High Pressure Compressed Air and Gas Filters

J-Series High Efficiency Filters / CNG and Alternative Fuel Filters

Bulletin 1300-220/USA
Finite J-Series High Pressure Filters

Why do high pressure systems need filtration?

High pressure compressors are used in a variety of applications. Many owners, operators and designers of high pressure compressed air or gas systems rely on Parker’s Finite Filter Operation for high efficiency filters. End users of high pressure compressed air, such as scuba divers and fire rescue workers, depend on high quality breathable air.

Throughout the stages of compression many contaminants can enter into the system. Excessive amounts of liquid aerosols, primarily lube oil carryover and solid particulate contamination are common in high pressure systems. In addition, higher temperature levels are possible and may cause liquid oils to varnish. This contamination can lead to poor component performance and wear that may lead to unscheduled maintenance. Even submicronic contaminants in compressed air or gas systems can foul multistage compressors, increasing maintenance costs and impacting product quality.

Parker’s Finite Filter Operation offers a variety of high pressure compressed air and gas filters. With our wide range of elements, we have a solution for every stage of compression, as well as at the point of use. Whether you are storing high pressure air or gas or using a continuous flow, count on Parker to protect your equipment from contamination. Parker Finite is the solution to ending high pressure contamination fouling.

Parker’s Finite Filter Operation’s J-Series Filters are designed to filter contaminants such as rust, pipe scale, compressor lube oil, and water from compressed gases. These filters are often used in high pressure compressed natural gas (CNG) systems, not only as inter-stage filters in the multi-stage compression of the gas, but also in the storage and delivery of the gas for CNG powered vehicles.

Parker’s varied media choices remove up to 99.995% of both solid and liquid aerosols, and contaminants as small as 0.01 microns in size. An activated carbon media is also available which removes oil vapor. This stage of filtration is often used as the final filter before the storage of high pressure breathing air used by scuba divers, firefighters, and others who utilize portable breathing devices.

The filter housings and the replaceable elements used in this product line have an extremely robust construction, specially designed for use in system pressures up to 5,000 psig. Five housing sizes and two thread styles (NPT or SAE) are available with connections ranging from 1/4” to 2”; temperatures up to 350°F, and flows up to 26,000 SCFM at 5,000 PSIG.

www.comoso.com www.cngfiltration.com
Filter Element Features

Parker Finite offers six filter media grades ensuring that we have the correct media choice for nearly any application requirement.

Available are coalescing grades with 95% to 99.995% efficiency and pleated or UNI-CAST coalescing media designs. Additionally, a bulk liquid separator, a particulate removal and oil vapor removal choices are standard offerings.

Each element uses a retention clip design that ensures the element is seated and sealed properly. This built-in, fail-safe feature will virtually eliminate any possibility of contaminant by-pass and is unique amongst high pressure filters.

Each element is composed of internal and external plated carbon steel retainers which provide the element with a 75+ PSID burst rating. Each element also features a bore seal interface with the housing, an anti-vibration shoulder, and an integrated standoff which minimizes the likelihood of any movement of the element, even during severe system pulsations.

Element standoff lengths were designed for each housing size to allow an optimal volume of liquid contaminant to be collected in the filter's quiet zone, further minimizing any chance of contaminant carryover.

Filter Housing Features

- Robust, spheroidal graphite-cast iron offers higher mechanical strength, improved ductility, and increased shock resistance, assuring the user that this filter is built for the task at hand.
- Head to bowl bore seal ensures greater seal integrity.
- Threaded mounting holes on top of filter head allow each size to be easily panel mounted when line mounting is not an option.
- Engraved flow direction arrow in filter’s head notifies the user of proper flow direction. One direction flow for all media choices reduces the possibility of a housing being installed improperly.
- The spheroidal graphite cast iron head and steel bowl are nickel plated for corrosion resistance. The completed assembly is finished with a UV stable epoxy powder paint that will allow the filter to stand-up to harsh outdoor conditions.
- An imprinted aluminum part number tag ensures that each unit’s identifying information will be visible in the years ahead.
- SAE-6 steel drain plug with positive o-ring seal installed. This port also allows the easy installation of Finite’s JDK5000H or JDK5000V high pressure drain kits which allow the safe removal of liquid contamination at system pressures.
- Bowls are designed to be easily tightened or loosened with a standard socket wrench.
- Bowls feature a slotted positional locator which enables the element to be positively retained, therefore having a low bowl removal clearance.

