P8S Global Drop-In Reed Sensors

((

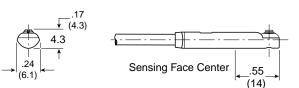
Wiring	Reed sensor
3m flying leads	P8S-GRFLX
10m flying leads	P8S-GRFTX
0.3m lead with 8mm connector	P8S-GRSHX
0.3m lead with 12mm connector	P8S-GRMHX
1m lead with 8mm connector	P8S-GRSCX

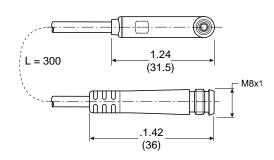
Specifications

Туре	2-Wire Reed
Output function	Normally open
Operating voltage	10 - 120 VAC*, 10 - 30 VDC
Switching power	6 W/VA
Continuous current	100 mA max.
Response sensitivity	30 Gauss min.
Switching frequency	400 Hz
Voltage drop	2.5 V max.
Ripple	10% of operating voltage
Hysteresis	1.5 mm max.
Repeatability	0.2 mm max.
Emc	EN 60 947-5-2
Reverse polarity protection	Yes
Enclosure rating	IP 68
Shock and vibration stress	30g, 11 ms, 10 to 55 Hz, 1 mm
Operating temperature range	-25°C to +75°C (-13°F to 167°F)
Housing material	PA 12, Black
Connector cable	PVC
Connector	PUR cable with 8 or 12 mm connector

Wiring connection

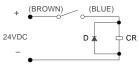
Flying Lead or 8 mm Connector


Pin	Wire	Function
1	Brown	Operating voltage (+V)
4	Black	Not used
3	Blue	Output signal (-V or ground)


12 mm Connector

Pin	Wire	Function
1	Brown	Operating voltage (+V)
2*	White	Not used
3	Blue	Output signal (-V or ground)
4	Black	Not used

Dimensions

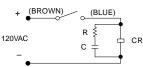


* 8mm connector rated for 50 vac max.

Circuit for switching contact protection (for inductive loads, e.g. solenoids, relays)

(Required for proper operation 24VDC)

Put diode parallel to load (CR) following polarity as shown.



D: Diode: select a diode with the breakdown voltage and current rating according to the load.

Typical Example - 100 volt, 1 amp diode CR: Relay coil (under 0.5W coil rating)

(Recommended for longer life 120 VAC)

Put a resistor and capacitor in parallel with the load (CR). Select the resistor and capacitor according to the load.

Typical Example:

- CR: Relay coil (under 2W coil rating)
- Resistor 1 KΩ 5 KΩ, 1/4 W R:
- C: Capacitor 0.1 ΩF, 600 V

Caution

- Use an ampmeter to test reed sensor current. Testing devices such as incandescent light bulbs may subject the reed sensor to high in-rush loads.
- **NOTE:** When checking an unpowered reed sensor for continuity with a digital ohmmeter the resistance reading will change from infinity to a very large resistance (2 M ohm) when the sensor is activated. This is due to the presence of a diode in the reed sensor.
- Anti-magnetic shielding is recommended for reed sensors exposed to high external RF or magnetic fields.
- The magnetic field strength of the piston magnet is designed to operate with our sensors. Other manufacturers' sensors may not operate correctly in conjunction with these magnets.
- Use relay coils for reed sensor contact protection.
- The operation of some 120 VAC PLC's (especially some older Allen-Bradley PLC's) can overload the reed sensor. The sensor may fail to release after the piston magnet has passed. This problem may be corrected by the placement of a 700 to 1K OHM resistor between the sensor and the PLC input terminal. Consult the manufacturer of the PLC for appropriate circuit.
- Sensors with long wire leads (greater than 15 feet) can cause capacitance build-up and sticking will result. Attach a resistor in series with the reed sensor (the resistor should be installed as close as possible to the sensor). The resistor should be selected such that R (ohms) >E/0.3.

Selection Guide

Proximity Sensors

Sensors