Reed Sensor (Low AMP)

Part Numbers*

Bore	Reed (Low AMP)	NPN Sinking	PNP Sourcing
9/16"	L077030000	L076950000	L076990000
3/4", 1-1/8"	L077040000	L076960000	L077000000
1-1/2", 2"	L077050000	L076970000	L077010000
2-1/2", 3", 4"	L077060000	L076980000	L077020000

For sensors with an 8mm connector, replace the last digit with a 'C'. For example: L07696000C.

C086

Specifications

Solid State Sensors	(NPN/PNP)
Outline to a line of a	NLO NDNI (Circleinere)

Switching Logic	. N.O. NPN (Sinking)
	N.O. PNP (Sourcing)
Supply Voltage Range	. 5 - 30 VDC
On-State Voltage Drop	. 1.5 V max. at 100 mA
Current Output Range	. 100 mA
Burden Current	. 7 mA at 12 V 14 mA at 24 V
Leakage Current	. 0.01 mA
LED Function	. NPN: Red (Target Present)
	PNP: Green (Target Present)
Minimum Current to Light LED	. 1 mA
Operating Temperature	
Storage Temperature	4° to 176°F (-20° to 80°C)
Enclosure Protection	. IEC standard IP 67 NEMA 6P
Lead Wire	. 3 conductor, 24 gauge
Lead Wire Length	. 59 inches, 1.5 meter
Color of Cable	. Black
Switching Response	. Max. 1k Hz
Shock Resistance	
Vibration Resistance	. Double Amplitude 1.5 mm
	(Frequency 10 to 55 Hz
	1 scanning, 1 minute)
	- ,

Reed Sensor (LOW ANT)	
Switching Logic	. N.O. SPST (Form A)
Supply Voltage Range	. 3 - 125 V AC/DC
On-State Voltage Drop	. 1.8V max. at 20 mA DC
Power Rating*	
Switching Current Range*	. 5-40 mA (5-20 mA)
Leakage Current	.0
LED Function	. Red (Target Present)
Minimum Current to Light LED	. 3 mA
Operating Temperature	. 14° to 158°F (-10° to 70°C)
Storage Temperature	4° to 176°F (-20° to 80°C)
Enclosure Protection	IEC standard IP 67 NEMA 6P
Lead Wire	. 2 conductor, 24 gauge
Lead Wire Length	. 59 inches, 1.5 meter
Color of Cable	. Gray
Switching Response	. Max. 300 Hz
Shock Resistance	. 30 G (300 m/s²)
Vibration Resistance	
	(Frequency 10 to 55 Hz
	1 scanning, 1 minute)

*Number in parentheses pertains to inductive loads.

Circuits

Reed Sensor

NPN Sensor – Sinking Output

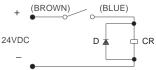
Color of Cable.....Black "On" State Voltage Drop...... 1.5V Maximum

NOTE: Polarity must be observed for

DC operation only.

PNP Sensor – Sourcing Output

Color of CableE	lack
"On" State Voltage Drop 1.5V Maxir	num


 Brown (Red*)	(.)
Black (White*)	5 to 30
Blue (Black*)	- ()

*Wire colors in parentheses pertain to sensors manufactured before 10/15/93.

Circuit for Switching Contact Protection (Inductive Loads) – for Reed Sensor Only

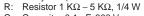
(Required for proper operation 24V DC)

Put Diode parallel to load (CR) following polarity as shown below.

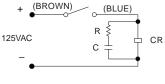
D: Diode: select a Diode with the breakdown voltage and current rating according to the load.

Typical Example - 100 Volt, 1 Amp Diode CR: Relay coil (under 0.5W coil rating)

A Caution


- Use an ampmeter to test reed sensor current. Testing devices such as incandescent light bulbs may subject the reed sensor to high in-rush loads.
- **NOTE:** When checking an unpowered reed sensor for continuity with a digital ohmmeter the resistance reading will change from infinity to a very large resistance (2 M ohm) when the sensor is activated. This is due to the presence of a diode in the reed sensor.
- Anti-magnetic shielding is recommended for reed sensors exposed to high external RF or magnetic fields
- The magnetic field strength of the piston magnet is designed to operate with our sensors. Other manufacturers' sensors may not operate correctly in conjunction with these magnets.

(Recommended for longer life 125 VAC)


Put a resistor and capacitor in parallel with the load (CR). Select the resistor and capacitor according to the load.

Typical Example:

CR: Relay coil (under 2W coil rating)

C: Capacitor 0.1 µF, 600 V

- Current capabilities are relative to operational temperatures.
- Use relay coils for reed sensor contact protection.
- The operation of some 120 VAC PLC's (especially some older Allen-Bradley PLC's) can overload the reed sensor. The sensor may fail to release after the piston magnet has passed. This problem may be corrected by the placement of a 700 to 1K OHM resistor between the sensor and the PLC input terminal. Consult the manufacturer of the PLC for appropriate circuit.
- Sensors with long wire leads (greater than 15 feet) can cause capacitance build-up and sticking will result. Attach a resistor in series with the reed sensor (the resistor should be installed as close as possible to the sensor). The resistor should be selected such that R (ohms) >E/0.3.

800.696.6165

www.comoso.com

M13

Parker Hannifin Corporation Pneumatic Division Wadsworth, Ohio www.parker.com/pneumatics