J-Series High Pressure Filters
- CNG, alternative fuel and breathing air filters
- Pressures to 5000 PSIG
- Spheroidal Graphite Cast Iron
- Coalescing, particulate and adsorption filter elements available

1-800-521-4357 www.comoso.com
Element Types and Media Grade Options

Coalescers:

Removes: Oil, water, liquids

Coalescing elements are specially designed for the removal of liquid contaminants from gaseous flows. These media types flow from the inside of the element to the outside. Coalesced liquid collects in the bowl where it is drained, while clean air or gas exits the housing through the outlet port. Particulate contaminants are captured and held in the media.

Type C

The Finite UNI-CAST coalescing elements are made of epoxy saturated borosilicate glass microfiber and includes a polyester drain layer. (1)(2)

Type 7CVP

This pleated coalescer is made of fluorocarbon saturated borosilicate glass microfiber and includes a polyester drain layer. (1)(2)

Type WS

The Finite water separator element is composed of wrapped stainless steel mesh. (1)(2)

Water Separator:

Removes: Bulk liquids

In this element, the gas or liquid flows from the inside of the element to the outside.

Adsorber:

Removes: Oil vapor (odor)

Adsorption elements are used to remove vapors (hydrocarbon or water) that are not removed by the coalescing filter. Hydrocarbon vapors collect in the element, while clean air exits the housing through the outlet port. In this element, the air or gas flows from the inside of the element to the outside.

Particulate:

Removes: Solid contaminants

Particulate filters in the J-Series flow from the inside of the element to the outside. Particles collect in the element, while the clean air exits through the outlet port.

Type A

Our Type A media is wrapped activated carbon. This element has a galvanized carbon steel inner retainer and a stainless steel perforated metal outer retaining layer. (2)

Type 3P

This 3 micron absolute rated pleated element is made of cellulose. (1)(2)

Media Grades and Specifications:

Finite media grades determine the filtration efficiency. Capture efficiencies are available up to 99.995%. Micron ratings range from 0.01 to 3 micron. The columns on the right note both the wet and dry pressure drops.

<table>
<thead>
<tr>
<th>Grade Designation</th>
<th>Media Type</th>
<th>Removes...</th>
<th>Max. Oil Coalescing Efficiency</th>
<th>Micron Carryover ppm</th>
<th>Rating (um)</th>
<th>Pressure Drop Media Dry (PSID)</th>
<th>Additional Pressure Drop Media Wet (PSID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C</td>
<td>Coalescing</td>
<td>Liquid from Gas</td>
<td>99.995%</td>
<td>0.003</td>
<td>0.01</td>
<td>1.25</td>
<td>3.4</td>
</tr>
<tr>
<td>7CP</td>
<td>Coalescing</td>
<td>Liquid from Gas</td>
<td>99.5%</td>
<td>0.09</td>
<td>0.5</td>
<td>0.25</td>
<td>0.5-0.7</td>
</tr>
<tr>
<td>10C</td>
<td>Coalescing</td>
<td>Liquid from Gas</td>
<td>95%</td>
<td>0.85</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>WS</td>
<td>Bulk Separator</td>
<td>Bulk Liquid from Gas</td>
<td>99+%</td>
<td>N.A.</td>
<td>100</td>
<td><0.25</td>
<td><0.25</td>
</tr>
<tr>
<td>3P</td>
<td>Particulate</td>
<td>Solids from Gas</td>
<td>N.A.</td>
<td>N.A.</td>
<td>3.0</td>
<td>0.25</td>
<td>N.A.</td>
</tr>
<tr>
<td>A</td>
<td>Adsorber</td>
<td>Vapor from Gas</td>
<td>99+%</td>
<td>N.A.</td>
<td>3.0</td>
<td>1.0</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

