

General Information

Shuttle valves determine a single pneumatic output from two separate inputs. If pressure is applied to both ports simultaneously, the valve will select the port with the higher pressure.

Valve Specifications

Maximum Operating Pressure......200 PSIG Maximum 3 PSIG Minimum: Differential Pressure

Operating Temperature0° to 160°F*

* Ambient temperatures below freezing require moisture-free air. Ambient temperatures below freezing and above 180° require lubricants especially selected for suitability at these temperatures. Pneumatic valves should be used with filtered and lubricated air.

Component Materials

Body Material	Aluminum
Internal Components	. Aluminum
Seals	Nitrile

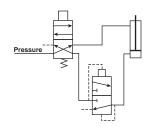
(3 Ports)

Model Selection and Dimensions

Model	Port	Dimensions											
Number	Size	Α	A1	В	С	D	Е	F	G	Н	J	К	L
N164 1001	1/8"	N/A	1.62	0.81	0.62	0.31	1.00	0.281	0.312	1.00	0.75	1/8 - 27	0.219
N164 2003	1/4"	2.50	2.12	1.25	1.25	0.62	2.00	0.67	0.265	1.25	1.35	1/4 - 18	0.219
N164 3003	3/8"	2.50	2.12	1.25	1.25	0.62	2.00	0.67	0.265	1.25	1.35	3/8 - 16	0.219

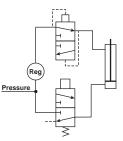
Performance Data – Flow

Model Number	Port Size	Flow (Cv)
N164 1001	1/8"	0.32
N164 2003	1/4"	1.65
N164 3003	3/8"	2.02


 Safety
 Drain
 Pressure
 Relief &
 Mufflers &
 Tanks &

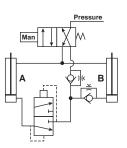
 Blow Guns
 Valves
 Switches
 Exhaust
 Silencers
 Air Chucks

 Valves
 Switches
 Exhaust
 Silencers
 Air Chucks



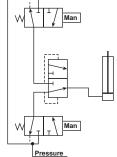
Typical "Quick Exhaust Valve" Applications

Rapid Retraction – Double Acting Cylinder


In this circuit, air is exhausted through a Quick Exhaust Valve that is **close coupled** to the cap end of the cylinder. Because the Quick Exhaust Valve has a greater exhaust capacity than the four-way Control Valve, increased cylinder speed can be accomplished with a smaller and less expensive control valve.

Dual Pressure Actuation of Double Acting Cylinder

This circuit utilizes a Quick Exhaust Valve and a three-way Control Valve to permit rapid extension of the cylinder at a high pressure. nder life.


NOTE: Line pressure must be 3 or 4 times greater than rod end pressure. Effective working pressure is the differential between the cap and rod end.

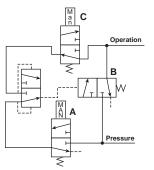
Bi-Directional Control of Two Double Acting Cylinders

This circuit provides maximum control with a minimum of valving. A large four-way Control Valve is not needed to permit the rapid retraction of Cylinder A, as the Quick Exhaust Valve performs this function. The extension of Cylinders A and B and retraction of Cylinder B are controlled by Speed Control Valves.

Typical "Shuttle Valve" Applications

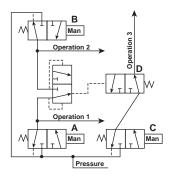
"OR" Circuit

Tanks & Air Chucks


Mufflers & Silencers

Relief & Exhaust Valves

> Pressure Switches


Drain Valves

Safety Blow Guns The most common application of the Shuttle Valve is the "OR" Circuit. Here a cylinder or other work device can be actuated by either control valve. The valves can be manually or electrically actuated and located in any position.

Memory Circuit

This circuit enables continuous operation once initiated. Pressure is delivered to the circuit when Valve A is actuated. This allows pressure to pass through the shuttle valve actuating Valve B. Pressure then flows through Valve B and also the other side of the shuttle valve which holds Valve B open for continuous operation. To unlock the circuit, Valve C must be opened to exhaust the circuit and allow Valve B to return to its normally closed position.

Interlock

This circuit prevents the occurrence of a specific operation while one or another operation takes place. When either Valve A or B is actuated to perform operation 1 or 2, Valve D is shifted to the closed position and prevents operation 3 from occurring.

