRIP	ALWAYS	rw	
69.03	SEARCH MODE	FLYCATCHING	ENUM	0 : BIDIRECTIONAL 1 : UNIDIRECTION	BIDIRECTION AL	rw	
69.04	SEARCH VOLTS	FLYCATCHING	REAL	0.00 to 100.00%	8.00 \%	rw	3,5
69.05	SEARCH BOOST	FLYCATCHING	REAL	0.00 to 50.00 \%	15.00 \%	rw	3,5
69.06	SEARCH TIME	FLYCATCHING	REAL	0.1 to 60.0 s	15.0 s	rw	3,5
69.07	MIN SEARCH SPEED	FLYCATCHING	REAL	0.0 to 500.0 Hz	5.0 Hz	rw	
69.08	REFLUX TIME	FLYCATCHING	REAL	0.1 to 20.0 s	5.0 s	rw	3,5
69.13	ACTIVE	FLYCATCHING	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
69.14	SETPOINT	FLYCATCHING	REAL	_.xx	0.00 \%	ro	Output
69.15	VECTOR ENABLE	FLYCATCHING	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
70.01	QUADRATIC TORQUE	FEEDBACKS	BOOL	0 : FALSE 1: TRUE	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
70.02	DC LINK VOLTS	FEEDBACKS	REAL	-.	0 V	ro	Output
70.03	TERMINAL VOLTS	FEEDBACKS	REAL	-.	0 V	ro	Output
70.04	SPEED FBK RPM	FEEDBACKS	REAL	_. XX	0.00 RPM	ro	Output
70.05	SPEED FBK REV/S	FEEDBACKS	REAL	_. xx	$0.00 \mathrm{rev} / \mathrm{s}$	ro	Output
70.06	SPEED FBK \%	FEEDBACKS	REAL	_. XX	0.00 \%	ro	Output
70.10	TORQUE FEEDBACK	FEEDBACKS	REAL	_. XX	0.00 \%	ro	Output
70.11	FIELD FEEDBACK	FEEDBACKS	REAL	_. XX	0.00 \%	ro	Output
70.12	MOTOR CURRENT \%	FEEDBACKS	REAL	_. XX	0.00 \%	ro	Output
70.13	MOTOR CURRENT A	FEEDBACKS	REAL	_. X	0.0 A	ro	Output
70.17	HEATSINK TEMP	FEEDBACKS	REAL	-	28 C	ro	Output
70.18	HEATSINK TEMP	FEEDBACKS	REAL	-.	28 \%	ro	Output
70.19	STACK RATING A	FEEDBACKS	REAL	_.x	59.0 A	ro	Output
70.20	OVERLOAD LEVEL	FEEDBACKS	ENUM	$\begin{aligned} & 0: \text { LOW } \\ & 1: \text { HIGH } \end{aligned}$	HIGH	rw	
71.01	PULSE ENC VOLTS	ENCODER	REAL	10.0 to 20.0 V	10.0 V	rw	
71.02	ENCODER LINES	ENCODER	INT	32 to 262143	2048	rw	2
71.03	ENCODER INVERT	ENCODER	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
71.04	ENCODER TYPE	ENCODER	ENUM	0 : QUADRATURE 1 : CLOCK/DIR 2 : CLOCK 3 : QUADRATURE DIFF 4 : CLOCK/DIR DIFF 5 : CLOCK DIFF 6 : SINCOS INC 7 : ABS ENDAT ST 8 : ABS ENDAT MT	QUADRATUR E DIFF	rw	2
71.05	OUTPUT GBOX IN	ENCODER	INT	1 to 2000000000	1	rw	2, 5
71.06	ENCODER MECH O/S	ENCODER	REAL	0.0000 to 360.0000 deg	0.0000 deg	rw	2

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
71.09	SHAFT POSITION	ENCODER	REAL	_.xx	0.00 deg	ro	Output
71.10	LOAD POSITION	ENCODER	REAL	_.xx	0.00 deg	ro	Output
71.13	CALIBRATN STATUS	ENCODER	ENUM	0 : NOT REQUIRED 1 : DRIVE NOT STOPD 2 : MOTOR NOT STOPD 3 : ENDAT FAULT 4 : CAL IN PROGRESS 5 : LD PSN IN PRGRSS 6 : COMPLETED 7 : CALIBRATION LOST 8 : CALIBRATN FAILED	NOT REQUIRED	ro	Output
71.15	REV COUNT	ENCODER	INT	-	0	ro	Output
71.22	SINCOS ENC VOLTS	ENCODER	ENUM	$\begin{aligned} & \hline 0: 5 \mathrm{~V} \\ & 1: 10 \mathrm{~V} \end{aligned}$	5 V	rw	2
71.23	RESET LINE COUNT	ENCODER	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
71.24	CAL FAIL RETRY	ENCODER	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	2
71.26	OUTPUT GBOX OUT	ENCODER	INT	-2000000000 to 2000000000	1	rw	2
71.30	ENCODER FEEDBACK	ENCODER	REAL	_.xx	0.00 RPM	ro	Output
71.31	LINE COUNT X4	ENCODER	INT	-	0	ro	Output
73.01	RANDOM PATTERN	PATTERN GEN	BOOL	0 : FALSE 1 : TRUE	TRUE	rw	
73.02	FREQ SELECT	PATTERN GEN	REAL	2000 to 6000 Hz	3000 Hz	rw	5
73.03	DEFLUX DELAY	PATTERN GEN	REAL	0.1 to 10.0 s	4.0 s	rw	3,5
73.04	DRIVE FREQUENCY	PATTERN GEN	REAL	_.xx	0.00 Hz	ro	Output
73.05	ACTUAL PWM FREQ	PATTERN GEN	REAL	-	3000 Hz	ro	Output
73.11	PWM FREQ PMAC	PATTERN GEN	ENUM	$\begin{aligned} & \hline 0: 4 \mathrm{KHz} \\ & 1: 8 \mathrm{KHz} \end{aligned}$	4 KHz	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
78.01	SPEED PROP GAIN	SPEED LOOP	REAL	0.0 to 3000.0	20.0	rw	
78.02	SPEED INT TIME	SPEED LOOP	REAL	1 to 15000 ms	100 ms	rw	
78.03	INT DEFEAT	SPEED LOOP	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
78.04	SPEED INT PRESET	SPEED LOOP	REAL	-500.00 to 500.00 \%	0.00 \%	rw	
78.05	SPEED DMD FILTER	SPEED LOOP	REAL	0.0 to 14.0 ms	0.0 ms	rw	
78.06	SPEED FBK FILTER	SPEED LOOP	REAL	0.0 to 15.0 ms	0.0 ms	rw	
78.07	AUX TORQUE DMD	SPEED LOOP	REAL	-300.00 to 300.00 \%	0.00 \%	rw	
78.08	ADAPTIVE THRESH	SPEED LOOP	REAL	0.00 to 10.00 \%	0.00 \%	rw	
78.09	ADAPTIVE P-GAIN	SPEED LOOP	REAL	0.00 to 300.00	20.00	rw	
78.10	DIRECT IP SELECT	SPEED LOOP	ENUM	0 : NONE 1 : ANIN 1 2 : ANIN 2 3 : ANIN 3 4 : ANIN 4 5 : ANIN 5 6 : ANIN 6	NONE	rw	
78.11	DIRECT RATIO	SPEED LOOP	REAL	-10.0000 to 10.0000	1.0000	rw	
78.12	DIRCT IP POS LIM	SPEED LOOP	REAL	-110.00 to 110.00%	110.00 \%	rw	
78.13	DIRCT IP NEG LIM	SPEED LOOP	REAL	-110.00 to 110.00%	-110.00 \%	rw	
78.14	SPEED POS LIM	SPEED LOOP	REAL	-110.00 to 110.00%	110.00 \%	rw	
78.15	SPEED NEG LIM	SPEED LOOP	REAL	-110.00 to 110.00 \%	-110.00 \%	rw	
78.16	TORQ DMD ISOLATE	SPEED LOOP	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
78.17	TOTL SPD DMD RPM	SPEED LOOP	REAL	_. xx	0.00 RPM	ro	Output
78.18	TOTAL SPD DMD \%	SPEED LOOP	REAL	_. xx	0.00 \%	ro	Output
78.19	SPEED ERROR	SPEED LOOP	REAL	_. xx	0.00 \%	ro	Output
78.20	TORQUE DEMAND	SPEED LOOP	REAL	_.xx	0.00 \%	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
78.21	DIRECT INPUT	SPEED LOOP	REAL	_.xx	0.00 \%	ro	Output
78.26	PHASE INPUT	SPEED LOOP	REAL	_. xX	0.00 \%	ro	Output
78.27	COMPENSATION F1	SPEED LOOP	REAL	200 to 8000 Hz	2000 Hz	rw	
78.28	DEMAND SOURCE	SPEED LOOP	ENUM	0 : LOCAL 1 : REMOTE 2 : COMMS 3 : CELITE+ 4 : FIREWIRE 5 : DIRECT FIREWIRE	REMOTE	ro	Output
78.29	SPD PI OUTPUT	SPEED LOOP	REAL	_.xx	0.00 \%	ro	Output
78.30	COMPENSATN TYPE	SPEED LOOP	ENUM	0 : NONE 1 : MAX ATTENUATION 2 : MINIMUM PHASE 3 : PHASE ADVANCE 4 : NOTCH FILTER	NONE	rw	2
78.31	COMPENSATION F2	SPEED LOOP	REAL	200 to 8000 Hz	2000 Hz	rw	
80.01	ENABLE	AUTOTUNE	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
80.02	MODE	AUTOTUNE	ENUM	0 : STATIONARY 1 : ROTATING 2 : SPD LOOP ROTATNG 3 : SPD LOOP STATNRY	ROTATING	rw	
80.03	TEST DISABLE	AUTOTUNE	WORD	0000 to FFFF	0000	rw	
80.09	ACTIVE	AUTOTUNE	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
80.20	SPD LOOP BNDWDTH	AUTOTUNE	REAL	0.0 to 500.0 Hz	2.0 Hz	rw	
80.23	SPD MAX TORQUE	AUTOTUNE	REAL	0.0 to 500.0 \%	50.0 \%	rw	
80.24	SPD MAX SPEED	AUTOTUNE	REAL	15.0 to 100.0 \%	50.0 \%	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
81.01	VOLTAGE MODE	VOLTAGE CONTROL	ENUM	0 : NONE 1 : FIXED 2 : AUTOMATIC	NONE	rw	
81.02	MOTOR VOLTS	VOLTAGE CONTROL	REAL	0.0 to 575.0 V	400.0 V	rw	1,3,4
81.03	BASE VOLTS	VOLTAGE CONTROL	REAL	0.00 to 115.47 \%	100.00 \%	rw	
82.01	CURRENT LIMIT	CURRENT LIMIT	REAL	0.00 to 300.00 \%	150.00 \%	rw	
82.02	REGEN LIM ENABLE	CURRENT LIMIT	BOOL	0 : FALSE 1: TRUE	TRUE	rw	
83.01	POS TORQUE LIM	TORQUE LIMIT	REAL	-300.00 to 300.00%	150.00 \%	rw	
83.02	NEG TORQUE LIM	TORQUE LIMIT	REAL	-300.00 to 300.00%	-150.00 \%	rw	
83.03	MAIN TORQUE LIM	TORQUE LIMIT	REAL	0.00 to 300.00%	150.00 \%	rw	
83.04	SYMMETRIC LIM	TORQUE LIMIT	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
83.05	ACTUAL POS LIM	TORQUE LIMIT	REAL	_. xx	0.00 \%	ro	Output
83.06	ACTUAL NEG LIM	TORQUE LIMIT	REAL	_. xx	0.00 \%	ro	Output
83.07	FAST STOP T-LIM	TORQUE LIMIT	REAL	0.00 to 300.00 \%	150.00 \%	rw	
84.01	AIMING POINT	INVERSE TIME	REAL	50.00 to 105.00%	105.00 \%	rw	
84.02	DELAY	INVERSE TIME	REAL	5.0 to 60.0 s	60.0 s	rw	
84.03	DOWN TIME	INVERSE TIME	REAL	1.0 to 10.0 s	10.0 s	rw	
84.04	UP TIME	INVERSE TIME	REAL	1.0 to 600.0 s	120.0 s	rw	
84.05	IT LIMITING	INVERSE TIME	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
84.06	INVERSE TIME OP	INVERSE TIME	REAL	_.xx	150.00 \%	ro	Output
84.08	IT WARNING	INVERSE TIME	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
85.01	HYSTERISIS	ZERO SPEED	REAL	0.00 to 300.00 \%	0.10 \%	rw	
85.02	THRESHOLD	ZERO SPEED	REAL	0.00 to 300.00 \%	0.50 \%	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
85.03	AT ZERO SPD FBK	ZERO SPEED	BOOL	0 : FALSE 1 : TRUE	TRUE	ro	Output
85.04	AT ZERO SPD DMD	ZERO SPEED	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	TRUE	ro	Output
85.05	AT STANDSTILL	ZERO SPEED	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	TRUE	ro	Output
91.01	INPUT	SKIP FREQUENCIES	REAL	-300.00 to 300.00\%	0.00 \%	rw	
91.02	BAND 1	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.03	FREQUENCY 1	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.04	BAND 2	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.05	FREQUENCY 2	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.06	BAND 3	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.07	FREQUENCY 3	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.08	BAND 4	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.09	FREQUENCY 4	SKIP FREQUENCIES	REAL	0.0 to 500.0 Hz	0.0 Hz	rw	
91.10	OUTPUT	SKIP FREQUENCIES	REAL	_. xX	0.00 \%	ro	Output
91.11	OUTPUT Hz	SKIP FREQUENCIES	REAL	_. ${ }^{\text {x }}$	0.0 Hz	ro	Output
91.12	INPUT Hz	SKIP FREQUENCIES	REAL	_. ${ }^{0}$	0.0 Hz	ro	Output
92.01	RUN FORWARD	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	
92.02	RUN REVERSE	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
92.03	LATCHED RUN	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
92.04	JOG	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
92.05	CONTACTOR CLOSED	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	TRUE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
92.06	DRIVE ENABLE	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0: \text { FALSE } \\ & 1: \text { TRUE } \end{aligned}$	TRUE	rw	
92.07	NOT FAST STOP	SEQUENCING LOGIC	BOOL	0 : FALSE 1: TRUE	TRUE	rw	
92.08	NOT COAST STOP	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1 : TRUE	TRUE	rw	
92.09	REMOTE REVERSE	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
92.10	REM TRIP RESET	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	rw	
92.11	TRIP RST BY RUN	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1: TRUE	TRUE	rw	
92.12	POWER UP START	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
92.13	TRIPPED	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	ro	Output
92.14	RUNNING	SEQUENCING LOGIC	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
92.15	JOGGING	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
92.16	STOPPING	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
92.17	OUTPUT CONTACTOR	SEQUENCING LOGIC	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
92.18	SWITCH ON ENABLE	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	ro	Output
92.19	SWITCHED ON	SEQUENCING LOGIC	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
92.20	READY	SEQUENCING LOGIC	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
92.21	SYSTEM RESET	SEQUENCING LOGIC	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
92.22	SEQUENCER STATE	SEQUENCING LOGIC	ENUM	0 : START DISABLED 1 : START ENABLED 2 : SWITCHED ON 3 : READY 4 : ENABLED 5 : F-STOP ACTIVE 6 : TRIP ACTIVE 7 : TRIPPED	START DISABLED	ro	Output
92.23	REMOTE REV OUT	SEQUENCING LOGIC	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
92.24	HEALTHY	SEQUENCING LOGIC	BOOL	0 : FALSE 1: TRUE	TRUE	ro	Output
92.25	START DELAY	SEQUENCING LOGIC	REAL	0.000 to 30.000 s	0.000 s	rw	
92.26	FAN RUNNING	SEQUENCING LOGIC	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
92.27	CONTACTOR DELAY	SEQUENCING LOGIC	REAL	1.0 to 10.0 s	10.0 s	rw	
93.01	ENABLE	AUTO RESTART	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
93.02	ATTEMPTS	AUTO RESTART	INT	1 to 10	5	rw	
93.03	INITIAL DELAY 1	AUTO RESTART	REAL	0.0 to 600.0 s	10.0 s	rw	
93.04	ATTEMPT DELAY 1	AUTO RESTART	REAL	0.0 to 600.0 s	10.0 s	rw	
93.05	TRIGGER 1 WORD 1	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.06	TRIGGER 1 WORD 2	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.07	INITIAL DELAY 2	AUTO RESTART	REAL	0.0 to 600.0 s	0.1 s	rw	
93.08	ATTEMPT DELAY 2	AUTO RESTART	REAL	0.0 to 600.0 s	0.1 s	rw	
93.09	TRIGGER 2 WORD 1	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.10	TRIGGER 2 WORD 2	AUTO RESTART	WORD	0000 to FFFF	0000	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
93.11	PENDING	AUTO RESTART	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
93.12	RESTARTING	AUTO RESTART	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
93.13	ATTEMPTS LEFT	AUTO RESTART	INT	-	5	ro	Output
93.14	TIME LEFT	AUTO RESTART	REAL	_. ${ }^{\text {x }}$	0.0 s	ro	Output
93.15	TRIGGER 1 WORD 3	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.16	TRIGGER 1 WORD 4	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.17	TRIGGER 2 WORD 3	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.18	TRIGGER 2 WORD 4	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.19	TRIGGER 1 WORD 5	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.20	TRIGGER 1 WORD 6	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.21	TRIGGER 2 WORD 5	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
93.22	TRIGGER 2 WORD 6	AUTO RESTART	WORD	0000 to FFFF	0000	rw	
94.01	SEQ MODES	LOCAL CONTROL	ENUM	0 : LOCAL/REMOTE 1 : LOCAL ONLY 2 : REMOTE ONLY	LOCAL/REMO TE	rw	
94.02	REF MODES	LOCAL CONTROL	ENUM	0 : LOCAL/REMOTE 1 : LOCAL ONLY 2 : REMOTE ONLY	LOCAL/REMO TE	rw	
94.03	POWER UP MODE	LOCAL CONTROL	ENUM	0 : LOCAL 1 : REMOTE 2 : AUTOMATIC	REMOTE	rw	
94.04	SEQ DIRECTION	LOCAL CONTROL	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
94.05	REMOTE SEQ	LOCAL CONTROL	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	TRUE	ro	Output
94.06	REMOTE REF	LOCAL CONTROL	BOOL	0 : FALSE 1: TRUE	TRUE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
95.01	REMOTE COMMS SEL	COMMS CONTROL	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
95.02	REMOTE SEQ MODES	COMMS CONTROL	ENUM	0 : TERMINALS/COMMS 1 : TERMINALS ONLY 2 : COMMS ONLY	TERMINALS/C OMMS	rw	
95.03	REMOTE REF MODES	COMMS CONTROL	ENUM	0 : TERMINALS/COMMS 1 : TERMINALS ONLY 2 : COMMS ONLY	TERMINALS/C OMMS	rw	
95.04	COMMS TIMEOUT	COMMS CONTROL	REAL	0.0 to 600.0 s	0.0 s	rw	
95.05	COMMS COMMAND	COMMS CONTROL	WORD	0000 to FFFF	0000	rw	1
95.06	COMMS SEQ	COMMS CONTROL	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	ro	Output
95.07	COMMS REF	COMMS CONTROL	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
95.08	COMMS STATUS	COMMS CONTROL	WORD	0000 to FFFF	0470	ro	Output
95.10	FIREWIRE REF SEL	COMMS CONTROL	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
95.11	FIREWIRE REF	COMMS CONTROL	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
96.01	TRIP 1 (NEWEST)	TRIPS HISTORY	ENUM	0 : NO TRIP 1 : OVERVOLTAGE 2 : UNDERVOLTAGE 3 : OVERCURRENT 4 : HEATSINK 5 : EXTERNAL TRIP 6 : INPUT 1 BREAK 7 : INPUT 2 BREAK 8 : MOTOR STALLED 9 : INVERSE TIME 10 : BRAKE RESISTOR 11: BRAKE SWITCH 12: OP STATION 13 : COMMS BREAK 14 : CONTACTOR FBK 15 : SPEED FEEDBACK 16 : AMBIENT TEMP 17 : MOTOR OVERTEMP 18 : CURRENT LIMIT 20 : 24V FAILURE 21 : LOW SPEED OVER I 22 : PHASE FAIL 23 : FBK ENCODER FAIL 24 : DESAT (OVER I) 25 : VDC RIPPLE 26 : BRAKE SHORT CCT 27 : OVERSPEED 28 : ANALOG INPUT ERR 29 : INT DB RESISTOR List continues - see 96.02	NO TRIP	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
96.02	TRIP 2	TRIPS HISTORY	ENUM	31 : UNKNOWN 32 : OTHER 33 : MAX SPEED LOW 34 : MAINS VOLTS LOW 35 : NOT AT SPEED 36 : MAG CURRENT FAIL 37 : NEGATIVE SLIP F 38 : TR TOO LARGE 39 : TR TOO SMALL 40 : MAX RPM DATA ERR 41 : STACK TRIP 42 : LEAKGE L TIMEOUT 43 : POWER LOSS STOP 44 : MOTR TURNING ERR 45 : MOTR STALLED ERR 46 : AT TORQ LIM ERR 48 : FBK ENCODER CAL 49 : OUTPUT GBX ERROR 50 : APP HALTED 51: APP ERROR 52 : FIRMWARE ERROR 57 : RESOLVER ERROR 58 : I2T MOTOR TRIP 60 : SAFE TORQUE OFF 61: REF ENCODER CAL 62 : REF ENCODER FAIL 63 : DRIVE CONFIG ERR 65 : CUST TRIP 1 66 : CUST TRIP 2 67 : CUST TRIP 3 68 : CUST TRIP 4 69 : CUST TRIP 5 70 : CUST TRIP 6 71 : CUST TRIP 7	NO TRIP	ro	Output
96.03	TRIP 3	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
96.04	TRIP 4	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
96.05	TRIP 5	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
96.06	TRIP 6	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
96.07	TRIP 7	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
96.08	TRIP 8	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
96.09	TRIP 9	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
96.10	TRIP 10 (OLDEST)	TRIPS HISTORY	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
97.01	DISABLED WORD 1	TRIPS STATUS	WORD	0000 to FFFF	0300	rw	5
97.02	DISABLED WORD 2	TRIPS STATUS	WORD	0000 to FFFF	0800	rw	
97.05	ACTIVE WORD 1	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.06	ACTIVE WORD 2	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.07	WARNINGS WORD 1	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.08	WARNINGS WORD 2	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.09	FIRST TRIP	TRIPS STATUS	ENUM	Refer to 96.01, 96.02	NO TRIP	ro	Output
97.10	DISABLED WORD 3	TRIPS STATUS	WORD	0000 to FFFF	0000	rw	
97.11	DISABLED WORD 4	TRIPS STATUS	WORD	0000 to FFFF	0000	rw	
97.14	ACTIVE WORD 3	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.15	ACTIVE WORD 4	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.16	WARNINGS WORD 3	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.17	WARNINGS WORD 4	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.18	DISABLED WORD 5	TRIPS STATUS	WORD	0000 to FFFF	0000	rw	
97.19	DISABLED WORD 6	TRIPS STATUS	WORD	0000 to FFFF	0000	rw	
97.22	ACTIVE WORD 5	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.23	ACTIVE WORD 6	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.24	WARNINGS WORD 5	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output
97.25	WARNINGS WORD 6	TRIPS STATUS	WORD	0000 to FFFF	0000	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
97.26	U PHASE FAULT	TRIPS STATUS	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
97.27	V PHASE FAULT	TRIPS STATUS	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
97.28	W PHASE FAULT	TRIPS STATUS	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
98.01	INVERT THERMIST	I/O TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rv	
98.02	INVERT ENC TRIP	I/O TRIPS	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
98.03	INPUT 1 BREAK	I/O TRIPS	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
98.04	INPUT 2 BREAK	I/O TRIPS	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
98.05	THERMISTOR	I/O TRIPS	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
98.06	ENCODER	I/O TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
98.07	EXTERNAL TRIP	I/O TRIPS	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
98.08	EXT TRIP MODE	I/O TRIPS	ENUM	0 : TRIP 1 : COAST 2 : DISABLED	DISABLED	rw	
98.09	COMMS BREAK	I/O TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
98.10	INPUT 1 NAME	I/O TRIPS	STRING	max length is 16 chars		rw	
98.11	INPUT 2 NAME	I/O TRIPS	STRING	max length is 16 chars		rw	
99.01	ENABLE	DYNAMIC BRAKING	BOOL	0 : FALSE 1: TRUE	TRUE	rw	
99.03	BRAKE RESISTANCE	DYNAMIC BRAKING	REAL	0.01 to 300.00 Ohm	100.00 Ohm	rw	2,5