1Tested per ISO 12500-1 at 40 ppm inlet.
2Add dry + wet columns for total pressure drop.
3Bulk liquid removal efficiency.
4Oil vapor removal efficiency is given for A media.
Applications:

<table>
<thead>
<tr>
<th>High Pressure (HP) Filter Applications</th>
<th>10C / 7C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Air for HP Hydraulics</td>
<td></td>
</tr>
<tr>
<td>Inter-stage HP Compressor</td>
<td>WS / 10C</td>
</tr>
<tr>
<td>CNG Compressor Outlet</td>
<td>10C → 4C</td>
</tr>
<tr>
<td>CNG Storage Cascades</td>
<td>10C → 4C</td>
</tr>
<tr>
<td>CNG Dispensers</td>
<td>10C → 4C</td>
</tr>
<tr>
<td>Breathing Air / SCUBA</td>
<td>10C → 4C → A</td>
</tr>
<tr>
<td>High Pressure “Ultra Pure Air”</td>
<td>10C → 4C → 4C → A</td>
</tr>
<tr>
<td>Bulk Liquid contamination</td>
<td>WS → 7C → 4C</td>
</tr>
<tr>
<td>Bulk solid Contamination</td>
<td>3P → 7C → 4C</td>
</tr>
<tr>
<td>HP Air / Gas Dryer Protection</td>
<td>10C / 7C → 4C → Dryer → 7C / 3P</td>
</tr>
<tr>
<td>Food Applications / Odor Removal</td>
<td>10C / 7C → 4C → A</td>
</tr>
</tbody>
</table>

Flow Rates:

Choose Filter Size to find the corresponding flow rates

<table>
<thead>
<tr>
<th>Model</th>
<th>Port</th>
<th>Filter Type</th>
<th>100 PSIG</th>
<th>1000 PSIG</th>
<th>1500 PSIG</th>
<th>2000 PSIG</th>
<th>2500 PSIG</th>
<th>3000 PSIG</th>
<th>3500 PSIG</th>
<th>4000 PSIG</th>
<th>4500 PSIG</th>
<th>5000 PSIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1A</td>
<td>1/4"</td>
<td>4C, A</td>
<td>15</td>
<td>135</td>
<td>200</td>
<td>265</td>
<td>330</td>
<td>395</td>
<td>460</td>
<td>525</td>
<td>590</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7CP, 10C, 3P, WS</td>
<td>30</td>
<td>265</td>
<td>395</td>
<td>525</td>
<td>660</td>
<td>790</td>
<td>920</td>
<td>1050</td>
<td>1180</td>
<td>1310</td>
</tr>
<tr>
<td>J_2A</td>
<td>1/2"</td>
<td>4C, A</td>
<td>25</td>
<td>220</td>
<td>330</td>
<td>440</td>
<td>550</td>
<td>655</td>
<td>765</td>
<td>875</td>
<td>985</td>
<td>1095</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7CP, 10C, 3P, WS</td>
<td>50</td>
<td>440</td>
<td>660</td>
<td>880</td>
<td>1095</td>
<td>1315</td>
<td>1530</td>
<td>1750</td>
<td>1970</td>
<td>2185</td>
</tr>
<tr>
<td>J_2B</td>
<td>1/2"</td>
<td>4C, A</td>
<td>35</td>
<td>310</td>
<td>460</td>
<td>615</td>
<td>765</td>
<td>920</td>
<td>1070</td>
<td>1225</td>
<td>1380</td>
<td>1530</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7CP, 10C, 3P, WS</td>
<td>80</td>
<td>710</td>
<td>1055</td>
<td>1405</td>
<td>1755</td>
<td>2105</td>
<td>2450</td>
<td>2800</td>
<td>3150</td>
<td>3500</td>
</tr>
<tr>
<td>J_3B</td>
<td>3/4"</td>
<td>4C, A</td>
<td>60</td>
<td>530</td>
<td>790</td>
<td>1055</td>
<td>1315</td>
<td>1575</td>
<td>1840</td>
<td>2100</td>
<td>2360</td>
<td>2525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7DP, 10C, 3P, WS</td>
<td>130</td>
<td>1150</td>
<td>1715</td>
<td>2285</td>
<td>2850</td>
<td>3415</td>
<td>3985</td>
<td>4550</td>
<td>5115</td>
<td>5685</td>
</tr>
<tr>
<td>J_4C</td>
<td>1"</td>
<td>4C, A</td>
<td>90</td>
<td>795</td>
<td>1190</td>
<td>1580</td>
<td>1975</td>
<td>2365</td>
<td>2760</td>
<td>3150</td>
<td>3540</td>
<td>3935</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7CP, 10C, 3P, WS</td>
<td>200</td>
<td>1770</td>
<td>2640</td>
<td>3515</td>
<td>4385</td>
<td>5255</td>
<td>6130</td>
<td>7000</td>
<td>7870</td>
<td>8745</td>
</tr>
<tr>
<td>J_6D</td>
<td>1-1/2"</td>
<td>4C, A</td>
<td>180</td>
<td>1590</td>
<td>2375</td>
<td>3160</td>
<td>3945</td>
<td>4730</td>
<td>5515</td>
<td>6300</td>
<td>7085</td>
<td>7870</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7CP, 10C, 3P, WS</td>
<td>400</td>
<td>3540</td>
<td>5280</td>
<td>7025</td>
<td>8770</td>
<td>10515</td>
<td>12255</td>
<td>14000</td>
<td>15745</td>
<td>17490</td>
</tr>
<tr>
<td>J_8E</td>
<td>2"</td>
<td>4C, A</td>
<td>275</td>
<td>2435</td>
<td>3630</td>
<td>4830</td>
<td>6030</td>
<td>7230</td>
<td>8425</td>
<td>9625</td>
<td>10825</td>
<td>12025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7CP, 10C, 3P, WS</td>
<td>600</td>
<td>5310</td>
<td>7925</td>
<td>10540</td>
<td>13155</td>
<td>15770</td>
<td>18385</td>
<td>21000</td>
<td>23615</td>
<td>26230</td>
</tr>
</tbody>
</table>