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
99.04	BRAKE POWER	DYNAMIC BRAKING	REAL	0.1 to 510.0 kW	0.1 kW	rw	2, 5
99.05	1SEC OVER RATING	DYNAMIC BRAKING	REAL	1 to 40	25	rw	2, 5
99.06	BRAKING	DYNAMIC BRAKING	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	ro	Output
99.07	INT DB RESISTOR	DYNAMIC BRAKING	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	3
100.01	RAMP TYPE	REFERENCE RAMP	ENUM	$\begin{aligned} & 0: \text { LINEAR } \\ & 1: S \end{aligned}$	LINEAR	rw	
100.02	ACCEL TIME	REFERENCE RAMP	REAL	0.0 to 3000.0 s	20.0 s	rw	3
100.03	DECEL TIME	REFERENCE RAMP	REAL	0.0 to 3000.0 s	20.0 s	rw	3
100.04	SYMMETRIC MODE	REFERENCE RAMP	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
100.05	SYMMETRIC TIME	REFERENCE RAMP	REAL	0.0 to 3000.0 s	20.0 s	rw	3
100.06	SRAMP CONTINUOUS	REFERENCE RAMP	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	TRUE	rw	
100.07	SRAMP ACCEL	REFERENCE RAMP	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 2$	$10.00 / \mathrm{s}^{\wedge} 2$	rw	
100.08	SRAMP DECEL	REFERENCE RAMP	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 2$	$10.00 / \mathrm{s}^{\wedge} 2$	rw	
100.09	SRAMP JERK 1	REFERENCE RAMP	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	$10.00 / \mathrm{s}^{\wedge} 3$	rw	
100.10	SRAMP JERK 2	REFERENCE RAMP	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	$10.00 / \mathrm{s}^{\wedge} 3$	rw	
100.11	SRAMP JERK 3	REFERENCE RAMP	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	$10.00 / \mathrm{s}^{\wedge} 3$	rw	
100.12	SRAMP JERK 4	REFERENCE RAMP	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	10.00 /s^3	rw	
100.13	HOLD	REFERENCE RAMP	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
100.14	RAMPING	REFERENCE RAMP	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
101.01	REMOTE SETPOINT	REFERENCE	REAL	-300.00 to 300.00%	0.00 \%	rw	
101.02	SPEED TRIM	REFERENCE	REAL	-300.00 to 300.00%	0.00 \%	rw	
101.03	MAX SPEED CLAMP	REFERENCE	REAL	0.00 to 110.00 \%	110.00 \%	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
101.04	MIN SPEED CLAMP	REFERENCE	REAL	-110.00 to 0.00 \%	-110.00 \%	rw	
101.05	TRIM IN LOCAL	REFERENCE	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
101.06	REMOTE REVERSE	REFERENCE	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
101.07	COMMS SETPOINT	REFERENCE	REAL	-300.00 to 300.00%	0.00 \%	rw	1
101.08	MAX SPEED	REFERENCE	REAL	0 to 32000 RPM	1500 RPM	rw	4
101.09	SPEED DEMAND	REFERENCE	REAL	_.xx	0.00 \%	ro	Output
101.10	SPEED SETPOINT	REFERENCE	REAL	_.xx	0.00 \%	ro	Output
101.11	REVERSE	REFERENCE	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
101.12	LOCAL SETPOINT	REFERENCE	REAL	_.xx	0.00 \%	ro	Output
101.13	LOCAL REVERSE	REFERENCE	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
101.15	FWIRE SETPOINT	REFERENCE	REAL	_.xx	0.00 \%	ro	Output
101.16	SPEED DEMAND	REFERENCE	REAL	_. x	0.0 Hz	ro	Output
102.01	RUN STOP MODE	REFERENCE STOP	ENUM	0 : RUN RAMP 1 : COAST 2 : DC INJECTION 3 : STOP RAMP	RUN RAMP	rw	
102.02	STOP TIME	REFERENCE STOP	REAL	0.0 to 600.0 s	10.0 s	rw	
102.03	STOP ZERO SPEED	REFERENCE STOP	REAL	0.00 to 100.00 \%	0.10 \%	rw	
102.04	STOP DELAY	REFERENCE STOP	REAL	0.000 to 30.000 s	0.500 s	rw	
102.05	FAST STOP MODE	REFERENCE STOP	ENUM	$\begin{aligned} & 0: \text { RAMP } \\ & 1: \text { COAST } \end{aligned}$	RAMP	rw	
102.06	FAST STOP LIMIT	REFERENCE STOP	REAL	0.0 to 3000.0 s	30.0 s	rw	
102.07	FAST STOP TIME	REFERENCE STOP	REAL	0.0 to 600.0 s	0.1 s	rw	
102.08	FINAL STOP RATE	REFERENCE STOP	REAL	1 to $4800 \mathrm{~Hz} / \mathrm{s}$	$1200 \mathrm{~Hz} / \mathrm{s}$	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
103.01	SETPOINT	REFERENCE JOG	REAL	-100.00 to 100.00 \%	10.00 \%	rw	
103.02	ACCEL TIME	REFERENCE JOG	REAL	0.0 to 3000.0 s	1.0 s	rw	
103.03	DECEL TIME	REFERENCE JOG	REAL	0.0 to 3000.0 s	1.0 s	rw	
105.01	STALL TIME	STALL TRIP	REAL	0.1 to 3000.0 s	480.0 s	rw	3
105.02	STALL LIMIT	STALL TRIP	REAL	50.00 to 150.00%	100.00 \%	rw	
105.03	STALL LIMIT TYPE	STALL TRIP	ENUM	0 : TORQUE 1 : CURRENT 2 : TRQ OR CURRENT	TRQ OR CURRENT	rw	
108.01	ADVANCE	PHASE INCH	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
108.02	RETARD	PHASE INCH	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	
108.03	RATE	PHASE INCH	REAL	0.0001 to 30.0000	0.1000	rw	
108.04	ACTIVE	PHASE INCH	BOOL	$\begin{aligned} & \hline 0: \text { FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	ro	Output
108.08	RATE SCALE	PHASE INCH	REAL	0.001 to 30.000	1.000	rw	
108.09	RESET	PHASE INCH	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
108.10	OFFSET	PHASE INCH	REAL	_.xxxx	0.0000	ro	Output
109.01	ENABLE	PHASE MOVE	BOOL	$\begin{aligned} & 0: \text { FALSE } \\ & 1: \text { TRUE } \\ & \hline \end{aligned}$	FALSE	rw	
109.02	DISTANCE	PHASE MOVE	REAL	-3000.0 to 3000.0	1.0	rw	
109.03	DISTANCE FINE	PHASE MOVE	REAL	-1.0000 to 1.0000	0.0000	rw	
109.04	VELOCITY	PHASE MOVE	REAL	0.10 to 300.00%	1.00 \%	rw	
109.05	ACTIVE	PHASE MOVE	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
109.06	DISTANCE LEFT	PHASE MOVE	REAL	_. xX	0.00	ro	Output
109.07	ACCELERATION	PHASE MOVE	REAL	0.01 to 3000.00%	1.00 \%	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
109.08	HOLD	PHASE MOVE	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
109.10	OFFSET	PHASE MOVE	REAL	_.xxxx	0.0000	ro	Output
109.11	RESET	PHASE MOVE	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
110.01	OFFSET	PHASE OFFSET	REAL	-3000.0 to 3000.0	0.0	rw	
110.02	OFFSET FINE	PHASE OFFSET	REAL	-1.0000 to 1.0000	0.0000	rw	
110.03	ACTIVE	PHASE OFFSET	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
110.04	SPEED OFFSET	PHASE OFFSET	REAL	-300.00 to 300.00%	0.00 \%	rw	
111.01	PERIOD	PHASE TUNING	REAL	0.001 to 30.000 s	10.000 s	rw	
111.02	ENABLE SPEED	PHASE TUNING	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
111.03	SPEED OFFSET	PHASE TUNING	REAL	-300.00 to 300.00%	1.00 \%	rw	
111.04	ENABLE PHASE	PHASE TUNING	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
111.05	PHASE OFFSET	PHASE TUNING	REAL	-300.00 to 300.00	1.00	rw	
111.06	ACTIVE	PHASE TUNING	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
111.07	SINE WAVE	PHASE TUNING	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
111.08	REFERENCE TYPE	PHASE TUNING	ENUM	0 : SQUARE 1 : SINUSOIDAL 2 : TRIANGULAR	SQUARE	rw	
111.09	SPEED AMPLITUDE	PHASE TUNING	REAL	0.0000 to $100.0000 \mathrm{rev} / \mathrm{s}$	$0.1000 \mathrm{rev} / \mathrm{s}$	rw	
111.12	RUN TR FUNC TEST	PHASE TUNING	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
111.13	NO OF MEASRMENTS	PHASE TUNING	INT	1 to 10000	100	rw	
111.14	TORQUE AMPLITUDE	PHASE TUNING	REAL	0.00 to 100.00%	20.00 \%	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
111.15	TRANSF FUNC TYPE	PHASE TUNING	ENUM	0 : SPEED TRANSFR FN 1 : OPEN LP TRANS FN 2 : CURRENT LP TR FN	OPEN LP TRANS FN	rw	
111.16	POSN AMPLITUDE	PHASE TUNING	REAL	0.0000 to 100.0000 deg	1.0000 deg	rw	
111.17	MEASURMENTS DONE	PHASE TUNING	INT	-	0	ro	Output
112.01	ENABLE	POWER LOSS CNTRL	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
112.02	TRIP THRESHOLD	POWER LOSS CNTRL	REAL	0 to 1000 V	447 V	rw	3,5
112.03	CONTROL BAND	POWER LOSS CNTRL	REAL	0 to 1000 V	20 V	rw	
112.04	ACCEL TIME	POWER LOSS CNTRL	REAL	0.01 to 300.00 s	10.00 s	rw	
112.05	DECEL TIME	POWER LOSS CNTRL	REAL	0.01 to 300.00 s	5.00 s	rw	
112.06	TIME LIMIT	POWER LOSS CNTRL	REAL	0.00 to 300.00 s	30.00 s	rw	
112.07	PWR LOSS ACTIVE	POWER LOSS CNTRL	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
112.08	INITIAL STEP	POWER LOSS CNTRL	REAL	0.00 to 100.00%	0.00 \%	rw	
113.01	RESET	ENERGY METER	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
113.02	POWER	ENERGY METER	REAL	_. xx	0.00 kW	ro	Output
113.03	POWER	ENERGY METER	REAL	_. x x	0.00 hp	ro	Output
113.04	REACTIVE POWER	ENERGY METER	REAL	_. xX	0.00 kVAR	ro	Output
113.05	ENERGY USED	ENERGY METER	REAL	_. X	0.0 kW hr	ro	Output
113.07	POWER FACTOR	ENERGY METER	REAL	_. X	0.0	ro	Output
113.08	PF ANGLE	ENERGY METER	REAL	_. xX	0.00 deg	ro	Output
113.09	RAW POWER	ENERGY METER	REAL	_. xX	0.00 kW	ro	Output
113.10	RAW R. POWER	ENERGY METER	REAL	_.xx	0.00 kVAR	ro	Output
114.01	PRECHARGE CLOSED	REGEN CNTRL	BOOL	0 : FALSE 1: TRUE	TRUE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
114.02	DC VOLTS DEMAND	REGEN CNTRL	REAL	0 to 1000 V	720 V	rw	
114.07	Id DEMAND	REGEN CNTRL	REAL	-1.5 to 1.5	0.1	rw	
114.08	CURRENT CONTROL	REGEN CNTRL	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
114.09	SYNCHRONIZING	REGEN CNTRL	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
114.10	SYNCHRONIZED	REGEN CNTRL	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
114.11	PHASE LOSS	REGEN CNTRL	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
114.12	CLOSE PRECHARGE	REGEN CNTRL	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
114.13	ENABLE DRIVE	REGEN CNTRL	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
114.14	STATUS	REGEN CNTRL	ENUM	0 : INACTIVE 1: SYNCHRONIZING 2 : SYNCHRONIZED 3 : SUPPLY FRQ HIGH 4 : SUPPLY FRQ LOW 5 : SYNCH FAILED	INACTIVE	ro	Output
114.15	BRAKE MODE	REGEN CNTRL	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
114.18	Iq DEMAND	REGEN CNTRL	REAL	-1.5 to 1.5	0.0	rw	
114.19	MAX CURRENT	REGEN CNTRL	REAL	0 to 1.5	1.5	Rw	
114.25	HARDWARE SYNC	REGEN CNTRL	BOOL	0 : FALSE 1: TRUE	FALSE	Rw	
115.01	INHIBIT	SPD FBK TRIP	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
115.02	THRESHOLD	SPD FBK TRIP	REAL	0.00 to 300.00 \%	50.00 \%	rw	
115.03	DELAY	SPD FBK TRIP	REAL	0.00 to 300.00 s	10.00 s	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
115.04	TRIPPED	SPD FBK TRIP	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
117.01	OWN ID	FIREWIRE	INT	-	99	ro	Output
117.02	IRM ID	FIREWIRE	INT	-	99	ro	Output
117.03	NUMBER OF NODES	FIREWIRE	INT	-	0	ro	Output
117.04	CYCLE TIMER	FIREWIRE	INT	-	0	ro	Output
117.05	BUS RESETS	FIREWIRE	INT	-	0	ro	Output
117.06	MCAP ADVERTS	FIREWIRE	INT	-	0	ro	Output
117.07	MAX HOPS	FIREWIRE	INT	-	0	ro	Output
117.08	OFFSET (40.69ns)	FIREWIRE	INT	-	0	ro	Output
117.13	BAD MESSAGES	FIREWIRE	INT	-	0	ro	Output
117.14	MISSED TX ACKS	FIREWIRE	INT	-	0	ro	Output
117.15	MY BUS RESETS	FIREWIRE	INT	-	0	ro	Output
118.01	INPUT	VIRTUAL MASTER	REAL	-100.00 to 100.00%	0.00 \%	rw	
118.02	ACCELERATION	VIRTUAL MASTER	REAL	0.00 to $1000.00 / \mathrm{s}^{\wedge} 2$	$10.00 / \mathrm{s}^{\wedge} 2$	rw	
118.03	DECELERATION	VIRTUAL MASTER	REAL	0.00 to $1000.00 / \mathrm{s}^{\wedge} 2$	$10.00 / \mathrm{s}^{\wedge} 2$	rw	
118.04	JERK 1	VIRTUAL MASTER	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	$10.00 / \mathrm{s}^{\wedge} 3$	rw	
118.05	JERK 2	VIRTUAL MASTER	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	$10.00 / \mathrm{s}^{\wedge} 3$	rw	
118.06	JERK 3	VIRTUAL MASTER	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	$10.00 / \mathrm{s}^{\wedge} 3$	rw	
118.07	JERK 4	VIRTUAL MASTER	REAL	0.00 to $100.00 / \mathrm{s}^{\wedge} 3$	$10.00 / \mathrm{s}^{\wedge} 3$	rw	
118.08	CONTINUOUS	VIRTUAL MASTER	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
118.09	HOLD	VIRTUAL MASTER	BOOL	$\begin{aligned} & 0: \text { FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	
118.10	SYMMETRIC JERK	VIRTUAL MASTER	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
118.11	RESET	VIRTUAL MASTER	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
118.12	OFFSET	VIRTUAL MASTER	REAL	0.0000 to 360.0000 deg	0.0000 deg	rw	
118.13	SPEED OUTPUT	VIRTUAL MASTER	REAL	_. xX	0.00 Hz	ro	Output
118.14	POSITION OUTPUT	VIRTUAL MASTER	REAL	_.xxxx	0.0000 deg	ro	Output
118.15	ACCEL OUTPUT	VIRTUAL MASTER	REAL	_.xx	0.00	ro	Output
118.16	RAMPING	VIRTUAL MASTER	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
118.17	CHANNEL	VIRTUAL MASTER	INT	0 to 64	0	rw	
118.18	MAX SPEED	VIRTUAL MASTER	REAL	100.0 to 6000.0 RPM	1500.0 RPM	rw	
118.19	STATUS	VIRTUAL MASTER	ENUM	0 : READY 1 : RESET 2 : DUPLICATE 3 : INITIALISING 4 : NO FIREWIRE 5 : DISABLED 6 : INTERNAL	DISABLED	ro	Output
118.20	SOURCE	VIRTUAL MASTER	ENUM	0 : S RAMP 1 : FEEDBACK ENCODR 2 : REFERNCE ENCODR 3 : LINEAR RAMP	S RAMP	rw	2
118.22	SPEED FILT TIME	VIRTUAL MASTER	REAL	0.0 to 100.0 ms	5.0 ms	rw	
118.23	ACCEL FILT TIME	VIRTUAL MASTER	REAL	0.0 to 100.0 ms	5.0 ms	rw	
119.01	CHANNEL	FIREWIRE REF	INT	0 to 62	0	rw	
119.02	RESET	FIREWIRE REF	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
119.03	INVERT	FIREWIRE REF	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
119.04	GEAR RATIO A	FIREWIRE REF	INT	-2000000000 to 2000000000	1000000	rw	
119.05	GEAR RATIO B	FIREWIRE REF	INT	-2000000000 to 2000000000	1000000	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
119.06	POSITION OUTPUT	FIREWIRE REF	REAL	_.xxxx	0.0000 deg	ro	Output
119.07	SPEED OUTPUT	FIREWIRE REF	REAL	_. xx	0.00 Hz	ro	Output
119.08	ACCEL OUTPUT	FIREWIRE REF	REAL	_. xX	0.00	ro	Output
119.09	MASTER POSITION	FIREWIRE REF	REAL	_.xxxx	0.0000 deg	ro	Output
119.10	MASTER SPEED	FIREWIRE REF	REAL	_.xxxx	0.0000 Hz	ro	Output
119.11	MASTER ACCEL	FIREWIRE REF	REAL	_. XXXX	0.0000	ro	Output
119.12	TIME DIFFERENCE	FIREWIRE REF	REAL	_. xX	0.00 ms	ro	Output
119.13	STATUS	FIREWIRE REF	ENUM	0 : READY 1 : REF RESET 2 : MASTER RESET 3 : LOST SYNC 4 : DUP MASTER 5 : MISSING MASTER 6 : NO FIREWIRE 7 : DISABLED 8 : INTERNAL	NO FIREWIRE	ro	Output
119.14	READY	FIREWIRE REF	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
120.01	ENABLE	PHASE MOVE ABS	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
120.02	RESET	PHASE MOVE ABS	BOOL	$\begin{aligned} & \hline 0: \text { FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	
120.03	MOVE METHOD	PHASE MOVE ABS	ENUM	0 : SHORTEST 1 : FORWARD 2 : BACKWARD	SHORTEST	rw	
120.04	DIRECTION BAND	PHASE MOVE ABS	REAL	0.00 to 1.00	0.05	rw	
120.05	POSITION	PHASE MOVE ABS	REAL	0.0000 to 1.0000	0.0000	rw	
120.06	VELOCITY	PHASE MOVE ABS	REAL	0.10 to 300.00%	1.00 \%	rw	
120.07	ACCELERATION	PHASE MOVE ABS	REAL	0.01 to 3000.00%	1.00 \%	rw	
120.08	ABS POSITION	PHASE MOVE ABS	REAL	_.xxxx	0.0000	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
120.10	ACTIVE	PHASE MOVE ABS	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	ro	Output
120.11	DONE	PHASE MOVE ABS	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
120.12	STATE	PHASE MOVE ABS	ENUM	0 : RESET 1 : READY 2 : POS AQUIRE 3 : ALIGN 4 : DONE	READY	ro	Output
121.01	PROP GAIN	POSITION LOOP	REAL	0.0 to 3000.0	10.0	rw	
121.02	INTEGRAL TIME	POSITION LOOP	REAL	5.0 to 3000.0 ms	500.0 ms	rw	
121.03	INTEGRAL DEFEAT	POSITION LOOP	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
121.04	POSN LOOP RSPONS	POSITION LOOP	REAL	_. x	100.0 ms	ro	Output
121.05	POSITION ERROR	POSITION LOOP	REAL	_. xxxx	0.0000 deg	ro	Output
121.06	POSITN INTEGRAL	POSITION LOOP	REAL	_.xxxx	0.0000 deg	ro	Output
121.07	ENABLE	POSITION LOOP	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
121.08	SPD FEEDFORWARD	POSITION LOOP	REAL	_.xxxx	0.0000 Hz	ro	Output
121.09	PID OUTPUT	POSITION LOOP	REAL	_.xxxx	0.0000 Hz	ro	Output
121.10	OUTPUT	POSITION LOOP	REAL	_. Pxxx	0.0000 Hz	ro	Output
121.11	LIMIT	POSITION LOOP	REAL	0.00 to 300.00%	10.00 \%	rw	
121.12	LIMITING	POSITION LOOP	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
121.13	FOLLOWING ERROR	POSITION LOOP	REAL	_.xxxx	0.0000 deg	ro	Output
121.14	TOTAL OFFSET	POSITION LOOP	REAL	_.xxxx	0.0000	ro	Output
121.15	POSITION DEMAND	POSITION LOOP	REAL	_.xx	0.00 deg	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
121.16	MODE	POSITION LOOP	ENUM	0 : DISABLED 1 : ENABLED 2 : UNSYNCHRONISED 3 : SYNCHRONISED 4 : ABSOLUTE	DISABLED	ro	Output
122.01	FRICTN AT 0 RPM	INERTIA COMP	REAL	0.00 to 100.00%	0.00 \%	rw	
122.02	FRN AT NMPLT RPM	INERTIA COMP	REAL	0.00 to 100.00 \%	0.00 \%	rw	
122.03	RELATIVE INERTIA	INERTIA COMP	REAL	0.0000 to 30000.0000 \%	0.0000 \%	rw	
122.04	FRICTION COMP	INERTIA COMP	REAL	_. xx	0.00 \%	ro	Output
122.05	INERTIA COMP	INERTIA COMP	REAL	_.xx	0.00 \%	ro	Output
122.06	TORQ FEEDFORWARD	INERTIA COMP	REAL	_. XX	0.00 \%	ro	Output
122.07	SPEED PI OUTPUT	INERTIA COMP	REAL	_. xX	0.00 \%	ro	Output
123.01	INHIBIT	OVER SPEED TRIP	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
123.02	THRESHOLD	OVER SPEED TRIP	REAL	0.00 to 300.00%	150.00 \%	rw	
123.03	DELAY	OVER SPEED TRIP	REAL	0.00 to 10.00 s	0.10 s	rw	
123.04	TRIPPED	OVER SPEED TRIP	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
124.01	ENABLE	MOVE TO MASTER	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
124.02	MOVE METHOD	MOVE TO MASTER	ENUM	0 : SHORTEST 1 : FORWARD 2 : BACKWARD	SHORTEST	rw	
124.03	DIRECTION BAND	MOVE TO MASTER	REAL	0.00 to 200.00	0.05	rw	
124.04	VELOCITY	MOVE TO MASTER	REAL	0.10 to 300.00%	1.00 \%	rw	
124.05	ACCELERATION	MOVE TO MASTER	REAL	0.01 to 3000.00%	1.00 \%	rw	
124.06	DIST TO MASTER	MOVE TO MASTER	REAL	_. xxxx	0.0000	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
124.08	ACTIVE	MOVE TO MASTER	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
124.09	STATE	MOVE TO MASTER	ENUM	0 : RESET 1 : READY 2 : POS AQUIRE 3 : ALIGN 4: DONE	READY	ro	Output
125.01	EMC CAPACITORS	EMC CAPACITORS	ENUM	0 : CONNECTED 1 : NOT CONNECTED	CONNECTED	rv	2
126.01	BAUDRATE	CANOPEN	ENUM	$\begin{aligned} & \hline 0: 125 \mathrm{~K} \\ & 1: 250 \mathrm{~K} \\ & 2: 500 \mathrm{~K} \\ & 3: 1000 \mathrm{~K} \end{aligned}$	1000K	ro	Output
126.02	ADDRESS	CANOPEN	INT	-	3	ro	Output
126.03	STATUS RUN	CANOPEN	ENUM	0 : STOPPED 1 : PRE-OPERATIONAL 2 : OPERATIONAL	STOPPED	ro	Output
126.04	STATUS ERROR	CANOPEN	ENUM	0 : NO ERROR 1 : WARNING LIMIT 2 : AUTOBAUD OR LSS 3 : CONTROL EVENT 4 : SYNC. ERROR 5 : BUS OFF	NO ERROR	ro	Output
126.05	HARDWARE	CANOPEN	BOOL	0 : FALSE 1: TRUE	FALSE	ro	Output
126.06	BAUDRATE SOFT	CANOPEN	ENUM	$\begin{aligned} & \hline 0: 125 \mathrm{~K} \\ & 1: 250 \mathrm{~K} \\ & 2: 500 \mathrm{~K} \\ & 3: 1000 \mathrm{~K} \end{aligned}$	1000K	rw	
126.07	ADDRESS SOFT	CANOPEN	INT	1 to 127	1	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
127.01	BAUDRATE	PROFIBUS	ENUM	$0: 12$ Mbits/sec 1:6 Mbits/sec 2:3 Mbits/sec 3: 1.5 Mbits/sec 4:500 kbits/sec $5: 187.5$ kbits/sec 6 : 93.75 kbits/sec 7 : 45.45 kbits/sec 8 : 19.2 kbits/sec $9: 9.6$ kbits/sec 10 : UNKNOWN	UNKNOWN	ro	Output
127.02	ADDRESS	PROFIBUS	INT	-	0	ro	Output
127.03	STATUS	PROFIBUS	ENUM	0 : MISSING OR FAULT 1 : DISABLED 2 : BAUD SEARCH 3 : WAIT PARAM 4 : WAIT CONFIG 5 : DATA EXCHANGE 6 : DATA EXCH NO WD 7 : DATA EXCH ERROR 8 : DATA EX ER NO WD	MISSING OR FAULT	ro	Output
127.04	ADDRESS METHOD	PROFIBUS	ENUM	0 : SOFTWARE 1 : HARDWARE	HARDWARE	ro	Output
128.01	NODE ADDRESS	CONTROLNET	INT	-	0	ro	Output
128.02	ADDRESS METHOD	CONTROLNET	ENUM	0 : HARDWARE 1 : SOFTWARE	HARDWARE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
128.03	NETWORK MODE	CONTROLNET	ENUM	0 : INVALID 1 : POWER UP 2 : CHECK FOR CABLE 3 : WAITING 2 ROGUE 4 : CHK 4 MODERATOR 5 : I'M ALIVE 6 : ATTACHED 7 : FORCED LISTEN 8 : DUPLICATE NODE	INVALID	ro	Output
128.04	CONNECTED	CONTROLNET	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
128.05	SERIAL NUMBER	CONTROLNET	INT	-	0	ro	Output
128.06	FAULT	CONTROLNET	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
128.07	DIAGNOSTIC	CONTROLNET	WORD	0000 to FFFF	0000	ro	Output
128.08	FIXED PARAM SET	CONTROLNET	ENUM	0 : NONE	NONE	rw	2
128.09	CNET STATE	CONTROLNET	ENUM	0 : NONE 1 : FAULT 2 : INITIALISE 3 : VM CONFIGURE 4 : WAIT 2 ATTACH 5 : WAIT 2 CONNECT 6 : RUNNING	NONE	ro	Output
129.01	MODE	COMMS PORT	ENUM	0 : AUTOMATIC 1:6511 OP STATION 2 : 6901 OP STATION 3 : TS8000 HMI	AUTOMATIC	rw	
130.01	BAUDRATE	DEVICENET	ENUM	$\begin{aligned} & 0: 125 K \\ & 1: 250 \mathrm{~K} \\ & 2: 500 \mathrm{~K} \\ & 3: \text { INVALID } \end{aligned}$	125K	ro	Output
130.02	MAC ID	DEVICENET	INT	-	63	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
130.03	CONNECTION STATE	DEVICENET	ENUM	0 : NON EXISTENT 1 : SELFTEST 2 : STANDBY 3 : OPERATIONAL 4 : RECOVER FAULT 5 : UNRECOVER FAULT	NON EXISTENT	ro	Output
130.04	DEVICE STATUS	DEVICENET	ENUM	0 : NO ERROR 1 : OWNED 2 : CONFIGURED 3 : MINOR REC FAULT 4 : MINOR UNREC FLT 5 : MAJOR REC FAULT 6 : MAJOR UNREC FLT	NO ERROR	ro	Output
130.05	HARDWARE	DEVICENET	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
130.06	BAUDRATE SOFT	DEVICENET	ENUM	$\begin{aligned} & 0: 125 K \\ & 1: 250 \mathrm{~K} \\ & 2: 500 \mathrm{~K} \\ & \hline \end{aligned}$	125K	rw	
130.07	MAC ID SOFT	DEVICENET	INT	1 to 63	0	rw	
130.08	UNRECOVER FAULT	DEVICENET	ENUM	0 : NO FAULT 1 : DUPLICATE MAC 2 : RX Q OVERRUN 3 : TX Q OVERRUN 4:IO SEND ERROR 5 : BUS OFF 6 : CAN OVERRUN 7 : RESET 8 : SWITCH ERROR	NO FAULT	ro	Output
133.01	NAME	RESOLVER	STRING	max length is 16 chars		rw	2
133.02	POLES	RESOLVER	INT	2 to 20	2	rw	2
133.03	RATIO	RESOLVER	REAL	0.20 to 1.00	0.50	rw	
133.04	SPEED MAX	RESOLVER	INT	0 to 2147483647	10000	rw	2
133.05	ACCURACY	RESOLVER	REAL	0.00 to 60.00	20.00	rw	2