Note: These rates are based on compressed air flow. For CNG, these flows can be multiplied by a factor of 1.2.
Specifications:

<table>
<thead>
<tr>
<th>Model</th>
<th>J_1A</th>
<th>J_2A</th>
<th>J_2B</th>
<th>J_3B</th>
<th>J_4C</th>
<th>J_6D</th>
<th>J_8E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Size (N=NPT)</td>
<td>1/4" NPT</td>
<td>1/2" NPT</td>
<td>1/2" NPT</td>
<td>3/4" NPT</td>
<td>1"NPT</td>
<td>1-1/2"NPT</td>
<td>2" NPT</td>
</tr>
<tr>
<td>Port Size (S=SAE)</td>
<td>SAE-4</td>
<td>SAE-8</td>
<td>SAE-8</td>
<td>SAE-12</td>
<td>SAE-16</td>
<td>SAE-24</td>
<td>SAE-32</td>
</tr>
<tr>
<td>Max. Pressure</td>
<td>5000 PSIG</td>
</tr>
<tr>
<td>Max. Temperature</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
<td>350°F</td>
</tr>
<tr>
<td>Head</td>
<td>SG Iron*</td>
</tr>
<tr>
<td>Bowl</td>
<td>Steel</td>
<td>Steel</td>
<td>Steel</td>
<td>Steel</td>
<td>Steel</td>
<td>Steel</td>
<td>Steel</td>
</tr>
<tr>
<td>Seals</td>
<td>Fluorocarbon</td>
<td>Fluorocarbon</td>
<td>Fluorocarbon</td>
<td>Fluorocarbon</td>
<td>Fluorocarbon</td>
<td>Fluorocarbon</td>
<td>Fluorocarbon</td>
</tr>
<tr>
<td>Backing Ring</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
<td>Nitrile</td>
</tr>
<tr>
<td>Sump Volume</td>
<td>50 mL</td>
<td>50 mL</td>
<td>180 mL</td>
<td>180 mL</td>
<td>230 mL</td>
<td>200 mL</td>
<td>50 mL</td>
</tr>
<tr>
<td>Weight</td>
<td>9.0 lbs.</td>
<td>9.0 lbs.</td>
<td>13.0 lbs.</td>
<td>13.0 lbs.</td>
<td>21.0 lbs.</td>
<td>21.0 lbs.</td>
<td>45.0 lbs.</td>
</tr>
<tr>
<td>Port to Port</td>
<td>3.62"</td>
<td>3.62"</td>
<td>3.08"</td>
<td>3.08"</td>
<td>4.33"</td>
<td>4.96"</td>
<td>6.42"</td>
</tr>
<tr>
<td>Height</td>
<td>7.4"</td>
<td>7.4"</td>
<td>12.0"</td>
<td>12.0"</td>
<td>13.5"</td>
<td>17.5"</td>
<td>22.1"</td>
</tr>
<tr>
<td>Clearance</td>
<td>2.0"</td>
<td>2.0"</td>
<td>2.25"</td>
<td>2.25"</td>
<td>2.25"</td>
<td>3.0"</td>
<td>3.0"</td>
</tr>
<tr>
<td>Drain Port</td>
<td>SAE-6</td>
<td>SAE-6</td>
<td>SAE-6</td>
<td>SAE-6</td>
<td>SAE-6</td>
<td>SAE-6</td>
<td>SAE-6</td>
</tr>
<tr>
<td>Socket / Bowl Removal</td>
<td>1-1/16" HEX</td>
<td>1-1/16" HEX</td>
<td>1-1/16" HEX</td>
<td>1-1/16" HEX</td>
<td>1-1/16" HEX</td>
<td>1-1/2 HEX</td>
<td>1-1/2 HEX</td>
</tr>
<tr>
<td>Head / Bowl Torque</td>
<td>15-20 ft-lbs.</td>
<td>15-20 ft-lbs.</td>
<td>25-30 ft-lbs.</td>
<td>25-30 ft-lbs.</td>
<td>60-70 ft-lbs.</td>
<td>60-70 ft-lbs.</td>
<td>60-70 ft-lbs.</td>
</tr>
</tbody>
</table>

*Note: SG Iron is an abbreviation for Spheroidal Graphite Cast Iron
(1) Maximum temperature of filter assembly is dependent on element installed in housing.

High Pressure Drains and Gauge:

- **JDK5000H**: Horizontal Drain Kit 5000 psig
- **JDK5000V**: Vertical Drain Kit 5000 psig
- **BDPI-25**: Differential Pressure Gauge and Bracket

Note: Replacement Element supplied with o-ring and lube tube.
How To Order
Part Numbers for Complete Assemblies:
Use the steps below to build your own part number.
For any permutation not mentioned below, please consult factory at 1-800-521-4357.

<table>
<thead>
<tr>
<th>Series Name</th>
<th>Thread</th>
<th>Port Size</th>
<th>Housing Size</th>
<th>Media Grade</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>N - NPT</td>
<td>1 (1/4")</td>
<td>= A</td>
<td>4C</td>
<td>N = None</td>
</tr>
<tr>
<td>S - SAE</td>
<td></td>
<td>2 (1/2")</td>
<td>= A</td>
<td>10C</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (1/2")</td>
<td>= B</td>
<td>7CP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 (3/4")</td>
<td>= B</td>
<td>WS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (1")</td>
<td>= C</td>
<td>3P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 (1-1/2")</td>
<td>= D</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 (2")</td>
<td>= E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:
JN2A-4CN, JS6D-WSN, JN3B-3PN

Replacement Element Part Numbers:
Note: Replacement element supplied with replacement head/bowl seals and tube of lubricant.