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
133.06	CARRIER VOLTAGE	RESOLVER	REAL	1.00 to 10.00 V	7.00 V	rw	2
133.07	CURRENT	RESOLVER	REAL	0.000 to 0.100 A	0.046 A	rw	2
133.08	INERTIA	RESOLVER	REAL	10.00 to $32768.00 \mathrm{Kg.cm} 2$	$24.00 \mathrm{Kg.cm} 2$	rw	2
133.11	POSITION SET UP	RESOLVER	REAL	-180.00 to 180.00 deg	0.00 deg	rw	
133.15	RESOLVER POS OUT	RESOLVER	REAL	_.xxXX	0.0000	ro	Output
133.16	TRIP	RESOLVER	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output
133.17	INIT DONE	RESOLVER	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	ro	Output
133.18	REVERSE CNT DIR	RESOLVER	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	rw	2
133.19	SPEED FILTER	RESOLVER	REAL	10.00 to 1000.00 Hz	100.00 Hz	rw	
133.20	PHASE SHIFT	RESOLVER	REAL	0.00 to 180.00 deg	0.00 deg	rw	
133.21	TRIP SELECTION	RESOLVER	ENUM	$\begin{aligned} & 0: \text { HARD AND SOFT } \\ & 1: \text { HARD } \\ & 2: \text { SOFT } \end{aligned}$	SOFT	rw	
133.26	RESET LINE COUNT	RESOLVER	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
133.28	PULLEYBELT RATIO	RESOLVER	INT	1 to 100	1	rw	2
133.27	LINE COUNT X4	RESOLVER	INT	-	0	ro	Output
134.01	MANUFACTURER	MOTOR PMAC 1	STRING	max length is 16 chars		rw	2
134.02	MODEL	MOTOR PMAC 1	STRING	max length is 16 chars		rw	2
134.03	CONSTRUCTION	MOTOR PMAC 1	ENUM	0 : Axe 1 : Spindle 2 : Torque	Axe	rw	2
134.04	ATMOSPHERE	MOTOR PMAC 1	ENUM	0 : Standard 1 : Explosive	Standard	rw	2
134.05	MAX VOLTAGE	MOTOR PMAC 1	REAL	200 to 640 V	400 V	rw	2

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
134.06	THERM PROTECTION	MOTOR PMAC 1	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	2
134.07	MAX SPEED	MOTOR PMAC 1	INT	0 to 2147483647	4300	rw	2
134.08	MAX CURRENT	MOTOR PMAC 1	REAL	0.00 to 1024.00 A	10.60 A	rw	2
134.09	PERM CURRENT	MOTOR PMAC 1	REAL	0.00 to 1024.00 A	4.90 A	rw	2
134.10	PERM TORQUE	MOTOR PMAC 1	REAL	0.00 to 30000.00 Nm	6.40 Nm	rw	2, 5
134.11	LOW SPEED VALUE	MOTOR PMAC 1	INT	0 to 2147483647	0	rw	2
134.12	POLES	MOTOR PMAC 1	INT	0 to 400	10	rw	2
134.13	BACK EMF	MOTOR PMAC 1	REAL	0.0 to 8192.0 VKRPM	85.6 VKRPM	rw	2
134.14	R	MOTOR PMAC 1	REAL	0.00 to 50.00 Ohm	3.63 Ohm	rw	2
134.17	L	MOTOR PMAC 1	REAL	0.00 to 1000.00 mH	24.30 mH	rw	2
134.18	PHASE	MOTOR PMAC 1	REAL	0.00 to 90.00 deg	0.00 deg	rw	2
134.19	MAX PHASE	MOTOR PMAC 1	REAL	0.00 to 90.00 deg	0.00 deg	rw	2
134.20	MAX TORQUE	MOTOR PMAC 1	REAL	0.00 to 30000.00 Nm	12.80 Nm	rw	2
134.21	KT	MOTOR PMAC 1	REAL	0.0000 to $100.0000 \mathrm{Nm} / \mathrm{A}$	$1.3760 \mathrm{Nm} / \mathrm{A}$	rw	2
134.22	IFMB	MOTOR PMAC 1	REAL	$\text { -100.0000 to } 100.0000$ A/Nm3	0.0000 A/Nm3	rw	2
134.23	INERTIA	MOTOR PMAC 1	REAL	0.0000 to 100.0000	0.0011	rw	2
134.24	INERTIA SCALE	MOTOR PMAC 1	ENUM	$\begin{aligned} & 0: \mathrm{kgm2} \\ & 1: \mathrm{kgcm} 2 \\ & 2: \mathrm{gm} 2 \end{aligned}$	kgm2	rw	2
134.26	STAND CURRENT	MOTOR PMAC 1	REAL	0.00 to 1024.00 A	10.60 A	rw	2
134.27	THERMAL TIME CST	MOTOR PMAC 1	REAL	0.00 to 10000.00 s	224.80 s	rw	2
134.28	CUR LOOP BWDTH	PMAC MOTOR	REAL	100 to 1500 Hz	600 Hz	rw	
134.29	INTEGRAL FREQ	PMAC MOTOR	REAL	5 to 600 Hz	150 Hz	rw	
134.31	DRIVE_SAFE	MOTOR PMAC 1	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
135.01	MPS1	MOTOR PMAC 2	REAL	0 to 600 V	230 V	rw	2
135.02	MPS2	MOTOR PMAC 2	REAL	0 to 600 V	400 V	rw	2
135.03	MPS3	MOTOR PMAC 2	REAL	0 to 600 V	480 V	rw	2
135.04	CURRENT AT MPS1	MOTOR PMAC 2	REAL	0.00 to 1024.00 A	10.60 A	rw	2
135.05	CURRENT AT MPS2	MOTOR PMAC 2	REAL	0.00 to 1024.00 A	10.60 A	rw	2
135.06	CURRENT AT MPS3	MOTOR PMAC 2	REAL	0.00 to 1024.00 A	10.60 A	rw	2
135.07	SPEED AT MPS1	MOTOR PMAC 2	INT	0 to 2147483647	2300	rw	2
135.08	SPEED AT MPS2	MOTOR PMAC 2	INT	0 to 2147483647	4000	rw	2
135.09	SPEED AT MPS3	MOTOR PMAC 2	INT	0 to 2147483647	4800	rw	2
136.01	DRIVE NAME	DRIVE CONFIG	STRING	max length is 14 chars	890 DRIVE	rw	2
136.02	CONTROL MODE	DRIVE CONFIG	ENUM	0 : VOLTS / Hz 1 : SENSORLESS VEC 2 : CLOSED-LOOP VEC 3: 4-Q REGEN 4 : PMAC	VOLTS / Hz	rw	
136.06	FBK FITTED	DRIVE CONFIG	ENUM	0 : NONE 1: 8903/RE 8902/RR 2 : 8902/EQ 3 : RS485 INC. ENC. 4: 8902/E1 5 : 8902/LS 6 : UNKNOWN 7 : 8902/M1 8 : 8902/EP 9 : VMASTER SIM. 10:HTTL ENC. REG. 11:RS485 ENC.REG.	NONE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
136.09	SLOT A FITTED	DRIVE CONFIG	ENUM	0 : NONE 1:8903/FA 2 : 8903/PB 3 : 8903/CN 4 : 8903/CB 5 : UNKNOWN 6 : 8903/EQ 7 : RS485 INC. ENC. 8 : 8903/E1 9 : 8903/DN 10: 8903/AI 11: ANYBUS CC 12: 8903/SP 13: 8903/IM 14: 8903/PN 15: 8903IP 16: 8903/CT 17: 8903/M1 18: 8903/EP 19: 8903/RS 20: 8903/FB	NONE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
136.12	SLOT B FITTED	DRIVE CONFIG	ENUM	0 : NONE 1:8903/FA 2 : 8903/PB 3 : 8903/CN 4 : 8903/CB 5 : UNKNOWN 6 : 8903/EQ 7 : RS485 INC. ENC. 8: 8903/E1 9:8903/DN 10: 8903/AI 11: ANYBUS CC 12: 8903/SP 13: 8903/IM 14: 8903/PN 15: 8903IP 16: 8903/CT 17: 8903/M1 18: 8903/EP 19: 8903/RS 20: 8903/FB	NONE	ro	Output
136.15	PWM FREQ	DRIVE CONFIG	ENUM	$\begin{aligned} & 0: 14 \mathrm{KHz} \\ & 1: 18 \mathrm{KHz} \end{aligned}$	4 KHz	rw	2
136.19	SUPPLY VOLTAGE	DRIVE CONFIG	ENUM	$\begin{aligned} & \hline 0: 230 \mathrm{~V} \\ & 1: 380 \mathrm{~V} \text { TO } 480 \mathrm{~V} \\ & 2: 500 \mathrm{~V} \\ & 3: 575 \mathrm{~V} \\ & 4: 690 \mathrm{~V} \end{aligned}$	380 V TO 480V	rv	2
147.01	VALUE	DIGITAL OUTPUT 4	BOOL	0 : FALSE 1 :TRUE	FALSE	rw	
148.01	VALUE	DIGITAL OUTPUT 5	BOOL	0 : FALSE 1 : TRUE	FALSE	rv	
149.01	VALUE	DIGITAL OUTPUT 6	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { :TRUE } \end{aligned}$	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
156.01	SWITCH ON START	MOT POLARISATION	ENUM	0 : MANUAL	MANUAL	rw	
156.02	POLARISATION	MOT POLARISATION	ENUM	$\begin{aligned} & 0 \text { : DISABLE } \\ & 1 \text { : ENABLE } \end{aligned}$	DISABLE	rw	1
156.03	POLAR START	MOT POLARISATION	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	1
156.04	TYPE	MOT POLARISATION	ENUM	0:1:STANDARD	1:STANDARD	rw	1
156.05	1:MOTOR PHASE	MOT POLARISATION	ENUM	0 : U PHASE 1 : V PHASE 2 : W PHASE	U PHASE	rw	1
156.06	1:MOT CUR PCNT	MOT POLARISATION	REAL	0.00 to 100.00%	50.00 \%	rw	1
156.07	1:MOT CUR RAMP	MOT POLARISATION	REAL	0.00 to 20.00 s	1.00 s	rw	1
156.16	ELEC POS OFFSET	MOT POLARISATION	REAL	-180.0000 to 180.0000 deg	0.0000 deg	rw	1
156.17	ELEC POS	MOT POLARISATION	REAL	_.xxxx	0.0000 deg	ro	Output
156.18	CURRENT	MOT POLARISATION	REAL	_.xxxx	0.0000 A	ro	Output
156.19	STATE	MOT POLARISATION	ENUM	0 : NORMAL 1 : POLARIZING 2 : ENDED OK 3 : ENDED NOT OK	NORMAL	ro	Output
158.01	PULSE ENC VOLTS	REFERNCE ENCODER	REAL	10.0 to 20.0 V	10.0 V	rw	
158.02	ENCODER LINES	REFERNCE ENCODER	INT	32 to 262143	2048	rw	2
158.03	ENCODER INVERT	REFERNCE ENCODER	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
158.04	ENCODER TYPE	REFERNCE ENCODER	ENUM	0 : QUADRATURE 1: CLOCK/DIR 2 : CLOCK 3 : QUADRATURE DIFF 4: CLOCKIDIR DIFF 5 : CLOCK DIFF 6 : SINCOS INC 7 : ABS ENDAT ST 8 : ABS ENDAT MT	QUADRATUR E DIFF	rw	2
158.05	OUTPUT GBOX IN	REFERNCE ENCODER	INT	1 to +2000000000	1	rw	2, 5
158.06	ENCODER MECH O/S	REFERNCE ENCODER	REAL	0.0000 to 360.0000 deg	0.0000 deg	rw	2
158.09	SHAFT POSITION	REFERNCE ENCODER	REAL	_.xx	0.00 deg	ro	Output
158.10	LOAD POSITION	REFERNCE ENCODER	REAL	_.xx	0.00 deg	ro	Output
158.13	CALIBRATN STATUS	REFERNCE ENCODER	ENUM	0 : NOT REQUIRED 1 : DRIVE NOT STOPD 2 : MOTOR NOT STOPD 3 : ENDAT FAULT 4 : CAL IN PROGRESS 5 : LD PSN IN PRGRSS 6 : COMPLETED 7 : CALIBRATION LOST 8 : CALIBRATN FAILED	NOT REQUIRED	ro	Output
158.15	REV COUNT	REFERNCE ENCODER	INT	-	0	ro	Output
158.22	SINCOS ENC VOLTS	REFERNCE ENCODER	ENUM	$\begin{aligned} & \hline 0: 5 \mathrm{~V} \\ & 1: 10 \mathrm{~V} \end{aligned}$	5V	rw	2
158.23	RESET LINE COUNT	REFERNCE ENCODER	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
158.24	CAL FAIL RETRY	REFERNCE ENCODER	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	2
158.26	OUTPUT GBOX OUT	REFERNCE ENCODER	INT	-2000000000 to 2000000000	1	rw	2
158.30	ENCODER FEEDBACK	REFERNCE ENCODER	REAL	_.xx	0.00 RPM	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
158.31	LINE COUNT X4	REFERNCE ENCODER	INT	-	0	ro	Output
160.01	MODE SELECT	SYNTHETIC ENCODER	ENUM	0 : OFF 1 : RUN SYNTH ENCDR 2 : RPEAT FBK ENCDR 3 : RPEAT REF ENCDR	OFF	rw	2
160.02	ENCODER LINES	SYNTHETIC ENCODER	INT	4 to 65536	1024	rw	2
160.03	DIRECTION	SYNTHETIC ENCODER	ENUM	0 : SAME AS SOURCE 1 : REVERSE OF SRCE	SAME AS SOURCE	rw	2
160.04	V MASTER INPUT	SYNTHETIC ENCODER	ENUM	0 : RUNS FORWARD 1 : RUNS REVERSE	RUNS FORWARD	rw	2
160.05	Z PULSE OFFSET	SYNTHETIC ENCODER	REAL	0.0000 to 360.0000 deg	0.0000 deg	rw	
160.09	SOURCE	SYNTHETIC ENCODER	ENUM	0 : V MASTER POSN 1 : FBK ENCR LOAD 2 : FBK ENCR LOAD 3 : REF ENCR SHAFT 4: REF ENCR LOAD	$\begin{aligned} & \text { V MASTER } \\ & \text { POSN } \end{aligned}$	rw	2
161.01	I2T INHIBIT	MOT PMAC PROTECT	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1 \text { : TRUE } \end{aligned}$	FALSE	rw	
161.02	I2T LIMIT MOTOR	MOT PMAC PROTECT	BOOL	$\begin{aligned} & 0 \text { : FALSE } \\ & 1: \text { TRUE } \\ & \hline \end{aligned}$	FALSE	ro	Output
161.03	I2T MOTOR LOAD	MOT PMAC PROTECT	REAL	_. ${ }^{\text {P }}$	0.0 \%	ro	Output
161.04	MOTOR I2T TRIP	MOT PMAC PROTECT	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
162.01	AIMING POINT	INVERS TIME PMAC	REAL	50.00 to 105.00%	105.00 \%	rw	
162.02	DELAY	INVERS TIME PMAC	REAL	0.5 to 4.0 s	4.0 s	rw	
162.03	DOWN TIME	INVERS TIME PMAC	REAL	0.5 to 2.0 s	1.0 s	rw	
162.04	UP TIME	INVERS TIME PMAC	REAL	0.5 to 2.0 s	1.0 s	rw	
162.05	IT LIMITING	INVERS TIME PMAC	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
162.06	INVERSE TIME OP	INVERS TIME PMAC	REAL	_.xx	0.00 \%	ro	Output
162.07	IT WARNING	INVERS TIME PMAC	BOOL	0 : FALSE 1 : TRUE	FALSE	ro	Output
163.01	SELECT TQ COMP 2	SPEED LOOP 2	ENUM	0 : NONE 1 : MAX ATTENUATION 2 : MINIMUM PHASE 3 : NOTCH FILTER	NONE	rw	2
163.02	TQ COMP 2 FREQ	SPEED LOOP 2	REAL	1100 to 18000 Hz	2000 Hz	rw	
163.03	SELECT TQ COMP 3	SPEED LOOP 2	ENUM	0 : NONE 1 : MAX ATTENUATION 2 : MINIMUM PHASE 3 : NOTCH FILTER	NONE	rw	2
163.04	TQ COMP 3 FREQ	SPEED LOOP 2	REAL	1100 to I 8000 Hz	2000 Hz	rw	
165.01	CUST ALARM 1	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rv	
165.02	CUST ALARM 2	CUSTOM TRIPS	BOOL	0 : FALSE 1: TRUE	FALSE	rv	
165.03	CUST ALARM 3	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
165.04	CUST ALARM 4	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rv	
165.05	CUST ALARM 5	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
165.06	CUST ALARM 6	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rv	
165.07	CUST ALARM 7	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rv	
165.08	CUST TRIP 1	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
165.09	CUST TRIP 2	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
165.10	CUST TRIP 3	CUSTOM TRIPS	BOOL	0 : FALSE 1: TRUE	FALSE	rw	
165.11	CUST TRIP 4	CUSTOM TRIPS	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
165.12	CUST TRIP 5	CUSTOM TRIPS	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	rw	
165.13	CUST TRIP 6	CUSTOM TRIPS	BOOL	0 : FALSE 1 : TRUE	FALSE	rw	
165.14	CUST TRIP 7	CUSTOM TRIPS	BOOL	$0 \text { : FALSE }$ 1: TRUE	FALSE	rw	
165.15	CUST NAME 1	CUSTOM TRIPS	STRING	max length is 16 chars		rw	
165.16	CUST NAME 2	CUSTOM TRIPS	STRING	max length is 16 chars		rw	
165.17	CUST NAME 3	CUSTOM TRIPS	STRING	max length is 16 chars		rw	
165.18	CUST NAME 4	CUSTOM TRIPS	STRING	max length is 16 chars		rw	
165.19	CUST NAME 5	CUSTOM TRIPS	STRING	max length is 16 chars		rw	
165.20	CUST NAME 6	CUSTOM TRIPS	STRING	max length is 16 chars		rw	
165.21	CUST NAME 7	CUSTOM TRIPS	STRING	max length is 16 chars		rw	
177.01	RTNX IP ADDRESS	ETHERNET	STRING	XXX. XXX . XXX . XXX		ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
177.02	STATE	ETHERNET	ENUM	0 : UNKNOWN 1 : SETUP 2 : INITIALISATION 3 : WAIT PROCESS 4 : IDLE 5 : PROCESS ACTIVE 6 : ERROR 7 : EXCEPTION 8 : WAIT TO CONNECT 9 : STOPPED 10 : RUNNING 11 : FAULT 12 : NOT ACTIVE 13 : ACTIVE 14 : NOT SUPPORTED 15 : INIT OR PREOP 16 : OPERATIONAL 17 : SAFE-OP	UNKNOWN	ro	Output
177.03	890 IP ADDRESS	ETHERNET	STRING	XXX.XXX.XXX. XXX		ro	Output
177.04	890 SUBNET MASK	ETHERNET	STRING	XXX. XXX . $\mathrm{XXX} . \mathrm{XXX}$		ro	Output
177.05	890 GATEWAY	ETHERNET	STRING	XXX.XXX.XXX.XXX		ro	Output
177.06	FTP ENABLED	ETHERNET	BOOL	$\begin{aligned} & 0: \text { FALSE } \\ & 1: \text { TRUE } \\ & \hline \end{aligned}$	FALSE	ro	Output
177.07	ADMIN ENABLED	ETHERNET	BOOL	$\begin{aligned} & \hline 0 \text { : FALSE } \\ & 1: \text { TRUE } \end{aligned}$	FALSE	ro	Output
177.08	MAC ADDRESS	ETHERNET	STRING	XX XX XX XX XX XX		ro	Output
177.09	NETWORK TYPE	ETHERNET	ENUM	0 : NONE 1 : UNKNOWN 2 : ETHERNET IP 3 : MODBUS TCP 4 : PROFINET IO 5 : ETHERCAT	NONE	ro	Output
178.01	PHYSICAL ADDR	PEER TO PEER	INT	0 to 63	0	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
178.02	NET ADDR	PEER TO PEER	INT	0 to 255	0	ro	Output
178.03	STATUS	PEER TO PEER	ENUM	0 : UNKNOWN 1: ERROR 2 : DUP PHY ADDR 3 : INITIALISING 4 : NO BUS 5 : NO MASTER 6 : OPERATING	UNKNOWN	ro	Output
178.04	BAUDRATE	PEER TO PEER	ENUM	$\begin{aligned} & 0: \text { INVALID } \\ & 1: 250 \mathrm{~K} \\ & 2: 500 \mathrm{~K} \\ & 3: 800 \mathrm{~K} \\ & 4: 1000 \mathrm{~K} \end{aligned}$	INVALID	ro	Output
178.05	LAST PHY ADDR	PEER TO PEER	INT	0 to 63	0	ro	Output
178.06	DIAGNOSTIC	PEER TO PEER	WORD	0000 to FFFF	0000	ro	Output
179.06	VALUE	ANALOG INPUT	REAL	_.xxxx	0.0000 \%	ro	Output
179.08	FITTED	ANALOG INPUT	BOOL	$0 \text { : FALSE }$ 1 : TRUE	FALSE	ro	Output
182.01	STATUS	MODBUS RTU	ENUM	0: UNKNOWN 1: CONFIGURING 2: NOT ACTIVE 3: ACTIVE	UNKNOWN	ro	Output
182.02	NODE ADDRESS	MODBUS RTU	INT	-	0	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
182.03	BAUD RATE	MODBUS RTU	ENUM	0: UNKNOWN 1: 1200 2: 2400 3: 4800 4: 7200 5: 9600 6: 14400 7: 19200 8: 38400 9: 57600 10: 115200	UNKNOWN	ro	Output
182.04	DATA BITS	MODBUS RTU	INT	-	0	ro	Output
182.05	PARITY	MODBUS RTU	ENUM		NONE	ro	Output
182.06	STOP BITS	MODBUS RTU	ENUM	0: UNKNOWN 1: ONE 2: TWO	UNKNOWN	ro	Output
182.07	TIMEOUT	MODBUS RTU	REAL	-	0 ms	ro	Output
182.08	WORD ORDER	MODBUS RTU	ENUM	0: LOW WORD FIRST 1: HIGH WORD FIRST	LOW WORD FIRST	ro	Output
182.09	RX GOOD COUNT	MODBUS RTU	INT	-	0	ro	Output
182.10	LAST TX STATUS	MODBUS RTU	ENUM	0: OK 1: ILLEGAL FUNCTION 2: ILLEGAL ADDRESS 3: ILLEGAL DATA VAL	OK	ro	Output