<table>
<thead>
<tr>
<th>Media Grade/Type</th>
<th>Series Name</th>
<th>Housing Size</th>
<th>Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C</td>
<td>J</td>
<td>A</td>
<td>K</td>
</tr>
<tr>
<td>10C</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>7CP</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>3P</td>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:
4CJAK, WSJK, 3PBK

J-Series filters are used in a number of applications, ranging from breathing air for scuba divers, to high-pressure hydraulic circuit testing, to a variety of uses in the alternative fuel industry.
Worldwide Filtration Manufacturing Locations

North America
Compressed Air Treatment
Filtration & Separation/Balston
Haverhill, MA
978 858 0505
www.parker.com/balston

Filtration & Separation/Finite
Oxford, MI
248 628 6400
www.parker.com/finitefilter

Purification, Dehydration & Filtration Division
Lancaster, NY
716 685 4040
www.parker.com/pdf

Sales Office
Charlotte, NC
704 921 9303
www.parker.com/pdf

Engine Filtration & Water Purification
Racor
Modesto, CA
209 521 7860
www.parker.com/racor

Racor
Holly Springs
662 252 2656
www.parker.com/racor

Racor
Beaufort, SC
843 846 3200
www.parker.com/racor

Racor – Village Marine Tec.
Gardena, CA
310 516 9911
desalination.parker.com

Hydraulic Filtration
Hydraulic Filter
Metamora, OH
419 644 4311
www.parker.com/hydraulicfilter

Process Filtration
Process Advanced Filtration
Oxnard, CA
805 604 3400
www.parker.com/processfiltration

Europe
Compressed Air Treatment
domnick hunter Industrial
England NE
+44 (0) 191 402 9000,
www.domnickhunter.com

Hiross Zander
Padova Business Unit
Angelo di Piove Padova, Italy
+39 049 9712 111
www.parker.com/hzd

Hiross Zander
Essen Business Unit
Essen, Germany
T +49 2054 9340, F +49 2054 934164
www.parker.com/hzd

Parker Gas Separations
Etten- Leur, Netherlands
+31 76 508 5300

Engine Filtration & Water Purification
Racor
England
+44 (0) 1924 487000,
www.parker.com/racor

Racor Research & Development
Stuttgart Germany
+49 (0) 171 0771 900-0
www.parker.com/racor

Hydraulic Filtration
Hydraulic Filter
Arnhem, Holland
+31 26 3760376
www.parker.com/eurofilt

Urajla Operation
Urajla as Finland
+358 20 753 2500
www.parker.com/fi

Condition Monitoring Center
Norfolk IP 24 1HP England
+44 1842 763299
www.parker.com/cmc

Process Filtration
domnick hunter Process
DH3 2SF England
T +44 (0) 191 410 5121
www.domnickhunter.com

Asia Pacific
Australia
NSW 2154, Australia
+61 2 9634 7777
www.parker.com/australia

China
Shanghai 101206 China
+86 21 5031 2525
www.parker.com/china

India
Mahape, Navi Mumbai 400 709 India
T +91 22 5613 7081, 82, 83, 84, 85
www.parker.com/india

Japan
Yokohama-shi, 244-0003 Japan
T +81 45 870 1522
www.parker.com/japan

Korea
Hwaseong-City Gyeonggi-Do, Korea
T +82 31 359 0771
www.parker.com/korea

Singapore
Singapore 619 702
T +65 6887 6300
www.parker.com/singapore

Thailand
Bangkok 10250 Thailand
T +66 2717 8140
www.parker.com/thailand

Latin America
Parker Comercio Ltda.
Filtration Division
Sao Jose dos Campos
CEP 12225-390 SP Brazil
+55 12 4009 3500
www.parker.com/br

Pan American Division - Miami
Miami, FL
305 470 8800
www.parker.com/panam

Africa
Aeroport Kempton Park,
1620 South Africa
+27 11 9610700
www.parker.com/eu

© 2011 Parker Hannifin Corporation. Product names are trademarks or registered trademarks of their respective companies.
Bulletin 1300-220/USA 4/11

Parker Hannifin Corporation
Filtration and Separation Division
500 S. Glaspie Street
Oxford, MI 48371
phone 248 628 6400, fax 248 628 1850
1 800 521 4357 (US & Canada)
www.cngfiltration.com

www.comoso.com

[Logo]