Programming

PREF	Name	Block	Type	Range	Default	rolrw	Notes
182.11	LAST TX ERROR	MODBUS RTU	ENUM	0: NONE 1: ILLEGAL FUNCTION 2: ILLEGAL ADDRESS 3: ILLEGAL DATA VAL	NONE	ro	Output
182.12	EXCEPTION COUNT	MODBUS RTU	INT	-	0	ro	Output
182.13	CRC ERROR COUNT	MODBUS RTU	INT	-	0	ro	Output
182.14	CHAR ERR COUNT	MODBUS RTU	INT	-	0	ro	Output
182.15	DATA EXD COUNT	MODBUS RTU	INT	-	0	ro	Output
182.16	RX ABORT COUNT	MODBUS RTU	INT	-	0	ro	Output
182.17	RESET COUNTERS	MODBUS RTU	BOOL	$0: \text { FALSE }$ 1: TRUE	FALSE	rw	1

Product Related Default Values

The Default values in the tables below are correct for when a 2.2 kW Frame B power board is fitted.

* Frequency Dependent Defaults

These parameter values (marked with "*" in function block descriptions) are dependent upon the drive's default motor BASE FREQUENCY.

Parameter	Function Block	PREF	Default 	
MASE FREQUENCY	MOTOR INDUCTION	27.03	50.0 Hz	60.0 Hz
MOTOR CONNECTION	MOTOR INDUCTION	27.08	STAR	STAR
MOTOR VOLTAGE	MOTOR INDUCTION	27.04	$*$	$*$
NAMEPLATE RPM	MOTOR INDUCTION	27.07	1420 RPM	1750 RPM
MAX SPEED	REFERENCE	101.08	1500 RPM	1800 RPM
230V, 400V or 500V depending upon the power build of the unit - refer to the Model Number on the Product Label.				

Note Refer to Chapter 8: "The Keypad" - Changing the Product Code (3-button reset).

Programming

Appendix E

Technical Specifications

- Understanding the Product Code
- Electrical Ratings
- Earthing/Safety Details
- Cabling Requirements for EMC Compliance
- External AC Supply (RFI) Filter
- AC Line Choke
- Internal Dynamic Brake Switch (Frame G)
- Internal Dynamic Brake Switch (Frame H)
- Internal Dynamic Brake Switch (Frame J)
- Analog Inputs/Outputs
- Digital Inputs
- Digital Outputs
- Relay Outputs
- Reference Outputs
- User 24V Supply
- Auxiliary Power Supply Load Requirements
- Wire Sizes (Europe)
- Wire Sizes (US/Canada)
- UL Terminations
- 890SD Branch Protection Fuses (North America)
- 890 Control Board Firmware and Hardware Compatibility

Technical Specifications

Understanding the Product Code

The unit comprises a master drive and one or two slaves, depending upon the required power output. The Frame sizes used are either Frame G, Frame H, or Frame J.
Each unit is identified using an alphanumeric code which records how the unit was configured when dispatched from the factory. Each block of the Model Number is identified as below using a 7 block short code (shaded) and a 9 or 12 block long code. The short code defines the "base build" product and the long code defines the configuration including options.
Example Model Number:

890SDM/4/0216G/1F/00/S/US/00/00/EQ/PB/FA

SHORT CODE		
Block 1	$\mathbf{8 9 0 S D M}$	This is a standard 890SD Standalone Drive (M for Master)
Block 2	$\mathbf{4}$	Nominal input voltage rating is 400V Current rating (continuous output RMS Amps) : 216 Amps
Block 3	$\mathbf{0 2 1 6 G}$	Physical frame size G
Block 4	\mathbf{B}	Supplied with braking control - external resistors required
Block 5	$\mathbf{1 F}$	110Vac fan(s) fitted
Block 6	\mathbf{S}	Standard performance level
Block 7	$\mathbf{U S}$	Destination is the United States (English documentation and 60Hz settings)
Block 8	$\mathbf{0 0}$	SSD standard livery
Block 9	$\mathbf{0 0}$	Special options : none fitted
Block 10	$\mathbf{E Q}$	Feedback Option : Encoder Quadrature incremental
Block 11	$\mathbf{P B}$	Communications Option - Slot A: ProfiBus
Block 12	FA	Communications Option - Slot B: FireWire IEEE 1394A

Technical Specifications

Model Number		
Block	Variable	Description
1	890XX	Generic product: $890=$ Standard Product 890 SD $=$ Standalone Drive \quad C890 $=$ Conformal Coated PCB's
2	X	One number specifying the nominal input voltage rating: $4=400 \mathrm{Vac}$
3	XXXXX	Four numbers specifying the nominal current in Amps and one character indicating size frame Current Rating (Continuous Output RMS Amps in Induction Motor Mode) $\begin{aligned} & 0216 \mathrm{G}=175 \mathrm{HP} @ 460 \mathrm{Vac} / 110 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame G } \\ & 0250 \mathrm{G}=200 \mathrm{HP} @ 460 \mathrm{Vac} / 132 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame G } \\ & 0316 \mathrm{G}=250 \mathrm{HP} @ 460 \mathrm{Vac} / 160 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame G } \\ & 0361 \mathrm{G}=300 \mathrm{HP} @ 460 \mathrm{Vac} / 180 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame G } \\ & 0375 \mathrm{H}=300 \mathrm{HP} @ 460 \mathrm{Vac} / 200 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame H } \\ & 0420 \mathrm{H}=350 \mathrm{HP} @ 460 \mathrm{Vac} / 220 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame H } \\ & 0480 \mathrm{H}=400 \mathrm{HP} @ 460 \mathrm{Vac} / 250 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame H } \\ & 0520 \mathrm{H}=450 \mathrm{HP} @ 460 \mathrm{Vac} / 280 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame H } \\ & 0590 \mathrm{~J}=500 \mathrm{HP} @ 460 \mathrm{Vac} / 315 \mathrm{~kW} @ 400 \mathrm{Vac}: \text { Frame J } \end{aligned}$
4	X	One character specifying the Dynamic Braking Option: $\begin{array}{ll} \mathrm{N}= & \text { No Braking Control } \\ \mathrm{B}= & \text { Braking Switch included } \end{array}$
5	XX	Two characters specifying the Internal Fan Option: $00=$ Not applicable $1 \mathrm{~F}=110 \mathrm{Vac}$ fan(s) fitted $2 \mathrm{~F}=230 \mathrm{Vac}$ fan(s) fitted

Technical Specifications

Model Number		
Block	Variable	Description
6	X	One character specifying the Performance Level: $\mathrm{A}=$ Advanced - Standard Level plus: Advanced LINK macro blocks such as SPW/CPW winder control and Electronic Gearing. Industry standard motion commands supported such as Move Incremental, Move Absolute etc... PLCOpen(like) programming environment. $\mathrm{H}=$ High Performance - Advanced Level plus: Application specific LINK macro blocks Cut-to-Length and Shaftless Printing.
7	XX	Two characters specifying the destination: $\begin{aligned} & \text { UK }=\text { United Kingdom, } 50 \mathrm{~Hz} \\ & \text { US }=\text { United States, } 60 \mathrm{~Hz} \end{aligned}$
8	XX	Two characters specifying the livery (Brand Label Partners - 01 thru 99): $00=$ SSD Standard
9	XX	Two characters specifying special options: $00=$ None fitted
10	XX	Two characters specifying the Feedback Option (8902 product) for OPTION F slot: $\mathrm{EQ}=$ Encoder Quadrature Incremental E1 = EnDat Encoder (Sin/Cos Type, V2.1) RE $=$ REsolver (Standard for Servo) $R R=$ Resolver Repeater M1 = Mark Registration (Endat 2.1) $00=$ Not Fitted: blanking panel fitted

Technical Specifications

Model Number		
Block	Variable	Description
11	XX	Two characters specifying the Communications Option (8903 product) for OPTION A slot: DN = DeviceNet Fieldbus Communications CB = CanOpen Fieldbus Communications PB = ProfiBus Fieldbus Communications CN = ControlNet Fieldbus Communications IM = Modbus/TCP IP = Ethernet/IP PN = ProfiNet I/O M1 = Mark Registration (Endat 2.1) RS = RS485 (Modbus RTU) CT = EtherCAT A1 = Analogue Input Option (if fitted in slot A cannot be fitted in slot B) EP = Encoder Option (iff fitted in slot A cannot be fitted in slot B) O0 = Not Fitted: blanking panel fitted
12	XX	Two characters specifying the Communications Option (8903 product) for OPTION B slot: SP = Peer - Peer FA = FireWire IEEE1394A, 890 LAN Communications A1 = Analogue Input Otion (if fitted in slot B cannot be fitted in slot A) EP = Encoder Option (if fitted in slot B cannot be fitted in slot A) 00 = Not Fitted: blanking panel fitted

Technical Specifications

Notes for Electrical Rating Tables

Read these notes in conjunction with the following Electrical Rating tables.

1. IMPORTANT : 3\% line impedance MUST be provided 4. Fundamental Input Power Factor : 0.95
for each unit, and is assumed in the quoted input current values. Failure to do so will severely shorten DC link capacitor lifetime and could result in damage to the inverter. Refer to AC Line Choke table.
2. Output Voltage $($ maximum $)=$ Input Voltage
3. Output Frequency: 0 to 120 Hz
4. Input currents for kW ratings are at 400 V 50 Hz ac input, and for Hp ratings at 460 V 60 Hz ac input.
5. Short circuit protection Semiconductor Fuses should be installed in the 3-phase supply to the drive module to protect the input bridge. Circuit breakers or HRC fuses will not protect the input bridge.
6. Fan Inlet Temperature Range : 0 to $40^{\circ} \mathrm{C}$
7. Earth Leakage Current : >>100mA. Product must be permanently earthed.
8. True value given, note that the MMI will display 3 kHz

Technical Specifications

Electrical Ratings (Induction): 890SD Frame G, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes $1 \& 2$)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{gathered} \text { Input } \\ \text { Bridge } \mathbf{I}^{2} \mathbf{t} \\ \left(\mathrm{~A}^{2} \mathrm{~s}\right) \end{gathered}$
FRAME G : Prospective short circuit current 100kA maximum.								
Constant Torque Output Overload Motoring 150\% overload for 60 seconds (all vector modes) 180% for 1s (V/Hz moder								
890SD/4/0216G/..		110kW	216	216	2097	2426	2.5	304000
	890SD/4/0216G/..	175hp	216	186			2.5	304000
890SD/4/0250G/..		132kW	250	246	2598	2912	2.5	304000
	890SD/4/0250G/..	200hp	250	236			2.5	304000
890SD/4/0316G/..		160kW	316	305	3169	3500	2.5	813000
	890SD/4/0316G/..	250hp	316	307			2.5	813000
890SD/4/0361G/..		180 kW	361	336	3347	3723	2.5	813000
	890SD/4/0361G/..	300hp	361	358			2.5	813000

Technical Specifications

Electrical Ratings (Induction): 890SD Frame G, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes $1 \& 2$)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{gathered} \text { Input } \\ \text { Bridge } I^{2} t \\ \left(\mathrm{~A}^{2} \mathrm{~s}\right) \end{gathered}$
FRAME G :								
Quadratic Torque Output Overload Motoring 110\% for 60s (V/Hz mode)								
890SD/4/0216G/..		132kW	260	247	2590	2920	2.5	304000
	890SD/4/0216G/..	200hp	260	239			2.5	304000
890SD/4/0250G/..		150 kW	302	297	3169	3482	2.5	304000
	890SD/4/0250G/..	250hp	302	288			2.5	304000
890SD/4/0316G/..		180kW	361	341	3635	3967	2.5	813000
	890SD/4/0316G/..	300hp	361	358			2.5	813000
890SD/4/0361G/..		220kW	420	402	4032	4409	2.5	813000
	890SD/4/0361G/..	350hp	420	411			2.5	813000

Technical Specifications

Electrical Ratings (Induction): 890SD Frame H, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes 1 \& 2)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{gathered} \text { Input } \\ \text { Bridge } I^{2} t \\ \left(\mathrm{~A}^{2} \mathrm{~s}\right) \end{gathered}$
FRAME H :	Prospective short circuit current 100kA maximum.							
Constant Torque Output Overload Motoring 150\% overload for 60 seconds (all vector modes) 180% for 1s (V/Hz								
890SD/4/0375H/..	890SD/4/0375H/..	200kW	375	367	3566	3954	2.5	813000
890SD/4/0420H/..	890SD/4/0420H/..	$\begin{gathered} \hline 220 \mathrm{~kW} \\ 350 \mathrm{hp} \end{gathered}$	$\begin{aligned} & 420 \\ & 420 \end{aligned}$	$\begin{aligned} & 400 \\ & 409 \end{aligned}$	4030	4418	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0480H/..	890SD/4/0480H/..	$\begin{aligned} & 250 \mathrm{~kW} \\ & 400 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 480 \\ & 480 \end{aligned}$	$\begin{aligned} & 466 \\ & 477 \end{aligned}$	4559	4984	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0520H/..	890SD/4/0520H/..	$\begin{gathered} 280 \mathrm{~kW} \\ 450 \mathrm{hp} \end{gathered}$	$\begin{aligned} & 520 \\ & 520 \end{aligned}$	$\begin{aligned} & 516 \\ & 529 \end{aligned}$	5031	5469	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$

Technical Specifications

Electrical Ratings (Induction): 890SD Frame H, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes $1 \& 2$)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{gathered} \text { Input } \\ \text { Bridge } I^{2} t \\ \left(\mathrm{~A}^{2} \mathrm{~s}\right) \end{gathered}$
FRAME H : Prospective short circuit current 100kA maximum.								
Quadratic Torque Output Overload Motoring 110\% for 60s (V/Hz mode)								
890SD/4/0375H/..	890SD/4/0375H/..	250kW	480	450	4704	5092	2.5	813000
890SD/4/0420H/..	890SD/4/0420H/..	$\begin{aligned} & 250 \mathrm{~kW} \\ & 400 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 480 \\ & 480 \end{aligned}$	$\begin{aligned} & 450 \\ & 461 \end{aligned}$	4704	5092	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0480H/..	890SD/4/0480H/..	$\begin{array}{\|c\|} \hline 300 \mathrm{~kW} \\ 450 \mathrm{hp} \\ \hline \end{array}$	$\begin{aligned} & 545 \\ & 545 \end{aligned}$	$\begin{aligned} & 545 \\ & 529 \end{aligned}$	5317	5743	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0520H/..	890SD/4/0520H/..	315 kW 500hp	$\begin{aligned} & 590 \\ & 590 \end{aligned}$	$\begin{aligned} & 571 \\ & 581 \end{aligned}$	5761	6200	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$

Technical Specifications

Electrical Ratings (Induction): 890SD Frame J, 400V

Power Supply $=380-500 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes 1 \& 2)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	Input Bridge $\mathrm{I}^{2} \dagger$ $\left(\mathrm{A}^{2} \mathrm{~s}\right)$
FRAME J: Prospective short circuit current 100kA maximum.								
Constant Torque Output Overload Motoring 150\% overload for 60 seconds (all vector modes)								
890SD/4/0590J/..	890SD/4/0590J/..	315kW	590	576	5788	6260	2.5	813000
		500hp	590	584			2.5	813000
Quadratic Torque Output Overload Motoring 110\% for 60s (V/Hz mode)								
890SD/4/0590J/..		355kW	650	642	6479	6951	2.5	813000
	890SD/4/0590J/..	550hp	650	636			2.5	813000

Technical Specifications

Electrical Ratings (Servo): 890SD Frame G, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes 1 \& 2)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{gathered} \text { Input } \\ \text { Bridge } I^{2} t \\ \left(A^{2} s\right) \end{gathered}$
FRAME G : Prospective short circuit current 100kA maximum.								
Constant Torque Output Overload Motoring 150\% overload for 60 seconds (PMAC mode)								
890SD/4/0216G/..		110kW	153	216	2097	2426	4	304000
	890SD/4/0216G/..	175hp	153	186			4	304000
890SD/4/0250G/..		132kW	171	246	2598	2912	4	304000
	890SD/4/0250G/..	200hp	171	236			4	304000
890SD/4/0316G/..		160 kW	224	305	3169	3500	4	813000
	890SD/4/0316G/..	250hp	224	307			4	813000
890SD/4/0361G/..		180kW	253	336	3347	3723	4	813000
	890SD/4/0361G/..	300hp	253	358			4	813000

Technical Specifications

Electrical Ratings (Servo): 890SD Frame G, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes $1 \& 2$)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{aligned} & \text { Input } \\ & \text { Bridge } I^{2} \mathbf{t} \\ & \left(\mathrm{~A}^{2} \mathrm{~s}\right) \end{aligned}$
FRAME G: Prospective short circuit current 100kA maximum.								
Quadratic Torque Output Overload Motoring 110\% for 60s (PMAC mode)								
890SD/4/0216G/..		132 kW	210	247	2590	2920	4	304000
	890SD/4/0216G/..	200hp	210	239			4	304000
890SD/4/0250G/..		150 kW	237	297	3169	3482	4	304000
	890SD/4/0250G/..	250hp	237	288			4	304000
890SD/4/0316G/..		180kW	286	341	3635	3967	4	813000
	890SD/4/0316G/..	300hp	286	358			4	813000
890SD/4/0361G/..		220 kW	331	402	4032	4409	4	813000
	890SD/4/0361G/..	350hp	331	411			4	813000

Technical Specifications

Electrical Ratings (Servo): 890SD Frame H, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes 1 \& 2)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{gathered} \text { Input } \\ \text { Bridge } I^{2} t \\ \left(\mathrm{~A}^{2} \mathrm{~s}\right) \end{gathered}$
FRAME H :	Prospective short circuit current 100kA maximum.							
Constant Torque Output Overload Motoring 150\% overload for 60 seconds (PMAC mode)								
890SD/4/0375H/..	890SD/4/0375H/..	200kW	268	367	3566	3954	4	813000
890SD/4/0420H/..	890SD/4/0420H/..	$\begin{gathered} \hline 220 \mathrm{~kW} \\ 350 \mathrm{hp} \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 400 \\ & 409 \end{aligned}$	4030	4418	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0480H/..	890SD/4/0480H/..	$\begin{aligned} & 250 \mathrm{~kW} \\ & 400 \mathrm{hp} \end{aligned}$	$\begin{aligned} & 336 \\ & 336 \end{aligned}$	$\begin{aligned} & 466 \\ & 477 \end{aligned}$	4559	4984	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0520H/..	890SD/4/0520H/..	$\begin{gathered} 280 \mathrm{~kW} \\ 450 \mathrm{hp} \end{gathered}$	$\begin{aligned} & 368 \\ & 368 \end{aligned}$	$\begin{aligned} & 516 \\ & 529 \end{aligned}$	5031	5469	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$

Electrical Ratings (Servo): 890SD Frame H, 400V

Power Supply $=380-460 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes 1 \& 2)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9)	$\begin{aligned} & \text { Input } \\ & \text { Bridge } I^{2} \mathbf{t} \\ & \left(\mathrm{~A}^{2} \mathrm{~s}\right) \end{aligned}$
FRAME H : Prospective short circuit current 100kA maximum.								
Quadratic Torque Output Overload Motoring 110\% for 60s (PMAC mode)								
890SD/4/0375H/..	890SD/4/0375H/..	250kW	343	450	4704	5092	4	813000
890SD/4/0420H/..	890SD/4/0420H/..	$\begin{gathered} \hline 250 \mathrm{~kW} \\ 400 \mathrm{hp} \\ \hline \end{gathered}$	$\begin{aligned} & 383 \\ & 383 \end{aligned}$	$\begin{aligned} & 450 \\ & 461 \end{aligned}$	4704	5092	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0480H/..	890SD/4/0480H/..	$\begin{gathered} 300 \mathrm{~kW} \\ 450 \mathrm{hp} \end{gathered}$	$\begin{aligned} & 428 \\ & 428 \end{aligned}$	$\begin{aligned} & 545 \\ & 529 \end{aligned}$	5317	5743	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$
890SD/4/0520H/..	890SD/4/0520H/..	315 kW 500hp	$\begin{aligned} & 465 \\ & 465 \end{aligned}$	$\begin{aligned} & 571 \\ & 581 \end{aligned}$	5761	6200	$\begin{aligned} & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 813000 \\ & 813000 \end{aligned}$

Technical Specifications

Electrical Ratings (Servo): 890SD Frame J, 400V

Power Supply $=380-500 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$
Motor power, output current and input current must not be exceeded under steady state operating conditions.
Suitable for earth referenced (TN) and non-earth referenced (IT) supplies.

Model Number (Europe)	Model Number (North America)	Motor Power	Output Current (A)	AC Input Current (A) (notes 1 \& 2)	Heatsink Power Loss (W)	Total Power Loss (W)	Maximum Switching Frequency (kHz) (note 9	Input Bridge $\mathrm{I}^{2} \dagger$ ($\mathrm{A}^{2} \mathrm{~s}$)
FRAME J: Prospective short circuit current 100kA maximum.								
Constant Torque Output Overload Motoring 150\% overload for 60 seconds (PMAC mode)								
890SD/4/0590J/..	890SD/4/0590J/..	315 kW	411	576	5788	6260	4 813000 4 813000	
		500hp	411	584				
Quadratic Torque Output Overload Motoring 110\% for 60s (PMAC mode)								
890SD/4/0590J/..		355kW	471	642	6479	6951	4	813000
	890SD/4/0590J/..	550hp	471	636			4	813000

Technical Specifications

Earthing/Safety Details

Earthing	Each unit must be permanently earthed according to EN 50178. For permanent earthing, EN 50178 states that: A cross-section conductor of at least 10mm² is required. This can be achieved either by using a single conductor (PE) or by laying a second conductor though separate terminals (PE2 where provided) and electrically in parallel. Use a copper protective earth conductor of at least $10 \mathrm{~mm}^{2}$ minimum cross-section. These drives are fitted with four permanent earthing points. Conductors must be sized in accordance with Local Wiring Regulations which always take precedence. As a guide, refer to the Input Current for the drive given in the Electrical Ratings tables.
Input Supply Details (TN) and (IT)	Drives without filters are suitable for earth referenced (TN) or non-earth referenced (IT) supplies. External filters are available for use on earth referenced (TN) supplies only.
Earth Leakage Current	$\gg 100 \mathrm{~mA}$ (all models)

Technical Specifications

Cabling Requirements for EMC Compliance

| | Power Supply
 Cable | Motor Cable | Brake
 Supply EMC Filter
 to Drive Cable | External AC
 Resistor
 Cable | Signal/Control
 Cable |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Cable Type
 (for EMC Compliance) | Unscreened | Screened/
 armoured | Screened/
 armoured | Screened/
 armoured | Screened |
| Screen to Earth
 Connection | | Both ends | Both ends | Both ends | Drive end only |
| Segregation | From all other
 wiring (clean) | From all other wiring (noisy) | | From all other
 wiring (sensitive) | |
| 890xx/x/...
 Length Limitations
 With External AC
 Supply EMC Filter | Unlimited | EN61800-3 Table 9 | 0.3 metres | 25 metres | 25 metres |
| Length Limitations
 With Output Choke | | 300 metres maximum | | | |
| Length Limitations
 Without Output Choke | | 250 metres maximum | | | |

Technical Specifications

External AC Supply (RFI) Filter (Part Number CO467843U340)

The drive can be supplied with filters to meet the 'industrial' Class A conducted emission limits of EN55011 when used with 50 m of screened motor cable and the specified 3% minimum AC line choke as listed below.

$\begin{gathered} \text { Frame } \\ \text { Size } \end{gathered}$	Motor Power (kW)	Number of Filters Required in Parallel	Phase	Watt Loss (W)	Leakage Current (mA)	Current (A)	Maximum Supply Voltage (V)	EMC Performance Class (Industrial)	$\begin{array}{\|l\|} \hline \text { Maximum } \\ \text { Motor } \\ \text { Cable } \\ \text { Length (m) } \end{array}$	AC Line Choke
G	110	1	3	50	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U401
G	132	1	3	50	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U401
G	160	2	3	100	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U402
G	180	2	3	100	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U402
H	200	2	3	100	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U402
H	220	2	3	100	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U402
H	250	2	3	100	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U403
H	280	2	3	100	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U403
J	315	2	3	100	$>100 \mathrm{~mA}$	340	460	Class A	50	CO389936U403
Filters suitable for earth referenced (TN) supplies only. The filter is suitable for use at 3 kHz switching frequency only.										

Technical Specifications

AC Line Choke

Frame G, H, J drives MUST use an AC Line Choke. However, where a drive is individually supplied from a dedicated transformer with the required impedance, the AC Line Choke is not required.
Where a system comprises a number of Frame G, H and J drives connected to a common supply, a separate AC Line Choke is required in the supply to each drive.
When an EMC external ac supply filter is used, the AC Line Choke must be fitted between the filter and the drive.
Caution
Failure to provide the correct line impedance will severely reduce the drives lifetime and could result in catastrophic failure of the drive.

The required AC Line Choke line impedance is nominally 3\% of the drive rating.
Parker SSD Drives can supply the following ac line chokes:

Frame Size	Constant/Quadratic Torque Rating		Inductance/Phase$(\mu \mathbf{H})$	Maximum Continuous AC Line CurrentQuadratic Torque (A rms)	Peak Current @ 150\% Constant Torque Rating (A peak)	Parker SSD Drives Part No.
	kW@ 380V	Hp @ 460V				
G	110/132	175/200	75	260	560	CO389936U401
	132/160			239	560	
				313	620	
		200/250		288	620	
	160/180		50	359	790	CO389936U402
		250/300		358	790	
	180/220			423	860	
		300/350		411	860	

Technical Specifications

AC Line Choke

Frame G, H, J drives MUST use an AC Line Choke. However, where a drive is individually supplied from a dedicated transformer with the required impedance, the AC Line Choke is not required.
Where a system comprises a number of Frame G, H and J drives connected to a common supply, a separate AC Line Choke is required in the supply to each drive.
When an EMC external ac supply filter is used, the AC Line Choke must be fitted between the filter and the drive.

Caution
Failure to provide the correct line impedance will severely reduce the drives lifetime and could result in catastrophic failure of the drive.

The required AC Line Choke line impedance is nominally 3\% of the drive rating.
Parker SSD Drives can supply the following ac line chokes:

Frame Size	Constant/Quadratic Torque Rating		Inductance/Phase$(\mu \mathrm{H})$	Maximum Continuous AC Line CurrentQuadratic Torque (A rms)	Peak Current @ 150\% Constant Torque Rating (A peak)	Parker SSD Drives Part No.
	kW@ 380V	Hp @ 460V				
H	200/250		50	474	915	CO389936U402
	220/250	350/400		474	995	
				461	995	
	$280 / 315$		35	574	1180	CO389936U403
		400/450		529	1180	
				601	1295	
		450/500		581	1295	
J	315/355			676	1430	
		500/550		636	1430	

Technical Specifications

Internal Dynamic Brake Switch (Frame G)

Motor Power (kW)	Brake Switch Peak Current (A)	Peak Brake Dissipation (kW/hp)	Brake Switch Continuous Current (A)	Continuous Brake Dissipation (kW/hp)	Minimum Brake Resistor Value (Ω)
$380-460 \mathrm{~V} \pm 10 \%, 45-65 \mathrm{~Hz}$ DC link brake voltage: 750-820V					
	20s maximum, 30\% duty				
180	360	270/360	72	54/72	2.08

Internal Dynamic Brake Switch (Frame H)

Motor Power (kW)	Brake Switch Peak Current (A)	Peak Brake Dissipation $(\mathrm{kW} / \mathrm{hp})$	Brake Switch Continuous Current (A)	Continuous Brake Dissipation $(\mathrm{kW} / \mathrm{hp})$	Minimum Brake Resistor Value (Ω)
$\mathbf{3 8 0 - 4 6 0 V} \pm \mathbf{1 0 \%}, \mathbf{4 5 - 6 5 H z}$ DC link brake voltage: $750-820 \mathrm{~V}$ 280$\quad \mathbf{2 0 s}$ maximum, 30\% duty					
260	$420 / 560$	112	$84 / 112$	1.34	

Internal Dynamic Brake Switch (Frame J)

Motor Power (kW)	Brake Switch Peak Current (A)	Peak Brake Dissipation (kW/hp)	Brake Switch Continuous Current (A)	Continuous Brake Dissipation (kW/hp)	Minimum Brake Resistor Value (Ω)
$380-460 \mathrm{~V} \pm 10 \%, 45-65 \mathrm{~Hz}$ DC link brake voltage: $750-820 \mathrm{~V}$					
	20s maximum, 30\% duty				
315	630	473/630	126	95/126	1.19

Analog Inputs/Outputs

AIN1 - AIN4, AOUT1 - AOUT2		
Range	Inputs	Outputs
Impedance	$0-10 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-20 \mathrm{~mA}$ or 4-20mA (range set in software). Absolute maximum input voltage -15 V to +30 V	$0-10 \mathrm{~V}, \pm 10 \mathrm{~V}(10 \mathrm{~mA}$ maximum), (range set in software)
Resolution	Voltage range $=47 \mathrm{k} \Omega$ Current range $=150 \Omega+$ series diode	Voltage range $=100 \Omega$
Sample Rate	12 bit	12 bit

Technical Specifications

Digital Inputs

DIN1 - DIN9. Conforming to IEC1131-2.

Digital Outputs

There are six digital outputs. Two are current sourcing outputs, DINOUT1 and DINOUT2. The third is a pair of volt-free relay contacts, DOUT3A and DOUT 3B.

DINOUT1, DINOUT2

Output High Voltage	$\geq 18 \mathrm{~V}, \leq 26 \mathrm{~V}$ On state, output current $=0$ to maximum output current
Maximum Output Current	$\geq 160 \mathrm{~mA}$ Note: The maximum output is the sum of all 24 V sourced outputs, i.e. $\mathrm{i}_{\text {DINOUT1 }}+\mathrm{i}_{\text {DINOUT2 }}+\mathrm{i}_{24 \mathrm{~V} \text { USER }} \leq 160 \mathrm{~mA}$
Overload/Short Circuit Protection	Indefinite
DOUT3A, DOUT3B	
Rated Voltage	24 V DC SELV
Rated Current	1 A resistive load at rated voltage
Resistance	$\leq 0.05 \Omega-$ on state
Isolation Resistance	$>10^{10} \Omega-$ off state
Arc Protection	No
Update Rate	1 ms

Technical Specifications

Relay Outputs

There are three pairs of volt-free relay outputs available on Terminal X16. Rated to 230V 3A resistive load. Alternatively they may be used down to $1 \mathrm{~mA}, 12 \mathrm{~V}$ levels.

DOUT4, DOUT5, DOUT6

DOUT4_A DOUT4 B	Normally-open relay contacts. Default function DOUT4 closed = healthy
DOUT5_A DOUT5_B	Normally-open relay contacts. Default function DOUT5 closed = running
DOUT6_A DOUT6_B	Normally-open relay contacts. No default function.

Reference Outputs

There are two reference outputs that provide +10 V and -10 V . They can be used, for example, to generate -10 V to +10 V signals via potentiometers for the analog inputs.

Accuracy	$\pm 1 \%$ Output current $=0$ to maximum. Ambient temperature $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Maximum Output Current	$\geq 10 \mathrm{~mA}$
Overload/Short Circuit Protection	Indefinite

Technical Specifications

User 24V Supply

A supply is provided for powering external equipment or for providing power to the digital inputs.
Terminal X14/03

Output Voltage	$\geq 18 \mathrm{~V}, \leq 28 \mathrm{~V}$
Maximum Output Current	$\geq 160 \mathrm{~mA}$ Note: The maximum output is the sum of all 24 V sourced outputs, i.e. $\mathrm{i}_{\text {DINOUT1 }}+\mathrm{i}_{\text {DINOUT2 }}+\mathrm{i}_{24 \mathrm{~V} \text { USER }} \leq 160 \mathrm{~mA}$
Overload/Short Circuit Protection	Indefinite

Technical Specifications

Auxiliary Power Supply Load Requirements

This tables lists the auxiliary power supply requirements for the 890 ancillary equipment.

Item	Load Requirements	Item	Load Requirements
Tech Cards - Speed Feedback			
8902/EQ : HTTL Encoder	8W	8902/RE : Resolver	3.2 W
8902/E1 : Sin/Cos Encoder	3.3 W	8902/RR : Resolver + Repeater	4.4 W
8902/M1 : Mark Registration 1W from + 5V supply, plus up to 3W from +24V supply when an encoder is connected.			

Tech Cards - Communications			
8903/DN : DeviceNet	1.3 W	8903/IP : Ethernet/IP	1.6 W
8903/PB : Profibus	2.3 W	8903/M1 : Mark Registration	1 W from +5 V supply, plus up to 3 W from +24 V supply when an encoder is connected
8903/CN : ControlNet	1.3W	8903/PN : Profinet	1.6 W
8903/CB : CANOpen	1.3 W	8903/FA : Firewire 1394A	0.7W
8903/IM : Modbus/TCP	1.6 W	8903/FB : Firewire 1394B	2W
8903/CT : EtherCAT	1.8 W	8903/SP : Peer - Peer	1.3 W
8903/RS : RS485	1W		
Keypad			
6901 Keypad	1W	6911 Keypad	1W

Technical Specifications

Wire Sizes (Europe)

Wire sizes for Europe should be chosen with respect to the operating conditions and your local National Electrical Safety Installation Requirements. Local wiring regulations always take precedence.

Fan Terminals $\left(\mathbf{m m}^{2} /\right.$ AWG)	Motor Thermistor $\left.\mathbf{(m m}^{2} / \mathbf{A W G}\right)$	DC Output Busbar $(\mathbf{m m})$	AC Input/Output Busbar $(\mathbf{m m})$	Brake Busbar $(\mathbf{m m})$	Control Terminals $\left(\mathbf{m m}^{2} / \mathbf{A W G}\right)$
$0.2-6 / 24-10$	$0.5-16 / 20-6$	$2 \times \varnothing 13$ holes,	$2 \times \varnothing 13$ holes,	$2 \times \varnothing 13$ holes,	$2.5 / 14$
44 mm apart	44 mm apart	44 mm apart			

Technical Specifications

Wire Sizes (US/Canada)

North American wire sizes (AWG) are based on NEC/NFPA-70 for ampacities of thermoplastic-insulated $\left(75^{\circ} \mathrm{C}\right)$ copper conductors assuming not more than three current-carrying conductors in raceway or cable, based on ambient temperature of $30^{\circ} \mathrm{C}$. The wire sizes allow for an ampacity of 125% of the rated input and output amperes for motor branch-circuit conductors as specified in NEC/NFPA-70.

FRAME G: 460V $\pm 10 \%$

CONSTANT TORQUE				
Model Number	Power Input Kcmil	Power Output Kcmil	Brake Output AWG	
$890 \mathrm{SD} / 4 / 0216 \mathrm{G} / .$.	250	300	6	
$890 \mathrm{SD} / 4 / 0250 \mathrm{G} / .$.	350	400	4	
$890 \mathrm{SD} / 4 / 0316 \mathrm{G} / .$.	600	600	4	
$890 \mathrm{SD} / 4 / 0361 \mathrm{G} / .$.	700	700	3	
QUADRATIC TORQUE				
Model Number	Power Input Kcmil	Power Output Kcmil	Brake Output	
$890 \mathrm{SD} / 4 / 0216 \mathrm{G} / .$.	350	400		
$890 \mathrm{SD} / 4 / 0250 \mathrm{G} / .$.	500	500		
$890 \mathrm{SD} / 4 / 0316 \mathrm{G} / .$.	700	700		
$890 \mathrm{SD} / 4 / 0361 \mathrm{G} / .$.	900	900		

Technical Specifications

Wire Sizes (US/Canada)

North American wire sizes (AWG) are based on NEC/NFPA-70 for ampacities of thermoplastic-insulated $\left(75^{\circ} \mathrm{C}\right)$ copper conductors assuming not more than three current-carrying conductors in raceway or cable, based on ambient temperature of $30^{\circ} \mathrm{C}$. The wire sizes allow for an ampacity of 125% of the rated input and output amperes for motor branch-circuit conductors as specified in NEC/NFPA-70.

FRAME H : 460V $\pm 10 \%$				
CONSTANT TORQUE				
Model Number	Power Input Kcmil	Power Output Kcmil	Brake Output AWG	
$890 \mathrm{SD} / 4 / 0375 \mathrm{H} / .$.	700	750	3	
$890 \mathrm{SD} / 4 / 0420 \mathrm{H} / .$.	900	1000	2	
$890 \mathrm{SD} / 4 / 0480 \mathrm{H} / .$.	1500	1500	1	
$890 \mathrm{SD} / 4 / 0520 \mathrm{H} / .$.	2000	1750	$1 / 0$	
QUADRATIC TORQUE				
Model Number	Power Input Kcmil	Power Output Kcmil	Brake Output	
$890 \mathrm{SD} / 4 / 0375 \mathrm{H} / .$.	1250 Kcmil	1500 Kcmil		
$890 \mathrm{SD} / 4 / 0420 \mathrm{H} / .$.	1250 Kcmil	1500 Kcmil		
$890 \mathrm{SD} / 4 / 0480 \mathrm{H} / .$.	2000 Kcmil	$1 @ 3 "$		
$890 \mathrm{SD} / 4 / 0520 \mathrm{H} / .$.	$1 @ 3 "$	$1 @ 3 "$		

Technical Specifications

Wire Sizes (US/Canada)

North American wire sizes (AWG) are based on NEC/NFPA-70 for ampacities of thermoplastic-insulated $\left(75^{\circ} \mathrm{C}\right)$ copper conductors assuming not more than three current-carrying conductors in raceway or cable, based on ambient temperature of $30^{\circ} \mathrm{C}$. The wire sizes allow for an ampacity of 125% of the rated input and output amperes for motor branch-circuit conductors as specified in NEC/NFPA-70.

FRAME J : 460V $\pm 10 \%$			
CONSTANT TORQUE			
Model Number	Power Input Kcmil	Power Output Kcmil	Brake Output AWG
890 SD/4/0590J/..	$1 @ 3 "$	$1 @ 3 "$	$2 / 0$
CONSTANT TORQUE			
Model Number	Power Input Kcmil	Power Output Kcmil	Brake Output AWG
890 SD/4/0590J/..	$1 @ 3 "$	$1 @ 3 "$	

Technical Specifications

UL Terminations

UL compression Terminal Lug Kits are available for the drives which provide sets of lugs suitable for the following ratings. These lugs must be applied with the correct tooling as described in the Installation Instructions provided with each Lug Kit.
The following Terminal Kits are available for the connection of Power Wiring.

Model Number	Constant Torque	Quadratic Torque	Terminal Kit No.				
FRAME G							
$890 \mathrm{SD} / 4 / 0216 \mathrm{G} / .$.	150 HP	200 HP	LA465682U001				
$890 \mathrm{SD} / 4 / 0250 \mathrm{G} / .$.	200 HP	250 HP	LA465682U002				
$890 \mathrm{SD} / 4 / 0316 \mathrm{G} / .$.	250 HP	300 HP	LA465682U003				
$890 \mathrm{SD} / 4 / 0361 \mathrm{G} / .$.	300 HP	350 HP	LA465682U004				
						FRAME H	
$890 \mathrm{SD} / 4 / 0375 \mathrm{H} / .$.	300 HP	400 HP	LA465682U005				
$890 \mathrm{SD} / 4 / 0420 \mathrm{H} / .$.	350 HP	400 HP	LA465682U006				
$890 \mathrm{SD} / 4 / 0480 \mathrm{H} / .$.	400 HP	450 HP	LA465682U007				
$890 \mathrm{SD} / 4 / 0520 \mathrm{H} / .$.	450 HP	500 HP	LA465682U008				
						FRAME J	
$890 \mathrm{SD} / 4 / 0590 \mathrm{~J} / .$.	500 HP	550 HP	LA465682U009				

Technical Specifications

890SD Branch Protection Fuses (North America)

It is recommended that UL Listed (JDDZ) non-renewable cartridge fuses, Class K5 or H; or UL Listed (JDRX) renewable cartridge fuse, Class H, are installed upstream of the drive.

Short circuit protection Semiconductor Fuses should be installed in the 3-phase supply to the drive module to protect the input bridge. Circuit breakers or HRC fuses will not protect the input bridge.

Model Number	Input Fuse Rating (A)	
	Constant Torque	Quadratic Torque
Frame G		
890SD/4/0216G/..	250	300
890SD/4/0250G/..	300	350
890SD/4/0316G/..	350	450
890SD/4/0361G/..	400	450
Frame H		
890SD/4/0375H/..	450	550
890SD/4/0420H/..	450	550
890SD/4/0480H/..	550	650
890SD/4/0520H/..	600	650
Frame J		
890SD/4/0590J/..	600	650

Technical Specifications

890 Control Board Firmware and Hardware Compatibility

Which Firmware for Which Hardware

Firmware Version	Application				
V1.x	Induction Motor Control	AFE Control	No Motion Control		
V2.x			Motion Control PMAC Servo Motor Control	PMAC Torque Motor Control	
V3.x	Induction Motor Control	AFE Control	No Motion Control	PMAC Servo Motor Control	PMAC Torque Motor Control

Which Firmware for Which Hardware

Old Control Card Hardware Board. \# 465820		
Firmware for Old Control Card New Control Card Hardware. \# 469910 (Firmware executes on both cards) Firmware for New Control Card V1.1 to V1.9 V1.10 onwards V2.1 to V2.3 V2.4 onwards - - - -	V3.1 onwards	

DSE Configuration Compatibility

All versions of 890 control board firmware are supported by V2.10 (or newer) DSE or DSELite.

Technical Specifications

CANADA

Parker Hannifin Canada

Motion and Control Division
160 Chisholm Drive
Milton Ontario L9T 3 G9
Milton, Ontario L9T 3G9
Tel: +1 (905) 693-3000
Fax: +1 (905) 876-195

GERMANY

Parker Hannifin GmbH
Von-Humboldt-Strasse 10 64646 Heppenheim Tel: \quad +49 (6252) 798200 Fax: +49 (6252) 798205

CHINA

Parker Hannifin Motion \& Control
(Shanghai) Co. Ltd.
280 Yunqiao Road,
JinQiao Export Processing Zone,
JinQiao Export Processing Zone, Tel: +86(21)5031 2525
Fel. $+86(21) 50312525$

ITALY

Parker Hannifin SPA
Via C. Gounod, Cinisello Balsamo 1-20092, Milano
Tel: +39 (0236) 1081
Fax: +39 (0236) 108400

FRANCE

Parker SSD Parvex
8 Avenue du Lac
B.P. 249

21007 Dijon Cedex
Tel: +33 (0)3 80424140
Fax: +33 (0)3 80424123

USA

Parker Hannifin Corporation
SSD Drives
9225 Forsyth Park Drive
Charlotte
North Carolina 28273
Tel: +1 (704) 5883246
Fax: +1 (704) 5883249

Local availability and service support also in:

SERVICE \& R E P AIR CENTRES

Argentina • Australia - Austria - Bangladesh • Belgium • Brazil - Chile - Colombia - Costa Rica - Cyprus Czech Republic • Denmark • Ecuador • Egypt • Finland • Greece • Hong Kong • Hungary • india • Indones Iran • Ireland • Israel • Japan • Jordan • Kenya • Korea • Kuwait • Lithuania • Malaysia • Netherlands New Zealand • Nigeria - Norway • Peru • Philippines • Poland • Portugal • Quatar • Romania - Russia Saudi Arabia • Singapore • Sovenia • Slovakia • South Africa • Spain • Sri Lanka • Sweden • Switzerland Taiwan • Thailand • Turkey • United Arab Emirates • Vietnam • Zimbabwe
www.ssddrives.com

[^0]: ${ }^{1}$ EMC stands for Electro Magnetic Compatibility, a term for the behaviour of an apparatus in terms of the Electro magnetic interference it generates and the immunity to an Electro magnetic field on its enclosure and cables

